Transcript segmentation is the task of dividing a single continuous transcript into multiple segments. While document segmentation is a popular task, transcript segmentation has significant challenges due to the relatively noisy and sporadic nature of data. We propose pretraining strategies to address these challenges. The strategies are based on “Next Conversation Prediction” (NCP) with the underlying idea of pretraining a model to identify consecutive conversations. We further introduce “Advanced NCP” to make the pretraining task more relevant to the downstream task of segmentation break prediction while being significantly easier. Finally we introduce a curriculum to Advanced NCP (Curricular NCP) based on the similarity between pretraining and downstream task samples. Curricular NCP applied to a state-of-the-art model for text segmentation outperforms prior results. We also show that our pretraining strategies make the model robust to speech recognition errors commonly found in automatically generated transcripts.
In this paper, we introduce the task of modeling interpersonal relationships for story generation. For addressing this task, we propose Relationships as Latent Variables for Story Generation, (ReLiSt). ReLiSt generates stories sentence by sentence and has two major components - a relationship selector and a story continuer. The relationship selector specifies a latent variable to pick the relationship to exhibit in the next sentence and the story continuer generates the next sentence while expressing the selected relationship in a coherent way. Our automatic and human evaluations demonstrate that ReLiSt is able to generate stories with relationships that are more faithful to desired relationships while maintaining the content quality. The relationship assignments to sentences during inference brings interpretability to ReLiSt.
Automatic Speech Recognition (ASR) systems are evaluated using Word Error Rate (WER), which is calculated by comparing the number of errors between the ground truth and the transcription of the ASR system. This calculation, however, requires manual transcription of the speech signal to obtain the ground truth. Since transcribing audio signals is a costly process, Automatic WER Evaluation (e-WER) methods have been developed to automatically predict the WER of a speech system by only relying on the transcription and the speech signal features. While WER is a continuous variable, previous works have shown that positing e-WER as a classification problem is more effective than regression. However, while converting to a classification setting, these approaches suffer from heavy class imbalance. In this paper, we propose a new balanced paradigm for e-WER in a classification setting. Within this paradigm, we also propose WER-BERT, a BERT based architecture with speech features for e-WER. Furthermore, we introduce a distance loss function to tackle the ordinal nature of e-WER classification. The proposed approach and paradigm are evaluated on the Librispeech dataset and a commercial (black box) ASR system, Google Cloud’s Speech-to-Text API. The results and experiments demonstrate that WER-BERT establishes a new state-of-the-art in automatic WER estimation.
While Curriculum Learning (CL) has recently gained traction in Natural language Processing Tasks, it is still not adequately analyzed. Previous works only show their effectiveness but fail short to explain and interpret the internal workings fully. In this paper, we analyze curriculum learning in sentiment analysis along multiple axes. Some of these axes have been proposed by earlier works that need more in-depth study. Such analysis requires understanding where curriculum learning works and where it does not. Our axes of analysis include Task difficulty on CL, comparing CL pacing techniques, and qualitative analysis by visualizing the movement of attention scores in the model as curriculum phases progress. We find that curriculum learning works best for difficult tasks and may even lead to a decrement in performance for tasks with higher performance without curriculum learning. We see that One-Pass curriculum strategies suffer from catastrophic forgetting and attention movement visualization within curriculum pacing. This shows that curriculum learning breaks down the challenging main task into easier sub-tasks solved sequentially.