Abhimanue


2014

pdf
Statistical Analysis of Multilingual Text Corpus and Development of Language Models
Shyam Sundar Agrawal | Abhimanue | Shweta Bansal | Minakshi Mahajan
Proceedings of the Ninth International Conference on Language Resources and Evaluation (LREC'14)

This paper presents two studies, first a statistical analysis for three languages i.e. Hindi, Punjabi and Nepali and the other, development of language models for three Indian languages i.e. Indian English, Punjabi and Nepali. The main objective of this study is to find distinction among these languages and development of language models for their identification. Detailed statistical analysis have been done to compute the information about entropy, perplexity, vocabulary growth rate etc. Based on statistical features a comparative analysis has been done to find the similarities and differences among these languages. Subsequently an effort has been made to develop a trigram model of Indian English, Punjabi and Nepali. A corpus of 500000 words of each language has been collected and used to develop their models (unigram, bigram and trigram models). The models have been tried in two different databases- Parallel corpora of French and English and Non-parallel corpora of Indian English, Punjabi and Nepali. In the second case, the performance of the model is comparable. Usage of JAVA platform has provided a special effect for dealing with a very large database with high computational speed. Furthermore various enhancive concepts like Smoothing, Discounting, Back off, and Interpolation have been included for the designing of an effective model. The results obtained from this experiment have been described. The information can be useful for development of Automatic Speech Language Identification System.