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Abstract

Pivot translation is a useful method for
translating between languages with little or
no parallel data by utilizing parallel data
in an intermediate language such as En-
glish. A popular approach for pivot trans-
lation used in phrase-based or tree-based
translation models combines source-pivot
and pivot-target translation models into a
source-target model, as known as triangu-
lation. However, this combination is based
on the constituent words’ surface forms
and often produces incorrect source-target
phrase pairs due to semantic ambiguity in
the pivot language, and interlingual differ-
ences. This degrades translation accuracy.
In this paper, we propose a approach for
the triangulation using syntactic subtrees
in the pivot language to distinguish pivot
language words by their syntactic roles to
avoid incorrect phrase combinations. Ex-
perimental results on the United Nations
Parallel Corpus show the proposed method
gains in all tested combinations of lan-
guage, up to 2.3 BLEU points.1

1 Introduction

In statistical machine translation (SMT) (Brown
et al., 1993), it is known that translation with mod-
els trained on larger parallel corpora can achieve
greater accuracy (Dyer et al., 2008). Unfor-
tunately, large bilingual corpora are not readily
available for many language pairs, particularly
those that do not include English. One effective so-
lution to overcome the scarceness of bilingual data
is to introduce a pivot language for which paral-

1Code to replicate the experiments can be found at
https://github.com/akivajp/wmt2017
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Figure 1: Example of disambiguation by parse
subtree matching (Fr-En-Zh), [X1] and [X2] are
non-terminals for sub-phrases.

lel data with the source and target languages exists
(de Gispert and Mariño, 2006).
Among various methods using pivot languages,

one popular and effective method is the triangu-
lation method (Utiyama and Isahara, 2007; Cohn
and Lapata, 2007), which first combines source-
pivot and pivot-target translation models (TMs)
into a source-target model, then translates using
this combined model. The procedure of triangu-
lating two TMs into one has been examined for
different frameworks of SMT and its effectiveness
has been confirmed both in Phrase-Based SMT
(PBMT) (Koehn et al., 2003; Utiyama and Isahara,
2007) and in Hierarchical Phrase-Based SMT (Hi-
ero) (Chiang, 2007; Miura et al., 2015). How-
ever, word sense ambiguity and interlingual dif-
ferences of word usage cause difficulty in accu-
rately learning correspondences between source
and target phrases, and thus the accuracy obtained
by triangulated models lags behind that of models
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trained on direct parallel corpora.
In the triangulation method, source-pivot and

pivot-target phrase pairs are connected as a source-
target phrase pair when a common pivot-side
phrase exists. In Figure 1 (a), we show an example
of standard triangulation on Hiero TMs that com-
bines hierarchical rules of phrase pairs by match-
ing pivot phrases with equivalent surface forms.
This example also demonstrates problems of am-
biguity: the English word “record” can corre-
spond to several different parts-of-speech accord-
ing to the context. More broadly, phrases includ-
ing this word also have different possible gram-
matical structures, but it is impossible to uniquely
identify this structure unless information about the
surrounding context is given.
This varying syntactic structure will affect trans-

lation. For example, the French verb “enreg-
istrer” corresponds to the English verb “record”,
but the French noun “dossier” also corresponds to
“record” — as a noun. As a more extreme ex-
ample, Chinese is a languages that does not have
inflections according to the part-of-speech of the
word. As a result, even in the contexts where
“record” is used with different parts-of-speech, the
Chinese word “记录” will be used, although the
word order will change. These facts might result in
an incorrect connection of “[X1] enregistrer [X2]”
and “[X2] [X1] 记录” even though proper corre-
spondence of “[X1] enregistrer [X2]” and “[X1]
dossier [X2]” would be “[X1] 记录 [X2]” and
“[X2] [X1] 记录”. Hence a superficial phrase
matching method based solely on the surface form
of the pivot will often combine incorrect phrase
pairs, causing translation errors if their translation
scores are estimated to be higher than the proper
correspondences.
Given this background, we hypothesize that dis-

ambiguation of these cases would be easier if the
necessary syntactic information such as phrase
structures are considered during pivoting. To in-
corporate this intuition into our models, we pro-
pose a method that considers syntactic information
of the pivot phrase, as shown in Figure 1 (b). In this
way, the model will distinguish translation rules
extracted in contexts in which the English sym-
bol string “[X1] record [X2]” behaves as a verbal
phrase, from contexts in which the same string acts
as nominal phrase.
Specifically, we propose a method based on

Synchronous Context-Free Grammars (SCFGs)

(Aho and Ullman, 1969; Chiang, 2007), which
are widely used in tree-based machine translation
frameworks (§2). After describing the baseline tri-
angulation method (§3), which uses only the sur-
face forms for performing triangulation, we pro-
pose two methods for triangulation based on syn-
tactic matching (§4). The first places a hard re-
striction on exact matching of parse trees (§4.1)
included in translation rules, while the second
places a softer restriction allowing partial matches
(§4.2). To investigate the effect of our proposed
method on pivot translation quality, we perform
experiments of pivot translation on the United Na-
tions Parallel Corpus (Ziemski et al., 2016), which
shows that our method indeed provide significant
gains in accuracy (of up to 2.3 BLEU points), in al-
most all combinations of 5 languages with English
as a pivot language (§5). In addition, as an auxil-
iary result, we compare pivot translation using the
proposed method with zero-shot neural machine
translation, and find that triangulation of symbolic
translation models still significantly outperforms
neural MT in the zero-resource scenario.

2 Translation Framework

2.1 Synchronous Context-Free Grammars
In this section, first we cover SCFGs, which are
widely used inmachine translation, particularly hi-
erarchical phrase-based translation (Hiero) (Chi-
ang, 2007). In SCFGs, the elementary structures
used in translation are synchronous rewrite rules
with aligned pairs of source and target symbols on
the right-hand side:

X →
⟨
s, t

⟩
(1)

where X is the head symbol of the rewrite rule,
and s and t are both strings of terminals and non-
terminals on the source and target side respec-
tively. Each string in the right side pair has the
same number of indexed non-terminals, and iden-
tically indexed non-terminals correspond to each-
other. For example, a synchronous rule could take
the form of:

X → ⟨X0 of X1, X1的 X0⟩ . (2)

Synchronous rules can be extracted based on
parallel sentences and automatically obtained
word alignments. Each extracted rule is scored
with phrase translation probabilities in both direc-
tions ϕ(s|t) and ϕ(t|s), lexical translation proba-
bilities in both directions ϕlex(s|t) and ϕlex(t|s),
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a word penalty counting the terminals in t, and a
constant phrase penalty of 1.
At translation time, the decoder searches for the

target sentence that maximizes the derivation prob-
ability, which is defined as the sum of the scores of
the rules used in the derivation, and the log of the
language model (LM) probability over the target
strings. When not considering an LM, it is possi-
ble to efficiently find the best translation for an in-
put sentence using the CKY+ algorithm (Chappe-
lier et al., 1998). When using an LM, the expanded
search space is further reduced based on a limit on
expanded edges, or total states per span, through a
procedure such as cube pruning (Chiang, 2007).

2.2 Hierarchical Rules

In this section, we specifically cover the rules used
in Hiero. Hierarchical rules are composed of initial
head symbol S, and synchronous rules containing
terminals and single kind of non-terminalsX .2 Hi-
erarchical rules are extracted using the same phrase
extraction procedure used in phrase-based trans-
lation (Koehn et al., 2003) based on word align-
ments, followed by a step that performs recursive
extraction of hierarchical phrases (Chiang, 2007).
For example, hierarchical rules could take the

form of:

X → ⟨Officers, 主席团成員⟩ (3)
X → ⟨the Committee, 委员会⟩ (4)
X → ⟨X0 of X1, X1的 X0⟩ . (5)

From these rules, we can translate the input sen-
tence by derivation:

S → ⟨X0, X0⟩
⇒ ⟨X1 of X2, X2的 X1⟩
⇒ ⟨Officers of X2, X2主席团成員⟩
⇒ ⟨Officers of the Committee,

委员会的主席团成員⟩

The advantage of Hiero is that it is able to
achieve relatively high word re-ordering accu-
racy (compared to other symbolic SMT alterna-
tives such as standard phrase-based MT) with-
out language-dependent processing. On the other
hand, since it does not use syntactic information
and tries to extract all possible combinations of

2It is also standard to include a glue rule S → ⟨X0, X0⟩,
S → ⟨S0 X1, S0 X1⟩, S → ⟨S0 X1, X1 S0⟩ to fall back
on when standard rules cannot result in a proper derivation.

rules, it has the tendency to extract very large trans-
lation rule tables and also tends to be less syntac-
tically faithful in its derivations.

2.3 Explicitly Syntactic Rules
An alternative to Hiero rules is the use of syn-
chronous context-free grammar or synchronous
tree-substitution grammar (Graehl and Knight,
2004) rules that explicitly take into account the
syntax of the source side (tree-to-string rules), tar-
get side (string-to-tree rules), or both (tree-to-tree
rules). Taking the example of tree-to-string (T2S)
rules, these use parse trees on the source language
side, and the head symbols of the synchronous
rules are not limited to S or X , but instead use
non-terminal symbols corresponding to the phrase
structure tags of a given parse tree. For example,
T2S rules could take the form of:

XNP → ⟨(NP (NNS Officers)), 主席团成員⟩ (6)
XNP → ⟨(NP (DT the) (NNP Committee)), 委员会⟩ (7)

XPP →
⟨
(PP (IN of)XNP,0), X0 的

⟩
(8)

XNP →
⟨
(NPXNP,0 XPP,1), X1 X0

⟩
(9)

.
Here, parse subtrees of the source language rules
are given in the form of S-expressions.
From these rules, we can translate from the parse

tree of the input sentence by derivation:

XROOT →
⟨

XNP,0, X0

⟩

⇒
⟨
(NP XNP,1 XPP,2), X2 X1

⟩

⇒
⟨
(NP (NP (NNS Officers) XPP,2)), X2 主席团成員

⟩

∗⇒ ⟨ (NP
(NP (NNS Officers))
(PP (IN of)
(NP (DT the)
(NNP Committee))))

, 委员会的主席团成員⟩
In this way, it is possible in T2S translation to

obtain a result conforming to the source language’s
grammar. This method also has the advantage the
number of less-useful synchronous rules extracted
by syntax-agnostic methods such as Hiero are re-
duced, making it possible to learn more compact
rule tables and allowing for faster translation.

3 Standard Triangulation Method

In the triangulation method by Cohn and Lapata
(2007), we first train source-pivot and pivot-target
rule tables as TSP and TPT respectively. Then we
search TSP and TPT for source-pivot and pivot-
target rules having a common pivot phrase, and
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synthesize them into source-target rules to create
rule table TST :

X →
⟨
s, t

⟩
∈ TST

s.t. X → ⟨s, p⟩ ∈ TSP ∧ X →
⟨
p, t

⟩
∈ TPT .

(10)

For all the combined source-target rules, phrase
translation probability ϕ(·) and lexical translation
probability ϕlex(·) are estimated according to the
following equations:

ϕ
(
t|s

)
=

∑

p∈TSP ∩TP T

ϕ
(
t|p

)
ϕ (p|s) , (11)

ϕ
(
s|t

)
=

∑

p∈TSP ∩TP T

ϕ (s|p)ϕ
(
p|t

)
, (12)

ϕlex

(
t|s

)
=

∑

p∈TSP ∩TP T

ϕlex

(
t|p

)
ϕlex (p|s) , (13)

ϕlex

(
s|t

)
=

∑

p∈TSP ∩TP T

ϕlex (s|p)ϕlex

(
p|t

)
. (14)

The equations (11)-(14) are based on the mem-
oryless channel model, which assumes:

ϕ
(
t|p, s

)
= ϕ

(
t|p

)
, (15)

ϕ
(
s|p, t

)
= ϕ (s|p) (16)

. For example, in equation (15), it is assumed that
the translation probability of target phrase given
pivot and source phrases is never affected by the
source phrase. However, it is easy to come up with
examples where this assumption does not hold.
Specifically, if there are multiple interpretations of
the pivot phrase as shown in the example of Figure
1, source and target phrases that do not correspond
to each other semantically might be connected, and
over-estimation by summing products of the trans-
lation probabilities is likely to cause failed transla-
tions.

4 Triangulation with Syntactic Matching

In the previous section, we explained about the
standard triangulation method and mentioned that
the pivot-side ambiguity causes incorrect estima-
tion of translation probability and the translation
accuracy might decrease. To address this prob-
lem, it is desirable to be able to distinguish pivot-
side phrases that have different syntactic roles or
meanings, even if the symbol strings are exactly
equivalent. In the following two sections, we de-
scribe two methods to distinguish pivot phrases
that have syntactically different roles, one based
on exact matching of parse trees, and one based on
soft matching.

4.1 Exact Matching of Parse Subtrees
In the exact matching method, we first train pivot-
source and pivot-target T2S TMs by parsing the
pivot side of parallel corpora, and store them into
rule tables as TPS and TPT respectively. Syn-
chronous rules of TPS and TPT take the form of
X → ⟨p̂, s⟩ and X →

⟨
p̂, t

⟩
respectively, where

p̂ is a symbol string that expresses pivot-side parse
subtree (S-expression), s and t express source and
target symbol strings. The procedure of synthesiz-
ing source-target synchronous rules essentially fol-
lows equations (11)-(14), except usingTPS instead
of TSP (direction of probability features is re-
versed) and pivot subtree p̂ instead of pivot phrase
p. Here s and t do not have syntactic information,
therefore the synthesized synchronous rules should
be hierarchical rules explained in §2.2.
The matching condition of this method has

harder constraints than matching of superficial
symbols in standard triangulation, and has the po-
tential to reduce incorrect connections of phrase
pairs, resulting in a more reliable triangulated TM.
On the other hand, the number of connected rules
decreases as well in this restricted triangulation,
and the coverage of the triangulated model might
be reduced. Therefore it is important to create TMs
that are both reliabile and have high coverage.

4.2 Partial Matching of Parse Subtrees
To prevent the problem of the reduction of cover-
age in the exact matching method, we also propose
a partial matching method that keeps coverage just
like standard triangulation by allowing connection
of incompletely equivalent pivot subtrees. To esti-
mate translation probabilities in partial matching,
we first define weighted triangulation generaliz-
ing the equations (11)-(14) of standard triangula-
tion with weight function ψ(·):

ϕ
(
t|s

)
=

∑

p̂T

∑

p̂S

ϕ
(
t|p̂T

)
ψ (p̂T |p̂S)ϕ (p̂S |s) , (17)

ϕ
(
s|t

)
=

∑

p̂S

∑

p̂T

ϕ (s|p̂S)ψ (p̂S |p̂T )ϕ
(
p̂T |t

)
, (18)

ϕlex

(
t|s

)
=

∑

p̂T

∑

p̂S

ϕlex

(
t|p̂T

)
ψ (p̂T |p̂S)ϕlex (p̂S |s) , (19)

ϕlex

(
s|t

)
=

∑

p̂S

∑

p̂T

ϕlex (s|p̂S)ψ (p̂S |p̂T )ϕlex

(
p̂T |t

)
(20)

where p̂S ∈ TSP and p̂T ∈ PPT are pivot
parse subtrees of source-pivot and pivot-target
synchronous rules respectively. By adjusting ψ(·),
we can control the magnitude of the penalty for the
case of incompletely matched connections. If we
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define ψ(p̂T |p̂S) = 1 when p̂T is equal to p̂S and
ψ(p̂T |p̂S) = 0 otherwise, equations (17)-(20) are
equivalent with equations (11)-(14).
Better estimating ψ(·) is not trivial, and co-

occurrence counts of p̂S and p̂T are not avail-
able. Thereforewe introduce a heuristic estimation
method as follows:

ψ(p̂T |p̂S) =
w(p̂S , p̂T )∑

p̂∈TP T
w(p̂S , p̂)

· max
p̂∈TP T

w(p̂S , p̂) (21)

ψ(p̂S |p̂T ) =
w(p̂S , p̂T )∑

p̂∈TSP
w(p̂, p̂T )

· max
p̂∈TSP

w(p̂, p̂T ) (22)

w(p̂S , p̂T ) =





0 (flat(p̂S) ̸= flat(p̂T ))

exp (−d (p̂S , p̂T )) (otherwise)
(23)

d(p̂S , p̂T ) = TreeEditDistance(p̂S , p̂T ) (24)

where flat(p̂) returns the symbol
string of p̂ keeping non-terminals, and
TreeEditDistance(p̂S , p̂T ) is minimum cost
of a sequence of operations (contract an edge,
uncontract an edge, modify the label of an edge)
needed to transform p̂S into p̂T (Klein, 1998).
According to equations (21)-(24), we can as-

sure that incomplete match of pivot subtrees leads
d(·) ≥ 1 and penalizes such that ψ(·) ≤ 1/ed ≤
1/e, while exact match of subtrees leads to a value
of ψ(·) at least e ≈ 2.718 times larger than when
using partially matched subtrees.

5 Experiments

5.1 Experimental Set-Up

To investigate the effect of our proposed approach,
we evaluate the translation accuracy through pivot
translation experiments on the United Nations Par-
allel Corpus (UN6Way) (Ziemski et al., 2016).
UN6Way is a line-aligned multilingual parallel
corpus that includes data in English (En), Arabic
(Ar), Spanish (Es), French (Fr), Russian (Ru) and
Chinese (Zh), covering different families of lan-
guages. It contains more than 11M sentences for
each language pair, and is therefore suitable for
multilingual translation tasks such as pivot transla-
tion. In these experiments, we fixed English as the
pivot language considering that it is the language
most frequently used as a pivot language. This has
the positive side-effect that accurate phrase struc-
ture parsers are available in the pivot language,
which is good for our proposed method. We per-
form pivot translation on all the combinations of
the other 5 languages, and compared the accuracy

of each method. For tokenization, we adopt Sen-
tencePiece,3 an unsupervised text tokenizer and
detokenizer, that is although designed mainly for
neural MT, we confirmed that it also helps to re-
duce training time and even improves translation
accuracy in our Hiero model as well. We first
trained a single shared tokenization model by feed-
ing a total of 10M sentences from the data of all
the 6 languages, set the maximum shared vocabu-
lary size to be 16k, and tokenized all available text
with the trained model. We used English raw text
without tokenization for phrase structure analysis
and for training Hiero and T2S TMs on the pivot
side. To generate parse trees, we used the Cky-
lark PCFG-LA parser (Oda et al., 2015), and fil-
tered out lines of length over 60 tokens from all
the parallel data to ensure accuracy of parsing and
alignment. About 7.6M lines remained. Since Hi-
ero requires a large amount of computational re-
sources for training and decoding, so we decided
not to use all available training data but first 1M
lines for training each TM. As a decoder, we use
Travatar (Neubig, 2013), and train Hiero and T2S
TMs with its rule extraction code. We train 5-gram
LMs over the target side of the same parallel data
used for training TMs using KenLM (Heafield,
2011). For testing and parameter tuning, we used
the first 1,000 lines of the 4,000 lines test and dev
sets respectively. For the evaluation of transla-
tion results, we first detokenize with the Senten-
cePiece model and re-tokenized with the tokenizer
of the Moses toolkit (Koehn et al., 2007) for Ara-
bic, Spanish, French and Russian and re-tokenized
Chinese text with Kytea tokenizer (Neubig et al.,
2011), then evaluated using case-sensitive BLEU-
4 (Papineni et al., 2002).
We evaluate 6 translation methods:

Direct:
Translating with a Hiero TM directly trained
on the source-target parallel corpus without
using pivot language (as an oracle).

Tri. Hiero:
Triangulating source-pivot and pivot-target
Hiero TMs into a source-target Hiero TM us-
ing the traditional method (baseline, §3).

Tri. TreeExact
Triangulating pivot-source and pivot-target
T2S TMs into a source-target Hiero TM using

3https://github.com/google/sentencepiece
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Source Target
BLEU Score [%]

Direct Tri. Hiero Tri. TreeExact Tri. TreePartial
(baseline) (proposed 1) (proposed 2)

Ar

Es 38.49 34.20 ‡ 34.97 ‡ 35.94
Fr 33.34 29.93 ‡ 30.68 ‡ 30.83
Ru 24.63 22.94 ‡ 23.94 ‡ 24.15
Zh 27.27 22.78 ‡ 25.17 ‡ 25.07

Es

Ar 27.18 22.97 ‡ 24.09 ‡ 24.45
Fr 43.24 38.74 ‡ 39.62 ‡ 40.12
Ru 28.83 26.35 ‡ 27.25 ‡ 27.41
Zh 27.08 24.54 25.00 † 25.16

Fr

Ar 25.10 21.65 21.40 † 22.13
Es 45.20 40.16 ‡ 41.03 ‡ 41.99
Ru 27.42 24.71 † 25.24 ‡ 25.64
Zh 25.84 23.16 23.56 23.53

Ru

Ar 22.53 19.82 19.86 20.35
Es 37.60 34.56 34.96 ‡ 35.62
Fr 34.05 30.75 † 31.43 ‡ 31.67
Zh 28.03 24.88 25.07 25.12

Zh

Ar 20.09 16.66 17.01 ‡ 17.73
Es 30.66 27.84 27.99 28.05
Fr 25.97 23.82 24.34 † 24.35
Ru 21.16 18.63 ‡ 19.58 ‡ 19.59

Table 1: Comparison of each triangulation methods. Bold face indicates the highest BLEU score in pivot
translation, and daggers indicate statistically significant gains over Tri. Hiero († : p < 0.05, ‡ : p < 0.01).

the proposed exact matching of pivot subtrees
(proposed 1, §4.1).

Tri. TreePartial
Triangulating pivot-source and pivot-target
T2S TMs into a source-target Hiero TM using
the proposed partial matching of pivot sub-
trees (proposed 2, §4.2).

5.2 Experimental Results
The result of experiments using all combinations
of pivot translation tasks for 5 languages via En-
glish is shown in Table 1. From the results,
we can see that the proposed partial matching
method of pivot subtrees in triangulation outper-
forms the standard triangulationmethod for all lan-
guage pairs and achieves higher or almost equal
scores than proposed exact matching method. The
exact matching method also outperforms the stan-
dard triangulation method in the majority of the
language pairs, but has a lesser improvement than
partial matching method. In Table 2 we show the
comparison of coverage of each proposed triangu-
lated method. From this table, we can see that the

exact matching method reduces several percent in
number of unique phrases while the partial match-
ing method keeps the same coverage with surface-
form matching. We can consider that it is one of
the reasons of the difference in improvement sta-
bility between the partial and exactmatchingmeth-
ods.
We show an example of a translated sentences

for which pivot-side ambiguity is resolved in the
the syntactic matching methods:

Source Sentence in French:
La Suisse encourage tous les États parties
:
à

::::::::
soutenir

:::
le

::::::::
travail

::::::::::
conceptuel

:::::
que

::::
fait

:::::::::::
actuellement

::
le

::::::::::
Secrétariat .

Corresponding Sentence in English:
Switzerland encourages all parties to support
the current conceptual work of the secretariat.

Reference in Spanish:
Suiza alienta a todos los Estados partes

:
a

:::
que

:::::::
apoyen

:::
la

::::::
actual

:::::
labor

::::::::::
conceptual

:::
de

::
la

:::::::::
Secretaría .
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Source Target Number of source-side unique phrases/words
Tri. TreeExact Tri. TreePartial

Ar

Es 2.580M / 5,072 2.646M / 5,077
Fr 2.589M / 5,067 2.658M / 5,071
Ru 2.347M / 5,085 2.406M / 5,088
Zh 2.324M / 5,034 2.386M / 5,040

Es

Ar 1.942M / 5,182 2.013M / 5,188
Fr 2.062M / 5,205 2.129M / 5,210
Ru 1,978M / 5,191 2.037M / 5,197
Zh 1,920M / 5,175 1.986M / 5,180

Fr

Ar 2.176M / 5,310 2.233M / 5,316
Es 2.302M / 5,337 2.366M / 5,342
Ru 2.203M / 5.311 2.266M / 5,318
Zh 2.162M / 5.313 2.215M / 5,321

Ru

Ar 2.437M / 5,637 2.505M / 5,644
Es 2.478M / 5.677 2.536M / 5,682
Fr 2.479M / 5,661 2.531M / 5,665
Zh 2.466M / 5,682 2.515M / 5,688

Zh

Ar 1.480M / 9,428 1.556M / 9,474
Es 1.504M / 9,523 1.570M / 9,555
Fr 1.499M / 9,490 1,568M / 9,520
Ru 1.518M / 9,457 1.593M / 9,487

Table 2: Comparison of rule table coverage in proposed triangulation methods.

Direct:
Suiza alienta a todos los Estados partes a que
apoyen el trabajo conceptual que se examinan
en la Secretaría . (BLEU+1: 55.99)

Tri. Hiero:
Suiza

:::::::::::
conceptuales

::::
para

:::::::
apoyar

::
la

::::::
labor

:::
que

::
en

::::::
estos

::::::::::
momentos

:::
la

:::::::::
Secretaría alienta a

todos los Estados Partes . (BLEU+1: 29.74)

Tri. TreeExact:
Suiza alienta a todos los Estados Partes a
apoyar la labor conceptual que actualmente la
Secretaría . (BLEU+1: 43.08)

Tri. TreePartial:
Suiza alienta a todos los Estados Partes a
apoyar la labor conceptual que actualmente la
Secretaría . (BLEU+1: 43.08)

The results of Tri.TreeExact and Tri.TreePartial
are same in this example. We find that
the derivation in Tri.Hiero uses rule
X → ⟨X0 _parties X1, X1 X0 _Partes⟩4

4The words emphasized with underline and wavy-
underline in the example correspond to X0 and X1 respec-
tively.

causing incorrect re-ordering of phrases
followed by steps of incorrect word se-
lection.5 On the other hand, derivation in
Tri.TreeExact and Tri.TreePartial uses rule X →
⟨_tous _les X0 _parties, _todos X0 _Partes⟩6
synthesized from T2S rules with common pivot
subtree (NP (DT all) (NP’XNNP (NNS parties)).
We can confirm that the derivation improves
word-selection and word-reordering by using this
rule.

5.3 Comparison with Neural MT:
Recent results (Firat et al., 2016; Johnson et al.,
2016) have found that neural machine translation
systems can gain the ability to perform translation
with zero parallel resources by training onmultiple
sets of bilingual data. However, previous work has
not examined the competitiveness of these meth-
ods with pivot-based symbolic SMT frameworks
such as PBMT or Hiero. In this section, we com-
pare a zero-shot NMT model (detailed parameters
in Table 3) with our pivot-based Hiero models.

5For example, the word “conceptuales” with italic face in
Tri.Hiero takes the wrong form and position.

6The words emphasized in bold face in the example cor-
respond to the rule.
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vocabulary size: 16k (shared)
source embedding size: 512
target embedding size: 512
output embedding size: 512
encoder hidden size: 512
decoder hidden size: 512

LSTM layers: 1
attention type: MLP

attention hidden size: 512
optimizer type: Adam

loss integration type: mean
batch size: 2048

max iteration: 200k
dropout rate: 0.3
decoder type: Luong+ 2015

Table 3: Main parameters of NMT training

Direct NMT is trained with the same data of Di-
rect Hiero, Cascade NMT translates by bridging
source-pivot and pivot-target NMT models, and
Zero-Shot NMT is trained on single shared model
with pvt ↔ {src,target} parallel data according to
Johnson et al. (2016). To train and evaluate NMT
models, we adopt NMTKit.7 From the results
we see the tendency of NMT that directly trained
model achieves high translation accuracy even for
translation between languages of different fami-
lies, on the other hand, the accuracy is drastically
reduced in the situation when there is no source-
target parallel corpora for training. Cascade is
one immediate method connecting two TMs, and
NMT cascade translation shows the medium per-
formance in this experiment. In our setting, while
bilingually trained NMT systems were competi-
tive or outperformed Hiero-based models, zero-
shot translation is uniformly weaker. This may
be because we used only 1 LSTM layer for en-
coder/decoder, or because the amount of paral-
lel corpora or language pairs were not sufficient.
Thus, we can posit that while zero-shot translation
has demonstrated reasonable results in some set-
tings, successful zero-shot translation systems are
far from trivial to build, and pivot-based symbolic
MT systems such as PBMT or Hiero may still be a
competitive alternative.

7https://github.com/odashi/nmtkit

6 Conclusion

In this paper, we have proposed a method of pivot
translation using triangulation with exact or par-
tial matching method of pivot-side parse subtrees.
In experiments, we found that these triangulated
models are effective in particular when allowing
partial matching. To estimate translation probabil-
ities, we introduced heuristic that has no guarantee
to be optimal. Therefore in the future, we plan to
explore more refined estimation methods that uti-
lize machine learning.
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