Multi-Task Learning for Conversational Question Answering over a Large-Scale Knowledge Base
Tao Shen, Xiubo Geng, Tao Qin, Daya Guo, Duyu Tang, Nan Duan, Guodong Long, Daxin Jiang
Abstract
We consider the problem of conversational question answering over a large-scale knowledge base. To handle huge entity vocabulary of a large-scale knowledge base, recent neural semantic parsing based approaches usually decompose the task into several subtasks and then solve them sequentially, which leads to following issues: 1) errors in earlier subtasks will be propagated and negatively affect downstream ones; and 2) each subtask cannot naturally share supervision signals with others. To tackle these issues, we propose an innovative multi-task learning framework where a pointer-equipped semantic parsing model is designed to resolve coreference in conversations, and naturally empower joint learning with a novel type-aware entity detection model. The proposed framework thus enables shared supervisions and alleviates the effect of error propagation. Experiments on a large-scale conversational question answering dataset containing 1.6M question answering pairs over 12.8M entities show that the proposed framework improves overall F1 score from 67% to 79% compared with previous state-of-the-art work.- Anthology ID:
- D19-1248
- Volume:
- Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)
- Month:
- November
- Year:
- 2019
- Address:
- Hong Kong, China
- Editors:
- Kentaro Inui, Jing Jiang, Vincent Ng, Xiaojun Wan
- Venues:
- EMNLP | IJCNLP
- SIG:
- SIGDAT
- Publisher:
- Association for Computational Linguistics
- Note:
- Pages:
- 2442–2451
- Language:
- URL:
- https://aclanthology.org/D19-1248
- DOI:
- 10.18653/v1/D19-1248
- Cite (ACL):
- Tao Shen, Xiubo Geng, Tao Qin, Daya Guo, Duyu Tang, Nan Duan, Guodong Long, and Daxin Jiang. 2019. Multi-Task Learning for Conversational Question Answering over a Large-Scale Knowledge Base. In Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pages 2442–2451, Hong Kong, China. Association for Computational Linguistics.
- Cite (Informal):
- Multi-Task Learning for Conversational Question Answering over a Large-Scale Knowledge Base (Shen et al., EMNLP-IJCNLP 2019)
- PDF:
- https://preview.aclanthology.org/nschneid-patch-5/D19-1248.pdf
- Code
- taoshen58/MaSP
- Data
- CSQA