This is an internal, incomplete preview of a proposed change to the ACL Anthology.
For efficiency reasons, we generate only three BibTeX files per volume, and the preview may be incomplete in other ways, or contain mistakes.
Do not treat this content as an official publication.
We introduce SHARCS for adaptive inference that takes into account the hardness of input samples. SHARCS can train a router on any transformer network, enabling the model to direct different samples to sub-networks with varying widths. Our experiments demonstrate that: (1) SHARCS outperforms or complements existing per-sample adaptive inference methods across various classification tasks in terms of accuracy vs. FLOPs; (2) SHARCS generalizes across different architectures and can be even applied to compressed and efficient transformer encoders to further improve their efficiency; (3) SHARCS can provide a 2 times inference speed up at an insignificant drop in accuracy.
Recent video-text models can retrieve relevant videos based on text with a high accuracy, but to what extent do they comprehend the semantics of the text? Can they discriminate between similar entities and actions? To answer this, we propose an evaluation framework that probes video-text models with hard negatives. We automatically build contrast sets, where true textual descriptions are manipulated in ways that change their semantics while maintaining plausibility. Specifically, we leverage a pre-trained language model and a set of heuristics to create verb and person entity focused contrast sets. We apply these in the multiple choice video to-text classification setting. We test the robustness of recent methods on the proposed automatic contrast sets, and compare them to additionally collected human-generated counterparts, to assess their effectiveness. We see that model performance suffers across all methods, erasing the gap between recent CLIP-based methods vs. the earlier methods.
We propose TuringAdvice, a new challenge task and dataset for language understanding models. Given a written situation that a real person is currently facing, a model must generate helpful advice in natural language. Our evaluation framework tests a fundamental aspect of human language understanding: our ability to use language to resolve open-ended situations by communicating with each other. Empirical results show that today’s models struggle at TuringAdvice, even multibillion parameter models finetuned on 600k in-domain training examples. The best model, T5, writes advice that is at least as helpful as human-written advice in only 14% of cases; a much larger non-finetunable GPT3 model does even worse at 4%. This low performance reveals language understanding errors that are hard to spot outside of a generative setting, showing much room for progress.
The success of large-scale contextual language models has attracted great interest in probing what is encoded in their representations. In this work, we consider a new question: to what extent contextual representations of concrete nouns are aligned with corresponding visual representations? We design a probing model that evaluates how effective are text-only representations in distinguishing between matching and non-matching visual representations. Our findings show that language representations alone provide a strong signal for retrieving image patches from the correct object categories. Moreover, they are effective in retrieving specific instances of image patches; textual context plays an important role in this process. Visually grounded language models slightly outperform text-only language models in instance retrieval, but greatly under-perform humans. We hope our analyses inspire future research in understanding and improving the visual capabilities of language models.
Communicating with humans is challenging for AIs because it requires a shared understanding of the world, complex semantics (e.g., metaphors or analogies), and at times multi-modal gestures (e.g., pointing with a finger, or an arrow in a diagram). We investigate these challenges in the context of Iconary, a collaborative game of drawing and guessing based on Pictionary, that poses a novel challenge for the research community. In Iconary, a Guesser tries to identify a phrase that a Drawer is drawing by composing icons, and the Drawer iteratively revises the drawing to help the Guesser in response. This back-and-forth often uses canonical scenes, visual metaphor, or icon compositions to express challenging words, making it an ideal test for mixing language and visual/symbolic communication in AI. We propose models to play Iconary and train them on over 55,000 games between human players. Our models are skillful players and are able to employ world knowledge in language models to play with words unseen during training.
We propose PIGLeT: a model that learns physical commonsense knowledge through interaction, and then uses this knowledge to ground language. We factorize PIGLeT into a physical dynamics model, and a separate language model. Our dynamics model learns not just what objects are but also what they do: glass cups break when thrown, plastic ones don’t. We then use it as the interface to our language model, giving us a unified model of linguistic form and grounded meaning. PIGLeT can read a sentence, simulate neurally what might happen next, and then communicate that result through a literal symbolic representation, or natural language. Experimental results show that our model effectively learns world dynamics, along with how to communicate them. It is able to correctly forecast what happens next given an English sentence over 80% of the time, outperforming a 100x larger, text-to-text approach by over 10%. Likewise, its natural language summaries of physical interactions are also judged by humans as more accurate than LM alternatives. We present comprehensive analysis showing room for future work.
Existing open-domain question answering (QA) models are not suitable for real-time usage because they need to process several long documents on-demand for every input query, which is computationally prohibitive. In this paper, we introduce query-agnostic indexable representations of document phrases that can drastically speed up open-domain QA. In particular, our dense-sparse phrase encoding effectively captures syntactic, semantic, and lexical information of the phrases and eliminates the pipeline filtering of context documents. Leveraging strategies for optimizing training and inference time, our model can be trained and deployed even in a single 4-GPU server. Moreover, by representing phrases as pointers to their start and end tokens, our model indexes phrases in the entire English Wikipedia (up to 60 billion phrases) using under 2TB. Our experiments on SQuAD-Open show that our model is on par with or more accurate than previous models with 6000x reduced computational cost, which translates into at least 68x faster end-to-end inference benchmark on CPUs. Code and demo are available at nlp.cs.washington.edu/denspi
Recent work by Zellers et al. (2018) introduced a new task of commonsense natural language inference: given an event description such as “A woman sits at a piano,” a machine must select the most likely followup: “She sets her fingers on the keys.” With the introduction of BERT, near human-level performance was reached. Does this mean that machines can perform human level commonsense inference? In this paper, we show that commonsense inference still proves difficult for even state-of-the-art models, by presenting HellaSwag, a new challenge dataset. Though its questions are trivial for humans (>95% accuracy), state-of-the-art models struggle (<48%). We achieve this via Adversarial Filtering (AF), a data collection paradigm wherein a series of discriminators iteratively select an adversarial set of machine-generated wrong answers. AF proves to be surprisingly robust. The key insight is to scale up the length and complexity of the dataset examples towards a critical ‘Goldilocks’ zone wherein generated text is ridiculous to humans, yet often misclassified by state-of-the-art models. Our construction of HellaSwag, and its resulting difficulty, sheds light on the inner workings of deep pretrained models. More broadly, it suggests a new path forward for NLP research, in which benchmarks co-evolve with the evolving state-of-the-art in an adversarial way, so as to present ever-harder challenges.
We formalize a new modular variant of current question answering tasks by enforcing complete independence of the document encoder from the question encoder. This formulation addresses a key challenge in machine comprehension by building a standalone representation of the document discourse. It additionally leads to a significant scalability advantage since the encoding of the answer candidate phrases in the document can be pre-computed and indexed offline for efficient retrieval. We experiment with baseline models for the new task, which achieve a reasonable accuracy but significantly underperform unconstrained QA models. We invite the QA research community to engage in Phrase-Indexed Question Answering (PIQA, pika) for closing the gap. The leaderboard is at: nlp.cs.washington.edu/piqa