Albert Lam


2024

pdf
Continual Dialogue State Tracking via Reason-of-Select Distillation
Yujie Feng | Bo Liu | Xiaoyu Dong | Zexin Lu | Li-Ming Zhan | Xiao-Ming Wu | Albert Lam
Findings of the Association for Computational Linguistics ACL 2024

An ideal dialogue system requires continuous skill acquisition and adaptation to new tasks while retaining prior knowledge. Dialogue State Tracking (DST), vital in these systems, often involves learning new services, confronting catastrophic forgetting and a critical capability loss termed the “Value Selection Quandary”. To address these challenges, we introduce the Reason-of-Select (RoS) distillation method by enhancing smaller models with a novel “meta-reasoning” capability. Meta-reasoning, employing an enhanced multi-domain perspective, combines fragments of meta-knowledge from domain-specific dialogues during continual learning, transcending traditional single-perspective reasoning. This domain bootstrapping process enhances the model’s ability to dissect intricate dialogues from multiple possible values, and its domain-agnostic property aligns data distribution across different domains, effectively mitigating forgetting. Besides, two novel improvements, “multi-value resolution” strategy and Semantic Contrastive Reasoning Selection method, significantly enhance RoS by generating DST-specific selection chains and mitigating hallucinations in teachers’ reasoning, ensuring effective and reliable knowledge transfer. Extensive experiments validate the exceptional performance and robust generalization capabilities of our method.

2022

pdf
New Intent Discovery with Pre-training and Contrastive Learning
Yuwei Zhang | Haode Zhang | Li-Ming Zhan | Xiao-Ming Wu | Albert Lam
Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

New intent discovery aims to uncover novel intent categories from user utterances to expand the set of supported intent classes. It is a critical task for the development and service expansion of a practical dialogue system. Despite its importance, this problem remains under-explored in the literature. Existing approaches typically rely on a large amount of labeled utterances and employ pseudo-labeling methods for representation learning and clustering, which are label-intensive, inefficient, and inaccurate. In this paper, we provide new solutions to two important research questions for new intent discovery: (1) how to learn semantic utterance representations and (2) how to better cluster utterances. Particularly, we first propose a multi-task pre-training strategy to leverage rich unlabeled data along with external labeled data for representation learning. Then, we design a new contrastive loss to exploit self-supervisory signals in unlabeled data for clustering. Extensive experiments on three intent recognition benchmarks demonstrate the high effectiveness of our proposed method, which outperforms state-of-the-art methods by a large margin in both unsupervised and semi-supervised scenarios. The source code will be available at https://github.com/zhang-yu-wei/MTP-CLNN.

pdf
Fine-tuning Pre-trained Language Models for Few-shot Intent Detection: Supervised Pre-training and Isotropization
Haode Zhang | Haowen Liang | Yuwei Zhang | Liming Zhan | Xiaolei Lu | Albert Lam | Xiao-Ming Wu
Proceedings of the 2022 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies

It is challenging to train a good intent classifier for a task-oriented dialogue system with only a few annotations. Recent studies have shown that fine-tuning pre-trained language models with a small set of labeled utterances from public benchmarks in a supervised manner is extremely helpful. However, we find that supervised pre-training yields an anisotropic feature space, which may suppress the expressive power of the semantic representations. Inspired by recent research in isotropization, we propose to improve supervised pre-training by regularizing the feature space towards isotropy. We propose two regularizers based on contrastive learning and correlation matrix respectively, and demonstrate their effectiveness through extensive experiments. Our main finding is that it is promising to regularize supervised pre-training with isotropization to further improve the performance of few-shot intent detection. The source code can be found at https://github.com/fanolabs/isoIntentBert-main.