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Abstract

This paper presents the methodology used for
our participation in SemEval 2024 Task 2 (Jul-
lien et al., 2024) – Safe Biomedical Natu-
ral Language Inference for Clinical Trials.
The task involved Natural Language Inference
(NLI) on clinical trial data, where statements
were provided regarding information within
Clinical Trial Reports (CTRs). These state-
ments could pertain to a single CTR or com-
pare two CTRs, requiring the identification of
the inference relation (entailment vs contradic-
tion) between CTR-statement pairs. Evaluation
was based on F1, Faithfulness, and Consistency
metrics, with priority given to the latter two
by the organizers. Our approach aims to maxi-
mize Faithfulness and Consistency, guided by
intuitive definitions provided by the organizers,
without detailed metric calculations. Experi-
mentally, our approach yielded models achiev-
ing maximal Faithfulness (top rank) and aver-
age Consistency (mid rank) at the expense of
F1 (low rank). Future work will focus on refin-
ing our approach to achieve a balance among
all three metrics.

1 Introduction

Clinical trials serve as the cornerstone for evalu-
ating the efficacy and safety of novel medical in-
terventions, playing a pivotal role in advancing
healthcare practices (Avis et al., 2006). Clinical
Trial Reports (CTRs) encapsulate crucial informa-
tion regarding trial methodologies and outcomes,
serving as indispensable resources for healthcare
professionals in treatment decision-making (Bas-
tian et al., 2010). However, the sheer volume of
available CTRs, coupled with their rapid prolif-
eration, poses significant challenges for compre-
hensive literature review and evidence synthesis in
clinical practice (DeYoung et al., 2020). Natural
Language Inference (NLI) emerges as a promis-
ing approach to address this issue (Bowman et al.,

2015; Devlin et al., 2018; Raffel et al., 2020), fa-
cilitating the scalable interpretation and retrieval
of medical evidence (Davari et al., 2020; Sutton
et al., 2020; Davari et al., 2019). The SemEval
2024 Task 2 (Jullien et al., 2024) on Safe Biomedi-
cal NLI for Clinical Trials extends this paradigm
to enable automated inference of relationships be-
tween statements and CTRs, thus streamlining evi-
dence extraction and enhancing decision-making
processes in healthcare.

The 2024 task is a continuation of the one intro-
duced by Jullien et al. (2023b,a), specifically it fo-
cuses on Track 1, which focuses on NLI in the con-
text of clinical trials. In this task, the input consists
of pairs of Clinical Trial Reports (CTRs) and cor-
responding statements, where the statements make
claims about the information contained within the
CTRs. The objective is to determine the inference
relation between each CTR-statement pair, classi-
fying them as either entailing or contradicting each
other. For instance, given a statement "Drug X is
effective in treating condition Y" and a CTR outlin-
ing a clinical trial testing Drug X’s efficacy, the task
is to determine whether the statement is entailed
by the CTR or contradicted by it. The datasets
used are similar to those introduced by Jullien et al.
(2023b), and further details can be found in there
work.

Our system primarily focuses on maximizing
Faithfulness and Consistency in the context of Se-
mEval 2024 Task 2 (Jullien et al., 2024). To achieve
this goal, we adopt a strategy centered around intro-
ducing controlled input noise during model training.
This approach is based on the hypothesis that a cer-
tain level of tolerance towards input perturbations
could enhance the faithfulness and consistency of
the generated models. Specifically, we experiment
with randomly masking a percentage (k%) of to-
kens in both Clinical Trial Reports (CTRs) and
the corresponding statements, thereby exposing
the model to varying degrees of input uncertainty.
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Through these experiments, we aim to optimize
model performance in capturing the relationships
between statements and CTRs, ultimately improv-
ing the system’s effectiveness in clinical trial infer-
ence tasks.

Through our participation in SemEval 2024
Task 2 (Jullien et al., 2024), we observed a no-
table trade-off between different evaluation met-
rics. While our approach successfully improved
Faithfulness and Consistency metrics, it came at
the expense of F1 scores. This finding underscores
the challenge of balancing these evaluation criteria
and thus the need for future refinement to achieve
a more harmonious optimization across all rele-
vant metrics. Specifically, our models achieved
top-ranking levels of Faithfulness but demonstrated
only average performance in Consistency metrics,
resulting in lower ranks in F1 assessment. See
Sec. 4 for details.

2 System Overview

In our system, we leverage BART (Lewis et al.,
2019) as the primary model for all experiments
due to its robustness and effectiveness in various
natural language processing tasks, particularly in
Natural Language Inference (NLI) (Lewis et al.,
2019; Barker et al., 2021; Farahnak et al., 2020).
To streamline the fine-tuning process and enhance
efficiency, we adopt the LoRA technique proposed
by Hu et al. (2021), which significantly reduces the
fine-tuning time without sacrificing performance.
Additionally, we incorporate the Contrastive Ten-
sion loss function introduced by Carlsson et al.
(2020). to guide the fine-tuning process. This
loss function promotes contrastive learning by sep-
arately encoding the Clinical Trial Reports (CTRs)
and their associated statements using two copies
of BART (Lewis et al., 2019) during each training
instance. By allowing only one copy to update its
parameters at a time, the model is encouraged to fo-
cus on learning the essential semantic relationships
between the CTRs and the statements.

Moreover, we introduce a novel approach to en-
hance the robustness of the model by incorporat-
ing random token masking during each training
instance. Specifically, we randomly mask a per-
centage (k%) of tokens in both the CTRs and their
associated statements. This introduces noise in the
input data, forcing the model to adapt to varying
degrees of input uncertainty and preventing it from
relying solely on superficial patterns. The rationale

behind this approach is to encourage the model
to concentrate on the fundamental semantic con-
tent of the input rather than exploiting surface-level
correlations.

Balancing between the three required met-
rics—Faithfulness, Consistency, and F1—proved
to be the primary challenge in our experimental
setup. While optimizing for one metric often led
to improvements in its performance, it frequently
came at the expense of others. We explored dif-
ferent strategies to strike a balance between these
metrics. However, finding an optimal solution
that simultaneously maximized all three metrics
remained unsolved. Our system struggled to main-
tain high levels of F1 score while simultaneously
improving Faithfulness and Consistency metrics.
Further exploration of optimization strategies and
leveraging ensemble methods may offer potential
avenues for achieving a better balance between the
metrics.

3 Experimental setup

Training Details The training, validation, and
test data for our experiments were all provided by
the organizers of the SemEval 2024 Task 2, as out-
lined by Jullien et al. (2024). We trained our model
for a total of 40 epochs, employing the Adam opti-
mizer (Kingma and Ba, 2014) with a learning rate
of 0.0001, with a batch size of 32. To stabilize and
accelerate training, we implemented gradient clip-
ping (Zhang et al., 2019) with a maximum norm
of 1.

Additionally, we incorporated a linear warmup
stage consisting of 40 gradient steps followed
by a Cosine Annealing learning rate sched-
ule (Loshchilov and Hutter, 2016). This strategy
enabled gradual adjustment of the learning rate dur-
ing the initial phase of training, allowing the model
to converge more smoothly towards an optimal so-
lution.

Furthermore, we limited the maximum sequence
length to 256 tokens for both CTRs and their cor-
responding statements, aligning with the model
architecture and computational capabilities. Con-
sequently, each sequence pair was truncated to a
total maximum of 512 tokens. This limitation on
sequence length helped in handling memory con-
straints and optimizing the processing of input se-
quences during training. Exploring larger context
sizes could be advantageous for future improve-
ments in the task.
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Evaluation Metrics Our system’s performance
is measured through three key metrics: (1) Faith-
fulness, (2) Consistency, and (3) F1 score.
Faithfulness: Faithfulness measures the degree
to which a given system arrives at the correct pre-
diction for the correct reason. Intuitively, this is
estimated by assessing the model’s ability to cor-
rectly change its predictions when subjected to a
semantic altering intervention. Let N denote the
number of statements xi in the contrast set (C), yi
represent their respective original statements, and
f() denote the model predictions. Faithfulness is
computed using Equation below:

Faithfulness =
1

N

N∑

1

|f(yi)− f(xi)| (1)

where xi ∈ C, Label(xi) ̸= Label(yi), and
f(yi) = Label(yi).
Consistency: Consistency aims to measure the
extent to which a given system produces the same
outputs for semantically equivalent problems. It as-
sesses the system’s ability to predict the same label
for original statements and contrast statements for
semantic preserving interventions. Even if the final
prediction is incorrect, the representation of the
semantic phenomena should be consistent across
the statements. Let N denote the number of state-
ments xi in the contrast set (C), yi represent their
respective original statements, and f() denote the
model predictions. Consistency is computed using
Equation below:

Consistency =
1

N

N∑

1

1− |f(yi)− f(xi)| (2)

where xi ∈ C, Label(xi) = Label(yi).
F1: The F1 score is a commonly used metric in
NLP tasks (Yang et al., 2023; Davari, 2020), mea-
suring the balance between precision and recall of
a model’s predictions. It is calculated based on
the geometric mean of precision and recall, where
precision represents the ratio of true positive pre-
dictions to the total number of predicted positive
instances, and recall represents the ratio of true
positive predictions to the total number of actual
positive instances.

4 Results

Our experimental results demonstrate a clear trade-
off between the level of token masking (k) and

the performance metrics of F1, Faithfulness, and
Consistency. As we increase the masking level, we
observe a consistent trend of decreasing F1 scores
alongside increasing Faithfulness and Consistency
metrics.

For k = 0, representing no token masking, we
observe an F1 score of 0.65 (ranking 22 out of
32), a Faithfulness score of 0.51 (ranking 21 out
of 28), and a Consistency score of 0.54 (ranking
25 out of 30). As we progressively increase k, we
observe a gradual change in the metrics, specifi-
cally decrease in F1, and increase of the other 2
metrics. At k = 30%, the highest masking level
tested, we observe a significant drop in F1 score
to 0.06 (ranking 28 out of 31), accompanied by
substantial increases in Faithfulness (0.95, ranking
1 out of 28) and Consistency (0.6, ranking 22 out
of 32) metrics.

Given the substantial decrease in F1 scores be-
yond a masking level of k = 30%, we did not
explore higher masking levels. This decision was
made due to the observed trade-off, where increas-
ing token masking beyond a certain threshold led to
disproportionately low F1 scores, potentially indi-
cating a loss of model generalization and predictive
performance.

5 Conclusion

Our experiments underscore the intricate balance
between token masking levels and performance
metrics in biomedical NLI for clinical trials. We
observed a discernible trade-off: while increasing
token masking improves Faithfulness and Consis-
tency, it results in diminished F1 scores. This
finding highlights the necessity of exploring future
approaches that could better optimize the model
with multiple evaluation criteria as their objective
function. Additionally, another potential avenue
for improvement would involve examining alter-
native metrics to provide further insights into the
behaviour of the model (Davari et al., 2022a; Farah-
nak et al., 2021; Steck et al., 2024; Davari et al.,
2022b). Based on our findings, one avenue of re-
search involves refining token masking strategies
to achieve a more optimal balance between F1,
Faithfulness, and Consistency metrics. Further-
more, exploring ensemble methods and alternative
fine-tuning strategies could provide valuable in-
sights into enhancing the overall performance of
the model.
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