Ali Rafiei


2024

pdf
UAlberta at SemEval-2024 Task 1: A Potpourri of Methods for Quantifying Multilingual Semantic Textual Relatedness and Similarity
Ning Shi | Senyu Li | Guoqing Luo | Amirreza Mirzaei | Ali Rafiei | Jai Riley | Hadi Sheikhi | Mahvash Siavashpour | Mohammad Tavakoli | Bradley Hauer | Grzegorz Kondrak
Proceedings of the 18th International Workshop on Semantic Evaluation (SemEval-2024)

We describe our systems for SemEval-2024 Task 1: Semantic Textual Relatedness. We investigate the correlation between semantic relatedness and semantic similarity. Specifically, we test two hypotheses: (1) similarity is a special case of relatedness, and (2) semantic relatedness is preserved under translation. We experiment with a variety of approaches which are based on explicit semantics, downstream applications, contextual embeddings, large language models (LLMs), as well as ensembles of methods. We find empirical support for our theoretical insights. In addition, our best ensemble system yields highly competitive results in a number of diverse categories. Our code and data are available on GitHub.