
Proceedings of the 2024 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 6:
Industry Track), pages 73–88

June 16-21, 2024 ©2024 Association for Computational Linguistics

Multiple-Question Multiple-Answer Text-VQA

Peng Tang* Srikar Appalaraju∗ R. Manmatha Yusheng Xie Vijay Mahadevan
AWS AI Labs

{tangpen, srikara, manmatha, yushx, vmahad}@amazon.com

Abstract

We present Multiple-Question Multiple-
Answer (MQMA), a novel approach to do
text-VQA in encoder-decoder transformer
models. To the best of our knowledge, almost
all previous approaches for text-VQA process
a single question and its associated content to
predict a single answer. However, in industry
applications, users may come up with multiple
questions about a single image. In order to
answer multiple questions from the same
image, each question and content are fed into
the model multiple times. In contrast, our
proposed MQMA approach takes multiple
questions and content as input at the encoder
and predicts multiple answers at the decoder
in an auto-regressive manner at the same time.
We make several novel architectural modifica-
tions to standard encoder-decoder transformers
to support MQMA. We also propose a novel
MQMA denoising pre-training task which
is designed to teach the model to align and
delineate multiple questions and content with
associated answers. MQMA pre-trained model
achieves state-of-the-art results on multiple
text-VQA datasets, each with strong baselines.
Specifically, on OCR-VQA (+2.5%), TextVQA
(+1.4%), ST-VQA (+0.6%), DocVQA (+1.1%)
absolute improvements over the previous
state-of-the-art approaches.

1 Introduction

The task of text-based Visual Question Answering
(text-VQA) requires answering questions related to
a given image by understanding the text and visual
contents in the image. Unlike generic VQA (Antol
et al., 2015), where the task is to answer questions
mainly using visual information, the text-VQA task
involves multiple modalities (i.e., visual, language,
and layout) to answer questions (Biten et al., 2022;
Hu et al., 2020; Appalaraju et al., 2021; Huang
et al., 2022; Kant et al., 2020; Mathew et al., 2021,

*Equal contribution.

2020; Xu et al., 2020; Gao et al., 2024; Xu et al.,
2021; Yang et al., 2021; Appalaraju et al., 2024;
Tang et al., 2024; Zhuowan et al., 2024). The task
needs a model to not only consume multiple modal-
ities (text and image) but also to reason within and
across modalities to answer a question (see Figure
1).

In recent years, the text-VQA task has attracted
a lot of attention (Biten et al., 2019b; Mathew et al.,
2021, 2020; Methani et al., 2020; Mishra et al.,
2019; Singh et al., 2019; Tanaka et al., 2021; Li
et al., 2022). Almost all text-VQA approaches
known to us, consume a single question and asso-
ciated content to predict a single answer. We call
these approaches Single-Question Single-Answer
(SQSA) text-VQA, see Figure 2 (a). Typical SQSA
approaches (Biten et al., 2022; Hu et al., 2020;
Huang et al., 2022; Kant et al., 2020; Powalski
et al., 2021; Xu et al., 2021; Yang et al., 2021; Ap-
palaraju et al., 2024) first extract text in a given
image using an OCR engine. Then the entire con-
tent – image, OCR text and in some cases bounding
box information (Biten et al., 2022; Powalski et al.,
2021; Appalaraju et al., 2024), along with the text
of a single question are fed to a multi-modal trans-
former model which then predicts an answer.

Industry text-VQA applications often involve
multiple questions. For example, a user may ask
multiple questions about a single image, or a group
of users may ask different questions about the same
image (e.g., shipped date, order no., address, etc.
in Figure 1 (a)). Existing text-VQA models are not
well-equipped for answering multiple questions.
These models typically process a single question
and its associated content to predict a single an-
swer. In order to answer multiple questions from
the same image, each question and content are fed
into the model multiple times. This is inefficient
and can lead to sub-optimal performance (Sec. 5).

MQMA can address the limitations of existing
text-VQA models. MQMA takes multiple ques-
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Q: What number is on the 
left bottle?
A: 13

Q: What is the shipped date mentioned 
in the given page?
A: Aug. 23, 1961

(a) (b)

Figure 1: Examples of text-VQA. Examples are from
(a) DocVQA (Mathew et al., 2021) for document VQA
and (b) ST-VQA (Biten et al., 2019b) for scene-text
VQA. Answering questions for text-VQA requires multi-
modal information, including visual, language, and lay-
out information. Zoom in to see better.
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Figure 2: Single-Question Single-Answer (SQSA)
vs. Multiple-Question Multiple-Answer (MQMA).
Qi/Ai/Pi (i ∈ {1, 2, ..., n}): the i-th ques-
tion/answer/prompt, C: content, S: [START] token for
decoder. i (i ∈ {0, 1, 2, ..., n}) at the bottom of (b):
question index. SQSA and MQMA share the same ar-
chitecture of encoder and decoder except for the starting
token/prompt. The blocks with the same color share the
same weights.

tions and content as a single input sequence and
predicts multiple answers at the same time. This
also opens up a possibility for the model to leverage
correlations between multiple questions and con-
tent to improve accuracy. Our choice of architec-
ture for MQMA is an encoder-decoder seq-to-seq
transformer (Vaswani et al., 2017), see Figure 2 (b).
In order to facilitate MQMA in this architecture,
we introduce question index embedding at encoder
and learnable prompt-based decoding, so that the
model learns to align multiple questions and con-
tent with the respective predicted answers during
auto-regressive decoding (i.e., Q1 → A1, Q2 →
A2 . . . , etc.). During inference, each answer has
its own prompt to associate the corresponding ques-
tion and content and different answers are decoded
separately. At the core of our approach is a novel
MQMA unsupervised denosing pre-training task.
Unlike the standard denoising language modeling

task (Raffel et al., 2020) used in the previous state-
of-the-art text-VQA approaches (Biten et al., 2022;
Powalski et al., 2021; Appalaraju et al., 2024), our
MQMA denoising task pre-trains on unlabeled doc-
ument data on a proxy VQA task, i.e., a denoising
language modeling task formulated as a VQA task,
to align the pre-training task and the downstream
text-VQA task better. We highlight the contribu-
tions of our paper as follows.

• To our knowledge, we are the first to propose
MQMA, a novel approach to consume mul-
tiple questions and content as a single input
sequence and predict multiple answers at the
same time for text-VQA (see Section 3).

• We also propose an MQMA unsupervised de-
noising task, a novel way to train a multi-
modal encoder-decoder transformer on a de-
noising language modeling posed as a text-
VQA task (see Section 4).

• The MQMA pre-trained model achieves
state-of-the-art results on the OCR-VQA,
TextVQA, ST-VQA, and DocVQA datasets,
each with strong baselines. In particular,
+2.5% on OCR-VQA, +1.4% on TextVQA,
+0.6% on ST-VQA, and +1.1% on DocVQA
(see Section 5).

2 Related Work

Text-VQA has attracted more and more attention
recently (Biten et al., 2019b; Kafle et al., 2018;
Kahou et al., 2017; Mathew et al., 2022, 2021,
2020; Methani et al., 2020; Mishra et al., 2019;
Singh et al., 2019; Tanaka et al., 2021). Focus-
ing on different types of images with texts, several
works introduce various text-VQA datasets, includ-
ing OCR-VQA (Mishra et al., 2019) for book and
movie covers, TextVQA (Singh et al., 2019) and
ST-VQA (Biten et al., 2019b) for scene-text im-
ages, DocVQA (Mathew et al., 2021, 2020) for
document images, etc. Unlike generic VQA (Antol
et al., 2015) which answers questions by reasoning
visual contents, text-VQA reasons from both text
and visual contents in images to answer questions,
which introduces more challenges to the text-VQA
task compared with the generic VQA.

The most common text-VQA pipeline first ex-
tracts texts and bounding boxes using OCR, and
then feed multi-modal inputs (i.e., texts, bound-
ing boxes, and image) into multi-modal models
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Figure 3: MQMA Approach: Encoder-Decoder Transformer model architecture for the proposed MQMA approach.
Please note, transformer decoder has shared weights and is to be interpreted as a single decoder.

(e.g., multi-modal transformers) to get predictions
(Biten et al., 2022; Gao et al., 2020; Hu et al., 2020;
Huang et al., 2022; Kant et al., 2020; Li et al.,
2021; Lu et al., 2021; Powalski et al., 2021; Xu
et al., 2021; Yang et al., 2021; Appalaraju et al.,
2024). Xu et al. (2020) propose LayoutLM based
on the encoder only transformer model BERT (Ken-
ton and Toutanova, 2019) by using both language
and layout information as inputs. Xu et al. (2021)
and Huang et al. (2022) add visual information
to the inputs of LayoutLM to improve the accu-
racy. Hu et al. (2020) and Kant et al. (2020) use
multi-modal transformers to fuse information from
different modalities and select answers from either
a fixed vocabulary or OCR texts by a pointer net-
work (Vinyals et al., 2015). Biten et al. (2022),
Powalski et al. (2021), and Appalaraju et al. (2024)
propose encoder-decoder transformer based ap-
proaches which encode multi-modal information
and decode the answer in an auto-regressive man-
ner (Raffel et al., 2020). These approaches do text-
VQA in a Single-Question Single-Answer (SQSA)
way by answering a single question at a time. Sim-
ilar to (Biten et al., 2022; Powalski et al., 2021;
Appalaraju et al., 2024), our approach is built on
top of encoder-decoder transformers. Unlike pre-
vious approaches that answer a single question at

a time, our approach answers multiple questions
at a time using our proposed Multiple-Question
Multiple-Answer (MQMA) approach.

Before fine-tuning on text-VQA datasets, pre-
vious approaches pre-train their models on unla-
beled data using tasks like masked language mod-
eling (Huang et al., 2022; Xu et al., 2021, 2020;
Yang et al., 2021), image-text matching (Yang
et al., 2021), and the standard denoising (Biten
et al., 2022; Powalski et al., 2021; Appalaraju et al.,
2024). These pre-training tasks do not align well
with the downstream task text-VQA, which may
limit the accuracy on the downstream task. In con-
trast, we propose a new unsupervised pre-training
task MQMA denoising which pre-trains the model
in a proxy VQA task. The MQMA denoising task
aligns the pre-training task with the downstream
task and improves the text-VQA accuracy.

3 MQMA Model Architecture

In this section, we discuss in detail the MQMA
model architecture. Our choice of architecture for
MQMA is an encoder-decoder transformer model
(see Figure 3). This architecture is chosen due to
its popularity, versatility, and state-of-the-art text-
VQA accuracy (Biten et al., 2022; Powalski et al.,
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2021; Appalaraju et al., 2024). In addition, using a
vocabulary-free generative decoder lends itself as a
generic VQA architecture over approaches which
are designed for closed-vocabulary VQA (Antol
et al., 2015; Wu et al., 2017). The use of decoder
elicits additional challenges for MQMA as it is
not obvious how the model can auto-regressively
generate multiple answers for arbitrary number (>
1) of input questions for a content.

Our MQMA model is built on top of the state-of-
the-art multi-modal encoder-decoder model Doc-
Formerv2 (Appalaraju et al., 2024) which is termed
as the Single-Question Single-Answer (SQSA)
baseline in the experiment section 5. The input
questions and content - image, OCR text, layout
information are vectorized and fed into the trans-
former encoder. So the model can process multiple
modalities at the same time. See Section 3.1 for
more details. The transformer encoder processes
these inputs with a series of self-attention layers,
feed-forward layers, and layer normalization layers
to get transformer encoder representations. This
representation is then fed into the transformer de-
coder, consisting of a series of self-attention lay-
ers, cross-attention layers, feed-forward layers, and
layer normalization layers, decoding answers as
predictions in an auto-regressive manner.

In order to support MQMA functionality, the
model needs to be made aware of that the input
has multiple questions and that at the decoder, the
model needs to appropriately align each question
with the predicted answer. To facilitate this behav-
ior, we introduce two key changes to the above de-
scribed SQSA multi-modal encoder-decoder trans-
former architecture: a) Question distinguishing
multi-modal encoder - in order to distinguish dif-
ferent questions and content in the inputs, we in-
troduce a question index embedding layer which
uses different embeddings for different questions
and content, where the embedding of index i is
used for the i-th question and the embedding of
index 0 is used for content (see Section 3.1). b)
Learnable prompt at the decoder - Tradition-
ally, a decoder is trained to auto-regressively pre-
dict a token beginning with a fixed [START] to-
ken (Raffel et al., 2020; Vaswani et al., 2017). In-
stead, in our approach, we introduce n learnable
prompts corresponding to the n questions we fed
into the model at the encoder. The decoder auto-
regressively predicts n answers beginning with
these learnt prompts instead of the [START] token.
Each question uses a separate prompt to decode the

corresponding answer (see Section 3.2).

3.1 Multi-modal Encoder Inputs
Both visual, language, and layout information are
important to answer questions for text-VQA. Fol-
lowing common practice (Appalaraju et al., 2024;
Biten et al., 2022; Hu et al., 2020; Huang et al.,
2022; Kant et al., 2020; Powalski et al., 2021; Xu
et al., 2021; Yang et al., 2021), a given input im-
age is first processed by an OCR engine to ex-
tract text {Ti} and bounding boxes {BoxTi} (i ∈
{1, 2, 3, ...}. The OCR text, OCR bounding boxes,
question text (Qij , i ∈ {1, 2, ..., n}, j ∈ {1, 2, ...},
where n corresponds to the number of questions
we want to answer at a time), and the image itself
are fed into different embedding layers to get dif-
ferent embeddings for different modalities. Notice
that here we use text from all n questions as in-
puts instead of a single question in previous SQSA
approaches (Appalaraju et al., 2024; Biten et al.,
2022; Hu et al., 2020; Huang et al., 2022; Kant
et al., 2020; Powalski et al., 2021; Xu et al., 2021;
Yang et al., 2021). See Figure 3.
Text Embedding. We compute text embeddings
for question text and OCR results. For text, we
first use the Sentence-piece tokenizer (Wu et al.,
2016) to tokenize the text, and we then use a learn-
able text token embedding layer to get the text
token embeddings. In particular, we add a [SEP]
token between question text tokens and OCR text
tokens and append a [SEP] token after OCR text
tokens. Apart from text token embeddings, we
compute layout embeddings of text by using learn-
able layout embedding layers to map the coordi-
nates (x1, y1, x2, y2, w, h) of text bounding boxes
into layout embeddings, where all coordinates are
normalized to [0, 1000]. For question text tokens
and [SEP], we use a pseudo box [BOX]PAD which
represents the box (0, 0, 1000, 1000, 1000, 1000)
(Appalaraju et al., 2021, 2024; Biten et al., 2022).
We also use a learnable modality embedding layer
to distinguish text modality and visual modality,
where the modality embeddings of 0 are used for
the text modality. In addition, we use a learnable
question index embedding layer to distinguish dif-
ferent questions and content, where the question
index embeddings of i and 0 are used for the i-
th question and content respectively. The final
text embeddings are the sum of text token, layout,
modality and question index embeddings.
Visual Embedding. We compute visual embed-
dings for the image itself. Given an input im-
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age, first we resize the image to height 500 and
width 384. Then we split the image into 192 non-
overlapped patches with size 32×32. Next we map
the patches to embeddings by a linear layer with
Layer Normalization (Ba et al., 2016) and get 192
embeddings with dimension demb which depends
on the model size (e.g., 512 for the small size model
and 768 for the base size model). After that, we
use a linear layer to map the embeddings to the fi-
nal visual token embeddings {Vi}128i=1,Vi ∈ Rdemb ,
which means the final sequence length of the visual
embeddings is 128. To compute layout embeddings
of the visual part, we first use some learnable layout
embedding layers to map the location of the image
patches into 192 layout embeddings, and we then
use a linear layer to map these 192 layout embed-
dings into the final 128 layout embeddings. Similar
to text embeddings, the final visual embeddings are
the sum of visual token embeddings, layout embed-
dings, modality embeddings, and question index
embeddings, where the modality embeddings of 1
and the question index embeddings of 0 are used
for visual embeddings.

3.2 Prompt-Based Decoder
In SQSA, it is straightforward to follow the stan-
dard decoding steps to do auto-regressive an-
swer prediction beginning with the [START] to-
ken (Powalski et al., 2021; Vaswani et al., 2017).
For MQMA, the most naive way to get multiple
answers is to decode the concatenation of multi-
ple answers. More precisely, suppose the answer
sequence length is L, to answer n questions, the
time complexities of the self-attention layers in de-
coder of SQSA and MQMA are n × O(L2) and
O((n × L)2) = n2 × O(L2) respectively. Par-
ticularly, SQSA can decode n answers in parallel
which can benefit from the parallel GPU compu-
tations, whereas MQMA has to decode n answers
sequentially. All these facts show that decoding
the concatenation of multiple answers for MQMA
might not be a good choice.

To address the issues mentioned above and en-
able parallel answer decoding for multiple-answers,
we propose a prompt-based approach for the
MQMA decoder. More precisely, we use n learn-
able prompts {Pi}ni=1 to decode n answers in par-
allel. Instead of beginning with the [START] token,
the decoder begins with the i-th prompt Pi to de-
code the answer Ai for the i-th question in an auto-
regressive manner. These prompts are learnt to
associate the corresponding questions and content.

Ip / Target Standard denoising MQMA denoising

Original text Thank you for inviting me to your party last week . . .

Input text Thank you [MASK1] me to your party Q1 Q2 ... Qn [SEP] Thank you
[MASK2] week ... [MASK1] me to your party [MASK2]

week ...

Target [MASK1] for inviting [MASK2] last ... A1 A2 ... An

Table 1: Pre-training tasks: Standard vs. MQMA de-
noising.

Compared with SQSA, the prompt-based MQMA
decoder has almost the same decoder latency as
SQSA because the decoding processes of SQSA
and MQMA are the same except for which token
the decoder begins with. See Appendix A for anal-
yses on different MQMA approaches and why our
approach is most optimal for big-oh complexity.

4 MQMA Unsupervised Pre-training

It is well established that pre-training followed by
task specific fine-tuning almost always leads to su-
perior performance when compared with models
trained with just supervised fine-tuning (Appalaraju
et al., 2021, 2024; Biten et al., 2022; Kenton and
Toutanova, 2019; He et al., 2019; Chen et al., 2022;
Ho et al., 2022; Brown et al., 2020). Ability to train
on vast amounts of unsupervised data has a key role
to play in the success of this training strategy. In
language domain, a number of pre-training strate-
gies inspired by cloze task (Taylor, 1953) have
been designed, e.g., masked language modeling
(Kenton and Toutanova, 2019). More recently, a
denoising language modeling pre-training task was
proposed in the T5 model (Raffel et al., 2020) and
this pre-training task has been successfully used
in previous text-VQA models like DocFormerv2
(Appalaraju et al., 2024) and LaTr (Biten et al.,
2022). The denoising language modeling task is
unsupervised. The task masks spans of original
text and the objective is to reconstruct the masked
text during training (see “Standard denoising” in
Table 1).

However, this standard denoising task is not well
coordinated with our downstream task of text-VQA
(we show in experiments, see Table 8). In order to
leverage unsupervised pre-training, we propose a
novel MQMA denoising language modeling task as
a proxy VQA task. We show that this pre-training
not only helps the MQMA setting but also helps
in general when the downstream task is text-VQA
(see Table 8). More precisely, we modify the stan-
dard denoising pre-training task to an MQMA text-
VQA task by asking and answering questions on
[MASK] tokens, see “MQMA denoising” Table 1.
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We design which and what style questions, i.e.,
1) Which text tokens are masked by [MASKi] after

“xxx”?,
2) What are the masked text tokens of [MASKi] af-
ter “xxx”?
Where [MASKi] corresponds to the i-th mask and

“xxx” corresponds to the text before [MASKi]. The
answer to the question above is the original text
of [MASKi]. An example question-answer pair for
[MASKi] is
Q: Which text tokens are masked by [MASK1] after

“Thank you”? - A: for inviting

We experimentally show that this novel pre-
training task is better aligned with the downstream
text-VQA task and benefits the model for text-VQA
even if the MQMA setting is not desired. We also
tried “before” style question formulation and found
it to be not as beneficial when compared with the
“after” style. So in experiments we stick to the “af-
ter” style questions only. There could be other ways
to formulate the questions to get more benefits.

5 Experiments

5.1 Experimental Setup

Datasets and Evaluation Metrics. For unsuper-
vised per-training, we use 1M, 64M, and 64M un-
labeled document images from the Industrial Doc-
ument Library (IDL)1 dataset for small, base, and
large size models, respectively, following (Biten
et al., 2022; Appalaraju et al., 2024). For text-
VQA, we use OCR-VQA (Mishra et al., 2019) for
book/movie cover VQA, TextVQA (Singh et al.,
2019) and ST-VQA (Biten et al., 2019b) for scene-
text VQA, and DocVQA (Mathew et al., 2021,
2020) for document VQA. See Appendix B for
more stats on these datasets. For evaluation, we
use Average Normalized Levenshtein Similarity
(ANLS) (Biten et al., 2019a) which measures the
similarity between predicted and ground truth an-
swers for DocVQA and ST-VQA and the stan-
dard VQA accuracy (Antol et al., 2015) for other
datasets, following the standard evaluation proto-
col (Appalaraju et al., 2024; Biten et al., 2019b;
Mathew et al., 2021; Mishra et al., 2019; Singh
et al., 2019). Higher the better.

Implementation Details. Please see Appendix C
for implementation details.

1https://www.industrydocuments.ucsf.edu/

Approach Val Accuracy (%) Test Accuracy (%)

M4C (Hu et al., 2020) 63.5 63.9
LaAP (Han et al., 2020) 63.8 64.1
LaTrbase (Biten et al., 2022) 67.5 67.9
GIT (Wang et al., 2022a) 67.8 68.1
SQSAbase (Appalaraju et al., 2024) 69.7 70.3
SQSAlarge (Appalaraju et al., 2024) 71.1 71.5

MQMAbase (ours) 71.9 72.4
MQMAlarge (ours) 73.6 74.0 (+2.5)

Table 2: Comparison on OCR-VQA: We answer 5
questions at a time for MQMA. +2.5% is absolute im-
provement from the previous state of the art (Appalaraju
et al., 2024) in that class. Bold indicates best and
underline indicates the previous state of the art.

Approach Val Accuracy (%) Test Accuracy (%)

LaAP (Han et al., 2020) 41.0 41.4
SA-M4C (Kant et al., 2020) 45.4 44.6
SMA (Gao et al., 2021) 44.5 45.5
M4C (Hu et al., 2020) 47.8 -
LOGOS (Lu et al., 2021) 51.5 51.1
TAP + TAG (Wang et al., 2022b) 53.6 53.7
TAP (Yang et al., 2021) 54.7 54.0
PreSTU (Kil et al., 2022) 56.7 56.3
GIT† (Wang et al., 2022a) 59.9 59.8
LaTr†base (Biten et al., 2022) 59.5 59.6
LaTr†large (Biten et al., 2022) 61.1 61.6
SQSA†

base (Appalaraju et al., 2024) 61.6 60.0
SQSA†

large (Appalaraju et al., 2024) 65.6 64.0

MQMA†
base (ours) 63.1 62.3

MQMA†
large (ours) 66.6 65.4 (+1.4)

Table 3: Comparison on TextVQA: We answer 2 ques-
tions at a time for MQMA. † indicates using the com-
bination of the ST-VQA and TextVQA training sets to
train the model.

5.2 Comparisons with State of the Art
Results on OCR-VQA. Table 2 shows results of
different approaches on the OCR-VQA (Mishra
et al., 2019) dataset. Here we train our model on
the training set. We answer 5 questions at a time
for MQMA (i.e., n = 5) because the accuracy of
using different numbers of questions is similar on
OCR-VQA (see Table 10 in Appendix). On OCR-
VQA, there could be potential information leak
from the questions “Is this book related to xxx?” to
the answer of the questions “What type of book is
this?” / “What is the genre of this book?” if we ask
these questions together. To avoid such information
leak, we keep these two sets of questions separate
and answer them separately. See Appendix F for
more detailed analyses. On the OCR-VQA testing
set, our MQMA approach obtains accuracy 74.0%
which is 2.5% higher than 71.5% of the previous
state-of-the-art SQSA approach (Appalaraju et al.,
2024) using the large size model.
Results on TextVQA and ST-VQA. Following
previous approaches (Biten et al., 2022; Appalaraju
et al., 2024), we train our models on the combina-
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Approach Val ANLS (%) Test ANLS (%)

M4C (Hu et al., 2020) 47.2 46.2
LaAP (Han et al., 2020) 49.7 48.5
SA-M4C (Kant et al., 2020) 51.2 50.4
LOGOS (Lu et al., 2021) 58.1 57.9
TAP (Yang et al., 2021) 59.8 59.7
TAP + TAG (Wang et al., 2022b) 62.0 60.2
PreSTU (Kil et al., 2022) - 65.5
LaTr†base (Biten et al., 2022) 68.3 68.4
LaTr†large (Biten et al., 2022) 70.2 69.6
GIT† (Wang et al., 2022a) 69.1 69.6
SQSA†

base (Appalaraju et al., 2024) 70.1 68.4
SQSA†

large (Appalaraju et al., 2024) 72.9 71.8

MQMA†
base (ours) 70.6 70.0

MQMA†
large (ours) 73.9 72.4 (+0.6)

Table 4: Comparison on ST-VQA: We answer 2 ques-
tions at a time for MQMA. † indicates using the com-
bination of the ST-VQA and TextVQA training sets to
train the model.

tion of TextVQA (Singh et al., 2019) and ST-VQA
(Biten et al., 2019b) training sets. We answer 2
questions at a time for MQMA (i.e., n = 2) be-
cause most images in TextVQA and ST-VQA only
have 1 or 2 questions. From the results shown in
Table 3 and Table 4, our MQMA approach consis-
tently gives the best accuracy on both datasets un-
der different settings. In particular, Table 3 shows
that our MQMA approach obtains accuracy 65.4%
on the TextVQA testing set, which is 1.4% higher
than the previous state-of-the-art SQSA approach
(Appalaraju et al., 2024). In addition, on the ST-
VQA testing set, our MQMA approach improves
ANLS from 71.8% to 72.4% compared with the
state-of-the-art SQSA approach (Appalaraju et al.,
2024), see Table 4.

Results on DocVQA. Here we compare our ap-
proach with the previous state of the art on the
DocVQA dataset (Mathew et al., 2021). We train
our model on the combination of training and val-
idation set and show results on the testing set (by
submitting to leaderboard). We answer 2 questions
at a time for MQMA (i.e., n = 2) because n = 2
gives the best accuracy on DocVQA (see Figure 5
in Appendix). As shown in Table 5, our approach
obtains ANLS 88.3% on the DocVQA testing set,
1.1% higher than 87.2% of the previous state-of-
the-art SQSA approach (Appalaraju et al., 2024).

See Appendix D for ablation studies on different
components of our approach, including the MQMA
architecture, the training data augmentation strat-
egy, the unsupervised pre-training task, the ques-
tion order, and the number of questions.

Approach Test ANLS (%)

LayoutLMv2base (Xu et al., 2021) 78.1
LayoutLMv2large (Xu et al., 2021) 85.3
LayoutLMv3base (Huang et al., 2022) 78.8
LayoutLMv3large (Huang et al., 2022) 83.4
StructuralLMlarge (Li et al., 2021) 83.9
UDOPlarge (Tang et al., 2023) 84.7
ERNIE-Layoutlarge (Peng et al., 2022) 84.9
TILT†

base (Powalski et al., 2021) 83.9
TILT†

large (Powalski et al., 2021) 87.1
SQSAbase (Appalaraju et al., 2024) 83.4
SQSAlarge (Appalaraju et al., 2024) 87.2

ERNIE-Layoutens (Peng et al., 2022) 88.4
GPT4 88.4

MQMAbase (ours) 84.8
MQMAlarge (ours) 88.3 (+1.1)

Table 5: Comparison on DocVQA: We answer 2 ques-
tions at a time for MQMA. † indicates using more QA
datasets instead of only DocVQA to train the model.
ERNIE-Layoutens is the ensemble of 30 models and
GPT4 has billions of parameters, both of which are
much bigger than MQMAlarge using a single model with
750M parameters.

6 Conclusion

In this paper, we propose a Multiple-Question
Multiple-Answer (MQMA) text-VQA approach.
Unlike previous approaches that process a single
question each time, MQMA can answer multi-
ple questions at a time. In addition, we propose
an MQMA denoising task for unsupervised pre-
training. The MQMA denoising task aligns the
pre-training task with the downstream text-VQA
task to improve accuracy. Experimental results
show that the proposed approach improves accu-
racy on a variety of challenging text-VQA datasets
compared with the previous state of the art.
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Figure 4: Architecture Comparisons among SQSA
and Different MQMA approaches: SQSA: the SQSA
baseline, MQMA (naive): the naive MQMA approach
that concatenates answers of multiple questions to
form a single long output sequence, MQMA (ours w/o
QIE): our MQMA approach w/o question index embed-
dings, MQMA (ours): our MQMA approach, Qi/Ai/Pi

(i ∈ {1, 2, ..., n}): the i-th question/answer/prompt,
C: content, S: [START] token for decoder. i (i ∈
{0, 1, 2, ..., n}) at the bottom of (d): question index.
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A Time Complexity and Latency of SQSA
and Different MQMA Approaches

We do detailed time complexity and latency analy-
ses of SQSA and different MQMA approaches here.
See Figure 4 for the architectures of SQSA and dif-
ferent MQMA approaches. Suppose we have n
questions, the sequence length of each question is
LQ, the sequence length of content is LC, and the
sequence length of each answer is LA. Without
loss of generality, LQ << LC.

For SQSA, to answer each question, the
time complexity of each self-attention layer
in the encoder is O

(
(LQ + LC)

2
)

≈ O
(
L2

C

)
.

The time complexity of each self-attention
layer and cross-attention layer in the de-
coder is O

(
L2

A + LA ∗ (LQ + LC)
)

≈
O
(
L2

A + LA ∗ LC
)
, where L2

A is from the
self-attention layer and LA ∗ LC is from the
cross-attention layer. So the encoder and decoder
time complexities of answering n questions
are n ∗ O

(
L2

C

)
and n ∗ O

(
L2

A + LA ∗ LC
)

respectively.
For MQMA (naive), we answer n questions

at a time. The time complexity of each self-
attention layer in the encoder to answer n ques-
tions is O

(
(n ∗ LQ + LC)

2
)

≈ O
(
L2

C

)
(n ∗

LQ << LC) which is 1
n of the encoder

time complexity of SQSA. The time complexity
of each self-attention layer and cross-attention
layer in the decoder to answer n questions is
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SQSA MQMA (naive) MQMA (ours w/o QIE) MQMA (ours)

Encoder Time Complexity n ∗ O
(
L2

C

)
O
(
L2

C

)
O
(
L2

C

)
O
(
L2

C

)

Encoder Latency (ms/image) 19.7 11.5 11.5 11.5
Decoder Time Complexity n ∗O

(
L2

A + LA ∗ LC
)

n ∗O
(
n ∗ L2

A + LA ∗ LC
)

n ∗O
(
L2

A + LA ∗ LC
)

n ∗O
(
L2

A + LA ∗ LC
)

Decoder Latency (ms/image) 68.9 77.6 68.9 68.9

Table 6: Time Complexity and Latency Comparisons among SQSA and Different MQMA Approaches: SQSA:
the SQSA baseline, MQMA (naive): the naive MQMA approach that concatenates answers of multiple questions to
form a single long output sequence, MQMA (ours w/o QIE): our MQMA approach w/o question index embeddings,
MQMA (ours): our MQMA approach, n: the number of questions, LC: the sequence length of content, LA: the
sequence length of answer. The latency numbers here are from MQMAsmall on DocVQA (Mathew et al., 2021).

Dataset Train Set Val Set Test Set

OCR-VQA (Mishra et al., 2019) 166K/801.7K 20.7K/100K 20.8K/100.4K
TextVQA (Singh et al., 2019) 21.9K/34.6K 3.2K/5K 3.3K/5.7K
ST-VQA (Biten et al., 2019b) 17K/23.4K 1.9K/2.6K 3K/4.1K
DocVQA (Mathew et al., 2020, 2021) 10.2K/39.5K 1.3K/5.3K 1.3K/5.2K

Table 7: Dataset Stats: The number of im-
ages/questions of different text-VQA datasets.

O
(
(n ∗ LA)

2 + (n ∗ LA) ∗ (LQ + LC)
)

≈ n ∗
O
(
n ∗ L2

A + LA ∗ LC
)

which is higher than the
decoder time complexity n ∗ O

(
L2

A + LA ∗ LC
)

of SQSA.
For MQMA (ours w/o QIE) and MQMA (ours),

we answer n questions at a time. The time com-
plexity of each self-attention layer in the encoder
to answer n questions is the same as MQMA
(naive) because the input sequence length of dif-
ferent MQMA approaches is the same. The time
complexity of each self-attention layer and cross-
attention layer in the decoder to answer n questions
is the same as SQSA because we decode n answers
separately as in SQSA.

We summarize the time complexities of differ-
ent approaches and report latency in Table 6. Our
MQMA approaches give lower encoder time com-
plexity and latency than SQSA. In addition, the
decoder time complexity and latency of MQMA
(ours w/o QIE) and MQMA (ours) are the same as
that of SQSA and are lower than that of MQMA
(naive). So MQMA (ours w/o QIE) and MQMA
(ours) give the lowest overall time complexity and
latency among all these approaches.

B Datasets

As stated in the main paper, we use OCR-VQA
(Mishra et al., 2019) for book/movie cover VQA,
TextVQA (Singh et al., 2019) and ST-VQA (Biten
et al., 2019b) for scene-text VQA, and DocVQA
(Mathew et al., 2021, 2020) for document VQA.
See Table 7 for details of these text-VQA datasets.
As we can see, there are on average ∼ 5 ques-

tions/image on OCR-VQA, 1 or 2 questions/image
on TextVQA and ST-VQA, and on average ∼ 4
questions/image on DocVQA.

C Implementation Details

Pre-training. We use small, base, and large
size models which are termed as MQMAsmall,
MQMAbase, and MQMAlarge, respectively. Our
model is first initialized from the T5 pre-trained
weights (Raffel et al., 2020), then pre-trained on the
unlabeled document data following DocFormerv2
(Appalaraju et al., 2024) - we call this model as
SQSA basline in our experiments. SQSA is next
pre-trained on the same unlabeled document data
using the MQMA denoising task descried in Sec.
4 of the main paper. In both, we pre-train for
50/3/3 epochs on 1M/64M/64M IDL data for the
small/base/large size model. We also do not do any
text augmentation (Ma, 2019; Feng et al., 2021)
or multi-modal augmentation (Hao et al., 2023).
We simply normalize the images to unit mean and
variance for training stability. The maximum input
sequence length of the text token embeddings is
set to 512. The input sequence length of the vi-
sual token embeddings is set to 128. The learnable
prompt Pi is first initialized by the embeddings of
“answer of question i:”.
Fine-Tuning. For text-VQA fine-tuning, we train
our models for 8 epochs on OCR-VQA and for 50
epochs on other datasets. The learning rate is set
to 0.0001 and the AdamW (Loshchilov and Hutter,
2018) optimizer is used to train our models. Our
training batch size is set to 128. The maximum
input sequence length of the text token embeddings
is set to 2048 for small and base size models and
1024 for large size model. The input sequence
length of the visual token embeddings is set to 128.
MQMA Dynamic Data Augmentation. During
pre-training and fine-tuning, we use an MQMA spe-
cific dynamic data augmentation strategy. Specif-
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ically, during unsupervised pre-training, we ran-
domly sample 5 masks at a time with uniform-
random order and create 5 questions (as shown in
Section 4). During downstream fine-tuning, sup-
pose we want to answer n questions at a time, we
randomly sample n′, n′ ∈ {1, 2, ..., n} question-
answer pairs and randomly order the n′ question-
answer pairs. These randomly sampled and or-
dered n′ question-answer pairs are used during
fine-tuning. So if there are m questions for an
image, there will be mn +mn−1 + ...+ 1 random
combinations during fine-tuning. We do this to
prevent any memorization and learn spurious co-
relations by the model. During inference, we fix the
order of questions and feed every n questions into
the model (if the remaining number of questions
is smaller than n we simply feed all the remaining
questions into the model).
Other Details. Following (Biten et al., 2022;
Powalski et al., 2021), we use Amazon Textract2,
Amazon Text-in-Image3, and Rosetta (Borisyuk
et al., 2018) to extract OCR results for document
images (i.e., IDL and DocVQA images), non-
document images (except for OCR-VQA images),
and OCR-VQA images, respectively. Our imple-
mentations are based on the PyTorch (Paszke et al.,
2019) deep learning framework and the Hugging-
Face (Wolf et al., 2020) library. All experiments are
ran on eight NVIDIA A100 GPUs with cuda11.x.

D Ablation Studies on DocVQA

We conduct several ablations on the DocVQA vali-
dation set to analyze the influence of different com-
ponents of our approach, including the MQMA ar-
chitecture, the training data augmentation strategy,
the unsupervised pre-training task, the question or-
der, and the number of questions. If not specified,
all experiments here are based on MQMAsmall.
The Influence of the MQMA Architecture. As
we discussed in Section 3.2, apart from the prompt-
based decoder, we can also use a naive approach
that concatenates the answers of multiple questions
to form a single long output sequence. In addition,
we also remove the question index embeddings
to check the influence of the question index em-
beddings. Here we compare these three different
MQMA architectures. We do 2 questions 2 an-
swers document VQA (i.e., n = 2). As shown in

2https://aws.amazon.com/textract/
3https://docs.aws.amazon.com/rekognition/

latest/dg/text-detecting-text-procedure.html

Approach Data Aug. # Questions ANLS

SQSAsmall - 1 73.0

MQMAsmall (naive) Static 2 68.6
MQMAsmall (naive) Dynamic 2 72.3
MQMAsmall (ours w/o QIE) Dynamic 2 72.7
MQMAsmall (ours) Dynamic 2 72.9
MQMAsmall (ours) + MQMA denoising Dynamic 2 74.3
MQMAsmall (ours) + MQMA denoising + FDPF Dynamic 2 74.1

Table 8: MQMA Ablations: Results of different
MQMA architectures, training data augmentation strate-
gies, and pre-training tasks on the DocVQA validation
set. “MQMAsmall (naive)” means the naive approach
that concatenates answers of multiple questions to form
a single long output sequence. “MQMAsmall (ours w/o
QIE)” means our approach w/o question index em-
beddings. “MQMAsmall (ours)” means our approach.
“MQMAsmall (ours) + MQMA denoising” means using
MQMA denoising during pre-training (otherwise using
standard denoising). “MQMAsmall (ours) + MQMA de-
noising + FDPF” is the same as “MQMAsmall (ours) +
MQMA denoising” except for freezing decoder prompts
during fine-tuning. “Static” means that we do static data
generation by fixing question-answer pair combinations
during training. “Dynamic” means that we do dynamic
data generation by randomly sampling and ordering
question-answer pairs during training.

Table 8, our approach obtains higher ANLS than
the naive approach. In addition, our approach has
lower latency than the naive approach, see Table 6
in Appendix. Adding question index embeddings
also contributes to higher ANLS because the ques-
tion index embeddings help the model distinguish
different questions and content.

MQMA Training Data Augmentation Strategy.
As mentioned in Section C. we use a dynamic train-
ing data augmentation strategy by randomly sam-
pling and ordering question-answer pairs. Here
we compare the dynamic training data augmenta-
tion strategy with the static training data generation
approach which fixes question-answer pair com-
binations during training. From Table 8, we can
see that using the dynamic approach obtains 3.7%
higher ANLS than the static approach.

The Influence of the Unsupervised Pre-training
Task. Here we study the influence of different unsu-
pervised pre-training tasks. From Table 8, we can
see that adding the MQMA denoising pre-training
task improves ANLS by 1.4% when n = 2. With
the new pre-training task, our MQMA approach
obtains 1.3% higher ANLS compared with SQSA.
In addition, from Figure 5, we can see when pre-
trained with the MQMA denoising task, even n = 1
contributes to higher ANLS than the SQSA base-
line with the standard denoising task. These re-
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Approach # Questions ANLS (%) ANLS of Q1 (%) ANLS of Q2 (%)

MQMAsmall 2 74.3 75.3 73.6
MQMAsmall (reversed order) 2 74.2 73.4 75.2

Table 9: MQMA Ablations: Results of different ques-
tion orders on the DocVQA validation set. The Q1/Q2
for MQMAsmall corresponds to Q2/Q1 for MQMAsmall
(reversed order).
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Figure 5: MQMA Ablations: Results of different num-
bers of questions on the DocVQA validation set using
the small size and base size models. We use the standard
denoising task and the MQMA denoising task for SQSA
and MQMA pre-training respectively.

sults confirm that MQMA denoising is beneficial
for text-VQA even if n = 1. Also, even freez-
ing the decoder prompts during fine-tuning obtains
an ANLS of 74.1% (vs. 74.3%), which confirms
that our pre-training task can learn good decoder
prompts to associate the corresponding questions
and content even without fine-tuning learnable de-
coder prompts.
The Influence of the Question Order. In our
approach, questions are concatenated with fixed
order during inference. Here we study the influence
of the question order. From Table 9, we can see
our approach is robust to the order of the questions.
This is because our model is trained with dynamic
data augmentation which randomly samples and
orders questions during training.
The Influence of the Number of Questions. We
discuss the results of different numbers of ques-
tions we answer at a time (i.e., different n). As we
can see from Figure 5, our MQMA obtains higher
accuracy than SQSA for n = 1 to 5. Answering
2 questions at a time gives the best accuracy on
DocVQA, so we use n = 2 in Section 5.2. See
Appendix E for the influence of the number of
questions on other datasets.

E The Influence of the Number of
Questions on Other Datasets

In our main paper, we only show MQMA results
of answering 5 questions at a time on OCR-VQA
and results of answering 2 questions at a time on
TextVQA and ST-VQA. Here we should the influ-

Approach # Questions Accuracy (%)

SQSAbase 1 69.7

MQMAbase 1 70.3
MQMAbase 2 71.7
MQMAbase 3 71.9
MQMAbase 4 71.9
MQMAbase 5 71.9

Table 10: MQMA Ablations: The influence of the
number of questions we answer at a time for MQMA
on the OCR-VQA (Mishra et al., 2019) validation set.

Approach # Questions TextVQA Accuracy (%) ST-VQA ANLS (%)

SQSAbase 1 60.4 68.0
MQMAbase 1 61.7 68.7
MQMAbase 2 61.9 69.2

Table 11: MQMA Ablations: The influence of the
number of questions we answer at a time for MQMA on
the TextVQA (Singh et al., 2019) and ST-VQA (Biten
et al., 2019b) validation set.

ence of the number of questions on OCR-VQA,
TextVQA, and ST-VQA datasets. Without loss of
generality, we use the base size model and train/test
our MQMA approach on the training/validation set.
OCR-VQA. Table 10 shows results of answering
different numbers of questions at a time for MQMA
on the OCR-VQA (Mishra et al., 2019) validation
set. Images in OCR-VQA have on average ∼ 5
questions/image, so we compare results of answer-
ing n = 1 to n = 5 questions at a time. As we can
see, answering different numbers of questions at a
time (when n > 1) gives very similar accuracy on
the OCR-VQA validation set. Answering n = 5
questions at a time gives the highest accuracy on
the OCR-VQA validation set, so we only report re-
sults of n = 5 in our main paper. Answering n > 1
questions at a time gives much higher accuracy than
answering n = 1 question at a time. This is be-
cause the questions in the OCR-VQA dataset have
correlations. Our MQMA approach can leverage
correlations between multiple questions and con-
tent to improve accuracy. Even answering n = 1
question at a time for MQMA gives higher accu-
racy than SQSA, because our MQMA denoising
pre-training task aligns the pre-training task and
downstream text-VQA task.
TextVQA and ST-VQA. Table 11 show results of
answering different numbers of questions at a time
for MQMA on the TextVQA (Singh et al., 2019)
and ST-VQA (Biten et al., 2019b) validation set.
Here our model is trained on the TextVQA training
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set only when evaluating on the TextVQA valida-
tion set, and is trained on the ST-VQA training
set only when evaluating on the ST-VQA valida-
tion set. Images in TextVQA and ST-VQA have
only 1 or 2 questions/image, so we compare re-
sults of answering n = 1 and n = 2 questions
at a time. From the results, we can see answering
n = 2 questions at a time gives slightly higher num-
bers than answering n = 1 question at a time on
TextVQA and ST-VQA, so we only report results
of n = 2 in our main paper. Similar to the results
on other datasets, even answering n = 1 question
at a time for MQMA gives higher accuracy than
SQSA thanks to the MQMA denoising pre-training
task.

F Information Leak Analyses on
OCR-VQA

In our initial experiments on OCR-VQA, we get
accuracy 77.5% using the MQMA base size model
(vs. 69.9% of the SQSA base size model) on the
validation set when we answer 5 questions at a time.
To verify where such big accuracy improvements
are from, we conduct detailed analyses on the OCR-
VQA dataset.

Unlike other datasets in which questions of the
same image are not strongly correlated, there are
correlations among different questions in the OCR-
VQA dataset. For most images in OCR-VQA, the
five questions below are asked
Q1: Who wrote this book? / Who is the author of
this book?
Q2: What is the title of this book?
Q3: What type of book is this? / What is the genre
of this book?
Q4: Is this book related to xxx? / Is this a xxx
book?
Q5: Is this book related to xxx? / Is this a xxx
book?
For Q4 and Q5, one of them has answer “yes” and
one of them has answer “no”. We can see there are
correlations among different questions. For exam-
ple, the title (for Q2) and the type/genre (for Q3)
are correlated to each other. Our MQMA approach
can leverage this correlation to improve accuracy.

However, there could be potential information
leak from the questions of Q4 and Q5 to the answer
of Q3, see the example below.
Q3: What is the genre of this book? - A: religion &
spirituality
Q4: Is this book related to religion & spirituality?

- A: yes
Q5: Is this book related to computers & technol-
ogy? - A: no
As we can see, the question of Q4 contains the
answer of Q3. In addition, if we evaluate the ac-
curacy of Q3 only and other questions, MQMA
gives accuracy 94.0% for Q3 only and 73.2% for
other questions, whereas SQSA gives accuracy for
67.0% for Q3 only and 70.7% for other questions.
These results show that the MQMA might take in-
formation from Q4 or Q5 to answer Q3, i.e., there
might be information leak.

To further analyze the information leak issue,
we conduct experiments under three settings as fol-
lows. Here we use the MQMA model trained with
n = 5 for the experiments and we do not add any
constraints during training.
Setting 1: Answer Q1, Q2, Q4, Q5 together and
answer Q3 alone.
Setting 2. Answer Q1, Q2, Q3 together and answer
Q4, Q5 together.
Setting 3. Answer Q1, Q2, Q3 together, answer
Q4 alone, and answer Q5 alone.
Both of these settings give accuracy 71.5%, which
further confirms answering Q3, Q4, and Q5 to-
gether would result in information leak from the
questions of Q4 and Q5 to the answer of Q3. In
addition, answering Q4 and Q5 together or alone
(Setting 2 and Setting 3) gives the same accuracy,
which shows our MQMA approach does not take
dataset-specific prior knowledge that there will be
one “yes” answer and one “no” answer for Q4
and Q5. This is because during training, we do
random sampling and ordering, so the training sam-
ples could have different numbers of “yes” answers
and different numbers of “no” answers.

To avoid such information leak, we check the
whole dataset and make sure all questions that
could result in information leak will not be an-
swered together during both training and testing,
e.g., for the five questions discussed before, we
always ensure that Q1, Q2, and Q3 can only be
answered together with each other, and Q4 and
Q5 can only be answered together with each other.
After doing this, we get accuracy 71.9% on the
OCR-VQA validation set if we answer n = 5 ques-
tions at a time.

G Qualitative Results

We show qualitative results in Figure 6. As we
can see, our MQMA approach shows better multi-
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modal understanding ability than SQSA. There are
some failure cases from both MQMA and SQSA.
The errors are from multiple aspects, like OCR
error and hard images/questions. For example, for
the top right example in Figure 6, the ground truth
is “6.7” but both MQMA and SQSA give answer
“607”. The reason of this wrong prediction is from
the OCR error - OCR mis-recognizes the word
“6.7” as “607” and it is hard for models to fix this
OCR error. For the example at the last column of
row 3 in Figure 6, both MQMA and SQSA gives
wrong counts for the number of letters in the word
“police”. Counting is a difficult problem for text-
VQA models. Actually, MQMA gives a reasonable
prediction “7”, because from the appearance of
the word in the image it looks like there are “7”
letters. There are some cases that even human
has difficulty in answering the question - for the
bottom right example, it is hard to answer the time
because there is no clear information about which
part corresponds to 12 o’clock.
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Which is the new journal?

GT: annals of family medicine
SQSA: new england journal of medicine
MQMA: annals of family medicine

What is the objective for segment 1a?

GT: strong share growth
SQSA: cities where kool is strong
MQMA: strong share growth

Which group shows the lowest diet 
consumption in the 5th week?

GT: td
SQSA: j
MQMA: td

What is serial number ‘5’?

GT: expenditure in foreign currency
SQSA: 891022
MQMA: expenditure in foreign currency

What is the parts per million hypothetical 
combinations for calcium phosphate?

GT: 6.7
SQSA: 607
MQMA: 607

What is written under the crossed out p sign?

GT: this side this block
SQSA: only one way
MQMA: this side this block

What magazine is shown on the bottom half of 
the entrance door?

GT: men’s health
SQSA: ausrralian school
MQMA: mean’s health

What color is the motel painted?

GT: red
SQSA: green
MQMA: red

What is the name of brown color boat?

GT: rx55
SQSA: rx60
MQMA: rx55

How many letters are in the word on the side of 
the boat?

GT: 6
SQSA: 5
MQMA: 7

What number is on the gold coin?

GT: 5
SQSA: 1
MQMA: 5

Where is the blue top from?

GT: cleveland
SQSA: north carolina
MQMA: cleveland

What app does the green square represent?

GT: line
SQSA: telegram
MQMA: line

What is on the sign with two down arrows?

GT: herning
SQSA: herning, ringkobing, holstebro
MQMA: herning

What time does the clock read?

GT: 11:52
SQSA: 1:15
MQMA: 1:05

What is the black word on the yellow 
background?

GT: crackers
SQSA: daily
MQMA: crackers

What word is written just under the x on the 
dial?

GT: september
SQSA: a
MQMA: spetember

What does it say in white lettering under the 
logo on the right of the black background?

GT: statoil
SQSA: lso sky chefs
MQMA: statoil

What are the first three words of the sign?

GT: stop look listen
SQSA: stop
MQMA: stop look listen

What is the name listed in gold on the building?

GT: zizzi
SQSA: itzizzino
MQMA: itzizzino

What´s the name of the book next to the one 
that says german?

GT: french
SQSA: slang
MQMA: french

How many cups can this measuring cup hold?

GT: 2
SQSA: 16
MQMA: 2

What brand is the bottle furthest to the right on 
the table?

GT: coke
SQSA: pepsi
MQMA: coke

What is the word seen in red on the bottom of 
this beer bottle?

GT: urbock
SQSA: bamberg
MQMA: urbock

What are the first three letters at the top?

GT: gsa
SQSA: g5a
MQMA: g5a

Figure 6: Qualitative Comparisons between MQMA and SQSA: The first four columns show examples that
MQMA gives correct answers but SQSA gives wrong answers. The last column shows examples that both MQMA
and SQSA give wrong answers. MQMA shows better multi-modal understanding ability than SQSA. Zoom in to
see better.
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