Abstract
Entity alignment aims to find entities in different knowledge graphs (KGs) that refer to the same real-world object. An effective solution for cross-lingual entity alignment is crucial for many cross-lingual AI and NLP applications. Recently many embedding-based approaches were proposed for cross-lingual entity alignment. However, almost all of them are based on TransE or its variants, which have been demonstrated by many studies to be unsuitable for encoding multi-mapping relations such as 1-N, N-1 and N-N relations, thus these methods obtain low alignment precision. To solve this issue, we propose a new embedding-based framework. Through defining dot product-based functions over embeddings, our model can better capture the semantics of both 1-1 and multi-mapping relations. We calibrate embeddings of different KGs via a small set of pre-aligned seeds. We also propose a weighted negative sampling strategy to generate valuable negative samples during training and we regard prediction as a bidirectional problem in the end. Experimental results (especially with the metric Hits@1) on real-world multilingual datasets show that our approach significantly outperforms many other embedding-based approaches with state-of-the-art performance.- Anthology ID:
- D19-1075
- Volume:
- Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)
- Month:
- November
- Year:
- 2019
- Address:
- Hong Kong, China
- Editors:
- Kentaro Inui, Jing Jiang, Vincent Ng, Xiaojun Wan
- Venues:
- EMNLP | IJCNLP
- SIG:
- SIGDAT
- Publisher:
- Association for Computational Linguistics
- Note:
- Pages:
- 813–822
- Language:
- URL:
- https://aclanthology.org/D19-1075
- DOI:
- 10.18653/v1/D19-1075
- Cite (ACL):
- Xiaofei Shi and Yanghua Xiao. 2019. Modeling Multi-mapping Relations for Precise Cross-lingual Entity Alignment. In Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pages 813–822, Hong Kong, China. Association for Computational Linguistics.
- Cite (Informal):
- Modeling Multi-mapping Relations for Precise Cross-lingual Entity Alignment (Shi & Xiao, EMNLP-IJCNLP 2019)
- PDF:
- https://preview.aclanthology.org/nschneid-patch-5/D19-1075.pdf