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Abstract

Large Language Models (LLMs) have demon-
strated impressive capabilities to solve a wide
range of tasks without being explicitly fine-
tuned on task-specific datasets. However, de-
ploying LLMs in the real world is not trivial, as
it requires substantial computing resources. In
this paper, we investigate whether smaller, com-
pact LLMs1 are a good alternative to the com-
paratively Larger LLMs2 to address significant
costs associated with utilizing LLMs in the real
world. In this regard, we study the meeting sum-
marization task in a real-world industrial en-
vironment and conduct extensive experiments
by comparing the performance of fine-tuned
compact LLMs (e.g., FLAN-T5, TinyLLaMA,
LiteLLaMA) with zero-shot larger LLMs (e.g.,
LLaMA-2, GPT-3.5, PaLM-2). We observe
that most smaller LLMs, even after fine-tuning,
fail to outperform larger zero-shot LLMs in
meeting summarization datasets. However, a
notable exception is FLAN-T5 (780M param-
eters), which performs on par or even better
than many zero-shot Larger LLMs (from 7B
to above 70B parameters), while being signifi-
cantly smaller. This makes compact LLMs like
FLAN-T5 a suitable cost-efficient solution for
real-world industrial deployment.

1 Introduction

The instruction following capabilities have made
it possible for LLMs to achieve impressive perfor-
mance in zero-shot scenarios (Laskar et al., 2023a;
Qin et al., 2023; Bang et al., 2023), which has also
led to an increase in using LLMs to solve real-
world problems. For instance, in tasks like meeting
summarization, LLMs have been widely utilized
in recent times due to their impressive zero-shot
performance (Laskar et al., 2023b).

*Equal Contributions. Sorted by the Last Name.
1LLMs that have less than 2B parameters are referred to

as Compact LLMs in this work.
2LLMs that have at least 7B parameters are referred to as

Larger LLMs in this work.

However, despite the effectiveness of LLMs in
summarization, deploying LLMs in the real world
to generate meeting summaries would also lead to
an increase in production costs. While fine-tuning
smaller language models (Raffel et al., 2020), such
as BART (Lewis et al., 2020), Pegasus (Zhang et al.,
2020), etc. led to state-of-the-art results across var-
ious summarization datasets, these models require
large annotated datasets for model training, which
are often difficult to obtain in real-world business
scenarios. Moreover, these smaller language mod-
els also do not have instruction-following capabil-
ities (Zhang et al., 2023). Thus, they cannot be
trained to properly follow specific instructions if
there is a change in user requirements.

GPT-4 (OpenAI, 2023) is an LLM proposed
by OpenAI which is widely considered the best-
performing LLM currently available (Chang et al.,
2023). GPT-4 generated responses are also used
to fine-tune various LLMs that are significantly
smaller in size in comparison to it (Peng et al.,
2023). Since using the GPT-4 API significantly in-
creases the API usage cost (Laskar et al., 2023b), it
is often not practical to use in real-world scenarios.

In this regard, this paper studies whether com-
pact/smaller LLMs can be fine-tuned in a way that
can mimic the performance of GPT-4, while also
significantly reducing the deployment cost of using
LLMs in production for meeting summarization.
More specifically, this paper aims to provide a com-
prehensive analysis of various smaller and larger
LLMs, which includes larger LLMs like GPT-3.5
(i.e., ChatGPT3), PaLM-2 (Google, 2023), LLaMA-
2 (Touvron et al., 2023b), as well as smaller LLMs
like FLAN-T5 (Chung et al., 2022), TinyLLaMA
(Zhang et al., 2024), etc.

Our experimental results show that most smaller
LLMs, even after fine-tuning, fail to outperform
larger zero-shot LLMs in meeting summarization
datasets. However, a notable exception is a fine-

3https://openai.com/blog/chatgpt
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tuned FLAN-T5-Large, which achieves perfor-
mance on par with much larger LLMs (from 7B to
more than 70B) used in zero-shot settings, while be-
ing significantly smaller. This makes smaller LLMs
like FLAN-T5 a suitable cost-efficient LLM for
real-world deployment. Our extensive experiments
would give insights into the cost-effective utiliza-
tion of LLMs for summarizing business meeting
transcripts. Below, we summarize our major con-
tributions in this paper:

1. We conduct an extensive evaluation of smaller
LLMs and compare their performance with
larger LLMs in several meeting summariza-
tion datasets to address several limitations of
using LLMs in the real world.

2. To ensure a fair evaluation and address the
possibility of data contamination, we utilize
(i) one real-world Automatic Speech Recogni-
tion (ASR)-generated transcription data from
real-world business meetings, and (ii) con-
structed a new version of the QMSUM (Zhong
et al., 2021) dataset where the reference sum-
maries are re-generated to keep them similar
to our production requirement (this also helps
us avoid the possibility of data contamination
in LLM-generated responses).

3. Finally, we demonstrate the advantage of de-
ploying smaller LLMs for real-world usage
based on the analysis of performance (accu-
racy and latency), inference cost, and compu-
tational resource requirements.

2 Related Work

Fine-tuning language models (Lewis et al., 2020;
Zhang et al., 2020; Raffel et al., 2020) based on
the transformer architecture (Vaswani et al., 2017)
has led to state-of-the-art performance in various
summarization datasets. Since these transformer-
based language models require domain-specific
fine-tuning for best results, obtaining in-domain
labeled data in real-world settings is not trivial.
However, the notable zero-shot abilities of LLMs
in summarization (Laskar et al., 2023b) have at-
tracted attention for their potential use in practical
summarization systems where in-domain labeled
datasets are not available.

While zero-shot LLMs have demonstrated im-
pressive performance in tasks that lack large an-
notated datasets (Laskar et al., 2023a; Qin et al.,

2023; Bang et al., 2023; Jahan et al., 2023), utiliz-
ing LLMs in the real world also has several limita-
tions. For instance, GPT-4 is currently regarded as
the best-performing LLM in terms of various eval-
uation benchmarks. However, the API cost of us-
ing GPT-4 is significantly higher than of any other
LLMs (Laskar et al., 2023b). While fine-tuned ver-
sions of less expensive closed-source LLMs could
reach performance comparable to GPT-4, using
fine-tuned versions of these LLMs for inference
significantly increases the API cost4. Since these
closed-source LLMs are only available through
APIs, they pose potential privacy risks.

To mitigate the above issues, various open-
source LLMs have been proposed (Touvron et al.,
2023a,b; Jiang et al., 2023, 2024). Some of the ma-
jor advantages of using open-source LLMs are: (i)
they are available for in-house deployment, (ii) they
can be fine-tuned to achieve performance compara-
ble to larger closed-source LLMs, and finally, (iii)
the inference cost of using both zero-shot and fine-
tuned versions are the same. Thus, open-source
LLMs could be a good alternative that addresses
the limitations of closed-source LLMs.

However, deployment of the open-source LLMs
in a way that ensures customer satisfaction, i.e.,
high accuracy with low latency, would require
expensive computing resources such as powerful
GPUs with large memory capacity. In addition,
fine-tuning larger LLMs also requires scarce and
costly computing resources which may not be avail-
able in many industries. While various optimiza-
tion techniques (Wan et al., 2023) like low-bit quan-
tization (Frantar et al., 2022; Dettmers et al., 2023),
parameter-efficient fine-tuning (Hu et al., 2021),
etc. have been proposed recently to address the
computational limitations, they often come with
other issues, such as a drop in accuracy and an
increase in latency.

In this paper, we aim to address these issues by
studying whether we can fine-tune smaller LLMs
with instruction-following capabilities to mimic
the performance of larger LLMs such as GPT-4
while ensuring low latency with minimized infer-
ence cost.

3 Our Methodology

The objective of this research is to study whether
instruction-following LLMs that are smaller in size

4https://openai.com/blog/
gpt-3-5-turbo-fine-tuning-and-api-updates
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can be effectively utilized in a real-world system
for meeting summarization to ensure performance
comparable to the state-of-the-art larger LLMs
while minimizing the inference cost. For this pur-
pose, we select LLMs that have fewer than 2B
parameters as the targeted compact LLMs for per-
formance analysis. Moreover, in real-world meet-
ing summarization scenarios, users may have dif-
ferent requirements for the LLMs. For instance,
some users may prioritize meeting summaries that
are detailed and comprehensive, whereas others
may prefer the meeting summaries to be short and
concise. In such cases, the instruction following
capability is important for the LLMs that would
be deployed in production such that they can ful-
fill variations in user demands. Therefore, in this
paper, we also evaluate the performance of LLMs
based on a diverse set of instructions to generate (i)
Long Summary, (ii) Medium Length Summary, and
(iii) Short Summary. We follow the work of Laskar
et al. (2023b) for prompt construction and use their
Summarization via Truncation approach for each
type of instruction. Below are the examples of the
prompts for each case.

Long: Generate a long and descriptive summary
of the following conversation.

Medium: Generate a summary of the following
conversation.

Short: Generate a very short and concise sum-
mary of the following conversation.

4 Experiments

In this section, we first present our models along
with their implementation details. Next, we demon-
strate the datasets we used for evaluation. Finally,
we demonstrate our experimental findings.

4.1 Models
We use three compact LLMs that have less than 2B
parameters and compare their performance with
various larger LLMs (having at least 7B parame-
ters). In the case of larger LLMs, some of them
are closed-source (e.g., GPT-3.5, PaLM-2, etc.).
When we use these closed-source LLMs, we use
their respective APIs. All open-source LLMs are
implemented using the HuggingFace library (Wolf
et al., 2020). Below, we describe the models that
we study in this work.

4.1.1 Larger Zero-Shot LLMs
GPT-3.5: It is an autoregressive LLM that lever-
ages reinforcement learning from human feedback

(RLHF) mechanism. It is the first backbone model
behind ChatGPT and obtains impressive zero-shot
performance across various tasks (Laskar et al.,
2023a). We use the gpt-3.5-turbo-0613 model with
the default parameters from OpenAI5.

PaLM-2: PaLM-2 is an LLM (Google, 2023)
developed by Google. It leverages the mixture of
objectives technique (Google, 2023) and signifi-
cantly outperforms the original PaLM (Chowdhery
et al., 2022) model. We use the text-bison@002
model in Google’s VertexAI6 with the default pa-
rameters for PaLM-2.

LLaMA-2: LLaMA-2 (Touvron et al., 2023b)
is an open-source LLM developed by Meta. One
major advantage of LLaMA-2 over the previously
mentioned LLMs is that it is open-sourced and
available for both research and commercial pur-
poses. In this paper, we use the respective Chat ver-
sions of LLaMA-2 for all of its variations: 7B, 13B,
and 70B from HuggingFace7 (Wolf et al., 2020)
with the default parameters for inference.

Mixtral-8x-7B: The Mixtral 8x7B (Jiang et al.,
2024) is a Sparse Mixture of Experts (SMoE) lan-
guage model which has the same architecture as
Mistral 7B (Jiang et al., 2023), but with the differ-
ence that each layer is composed of 8 feedforward
blocks or experts. This architectural change has
made it possible for each token to have access to
47B parameters while using only 13B active pa-
rameters during inference. We use it for zero-shot
evaluation with its default parameters.

4.1.2 Smaller Fine-Tuned LLMs
FLAN-T5: FLAN-T5 (Chung et al., 2022) is an
extension of the T5 (Raffel et al., 2020) model.
The T5 model treats each task as a sequence-
to-sequence problem. While the architecture of
FLAN-T5 is similar to the original T5 model, it
leverages instruction fine-tuning instead of tradi-
tional fine-tuning. We use its 80M parameter small,
250M parameter base, and 780M parameter large
versions from HuggingFace8 in our experiments
with the learning rate set to 2e − 5. We run 10
epochs for FLAN-T5-Large and 20 epochs for Base
and Small.

TinyLLama: TinyLlama (Zhang et al., 2024) is
a compact 1.1B parameter language model that is

5https://platform.openai.com/docs/models/
6https://cloud.google.com/vertex-ai/docs/

generative-ai/model-reference/text
7https://huggingface.co/meta-llama
8https://huggingface.co/docs/transformers/

model_doc/flan-t5
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In-Domain Dataset QMSUM-I Dataset

Type Train / Test Train / Test

No. of Samples 1360 / 157 486 / 111
Avg. Words Per Transcript 600 / 620 8947 / 9461

Avg. Words Per Summary (Overall) 88 / 87 333 / 335
Avg. Words Per Summary (Long) 122 / 122 532 / 523

Avg. Words Per Summary (Medium) 76 / 77 303 / 307
Avg. Words Per Summary (Short) 60 / 61 170 / 173

Table 1: Evaluation Dataset Statistics.

built on the architecture of Llama-2 (Touvron et al.,
2023b). It is pre-trained on around 1 trillion tokens
and leverages various techniques (e.g. FlashAt-
tention (Dao et al., 2022; Dao, 2023)) to achieve
better computational efficiency. We fine-tune it for
10 epochs with the learning rate of 1e− 5.

LiteLLama: LiteLLaMA9 is a 460M parameter
LLM that is also developed based on the architec-
ture of LLaMA-2 and trained over 1T tokens on
part of the RedPajama10 datasets. We fine-tune it
for 20 epochs with the learning rate of 2e− 5.

4.2 Datasets

While one of our objectives is to build an LLM-
based meeting summarization system that has
instruction-following capabilities for real-world us-
age, there are no meeting summarization datasets
currently available having different gold reference
summaries corresponding to different instructions
such as varying summary lengths or formats. Thus,
to evaluate the performance of various LLMs, we
constructed two datasets: (i) one dataset is based
on our proprietary in-domain business conversation
transcripts, and (ii) the other leverages an academic
dataset. Below, we describe these datasets (also see
Table 1 for more details).

(i) In-Domain dataset: This is a dataset col-
lected from Dialpad11 consisting of real-world busi-
ness meetings. Since GPT-4 is found to be the best
performing LLM in a wide range of tasks includ-
ing meeting summarization (Laskar et al., 2023b),
alongside its impressive capability as an annotator
(Peng et al., 2023), we use it to generate the refer-
ence summaries depending on the Long, Medium,
and Short summary instructions.

(ii) The QMSUMFiltered dataset: We use the fil-
tered version (Laskar et al., 2023b) of the QMSUM
dataset (Zhong et al., 2021) to generate the meeting

9https://huggingface.co/ahxt/
LiteLlama-460M-1T

10https://huggingface.co/datasets/
togethercomputer/RedPajama-Data-1T

11https://dialpad.com/

summaries. Since this dataset is not instruction-
focused, we regenerate the reference summaries
using GPT-4 with three types of instructions: Long,
Medium, and Short. Due to the variation in sum-
mary instructions, our instruction (I) focused ver-
sion of QMSUM, denoted as QMSUM-I12, con-
tains 3 times more instances than the original fil-
tered version.

4.3 Results and Discussions

For performance evaluation, we use ROUGE-1, 2,
L (R-1, R-2, R-L) (Lin, 2004) as our evaluation
metrics. Below, we present our findings.

4.3.1 Performance on Benchmark Datasets
We show the results for both zero-shot LLMs and
fine-tuned compact LLMs in Table 2. Below, we
summarize our observations:

(i) We find that in both datasets, FLAN-T5-Large
is the best-performing fine-tuned smaller LLM.
Whereas Mixtral-8x7B is the best-performing zero-
shot model among the larger LLMs.

(ii) We find that the ROUGE scores of all models
are quite lower in the QMSUM-I dataset in compar-
ison to our in-domain dataset. This is expected in
the case of the fine-tuned models since the size of
the training set in the QMSUM-I dataset is much
smaller than our In-Domain dataset.

(iii) In zero-shot settings, we find that generally,
the performance of GPT-3.5 and PaLM-2 are com-
parable to Mixtral. However, LLaMA-2-70B not
only fails to outperform these larger models, it also
fails to outperform its smaller variations in both
datasets in several scenarios.

(iv) In the case of the fine-tuned LLMs, we
find that except FLAN-T5-Large, the larger fine-
tuned models perform much better than smaller
ones. For instance, TinyLLaMA-1.1B outperforms
LLMs that are smaller in size than it. However,
it fails to outperform FLAN-T5-Large which has
about 300M fewer parameters.

(v) In the case of FLAN-T5 models, we find
that the FLAN-T5-Large-780M significantly out-
performs its smaller variants: 80M and 250M.

(vi) While FLAN-T5-Large-780M performs the
best in our In-Domain dataset, it fails to outperform
much larger zero-shot LLMs like GPT-3.5, PaLM-
2, and Mixtral-8x7b (even though its performance

12To help facilitate future research, we have released
the QMSUM-I dataset here: https://github.com/talkiq/
dialpad-ai-research/tree/main/tiny_titans
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In-Domain Dataset QMSUM-I Dataset

Models ROUGE-1 ROUGE-2 ROUGE-L ROUGE-1 ROUGE-2 ROUGE-L

GPT-3.5 (Zero-Shot) 49.55 24.61 36.12 38.63 13.17 21.83
PaLM-2-text-bison@002 (Zero-Shot) 48.32 23.61 35.59 39.76 12.29 21.14
LLaMA-2-7B (Zero-Shot) 47.37 20.41 30.93 35.67 10.14 18.57
LLaMA-2-13B (Zero-Shot) 47.07 21.37 31.58 32.93 9.69 18.06
LLaMA-2-70B (Zero-Shot) 46.55 20.42 32.02 33.85 9.50 18.23
Mixtral-8x7B (Zero-Shot) 51.99 25.76 36.86 40.70 13.29 21.96

TinyLLaMA-1.1B (Fine-Tuned) 50.17 22.38 33.66 23.97 6.06 16.59
LiteLLaMA-460M (Fine-Tuned) 42.64 15.31 26.95 16.66 3.80 11.43
FLAN-T5-Small-80M (Fine-Tuned) 21.19 8.13 16.74 20.18 4.49 16.1
FLAN-T5-Base-250M (Fine-Tuned) 34.44 14.36 25.33 30.41 9.45 20.24
FLAN-T5-Large-780M (Fine-Tuned) 56.14 29.42 41.11 34.03 11.31 20.92

Table 2: Performance of LLMs on the In-Domain and QMSUM-I datasets.

is on par or better than LLaMA-2 models in various
metrics) in the QMSUM-I dataset.

(vii) As an explanation of the performance of
FLAN-T5-Large, it should be noted that we use the
default context length of 2048 tokens for FLAN-T5
since our objective is to build an efficient summa-
rization model for deployment in a specific indus-
try. Since the average transcript length in our in-
domain dataset is about 600 words, most parts of
the transcript in our in-domain dataset can be cov-
ered within the context window of FLAN-T5 mod-
els. However, this default context length is about
5 times lower than the average transcript length
in QMSUM-I, which could be the possible reason
behind its comparatively poorer performance on
QMSUM-I. This indicates that in datasets that have
smaller context lengths, FLAN-T5-Large could be
very useful. Nonetheless, to further improve perfor-
mance in datasets that have larger meeting lengths
while ensuring limited computational usage, other
approaches such as Summarization via Chapteriza-
tion (Laskar et al., 2023b) can be investigated.

4.3.2 Case Studies
In this section, we conduct some case studies to
further investigate the performance of the best-
performing smaller fine-tuned LLM: the FLAN-T5-
Large model. Below, we demonstrate our findings:

(i) Case Study on Fine-Tuning Performance:
Since FLAN-T5 performed on par or even better
than the zero-shot LLaMA-2 models in our previ-
ous experiment, in this section, we conduct a case
study to compare its performance with the LLaMA-
2-7B and LLaMA-2-13b models that are fine-tuned
for 3 epochs with learning rate 2e−5. We show our
experimental results in Table 3 and find that fine-
tuning led to LLaMA-2 models (both 13B and 7B)

In-Domain QMSUM-I

Model R-1 R-2 R-L R-1 R-2 R-L

FLAN-T5-Large 56.14 29.42 41.11 34.03 11.31 20.92
LLaMA-2-7B 57.09 30.42 41.68 42.77 13.93 22.16
LLaMA-2-13B 58.92 32.70 44.04 43.86 14.39 22.58

Table 3: Results based on Fine-Tuning Smaller and
Larger LLMs.

outperforming FLAN-T5-Large in both datasets,
with the improvement in QMSUM-I is by a large
margin. The larger difference in performance in
QMSUM can be attributed to the longer transcripts
in QMSUM-I where the longer sequence length
(context length of 4k tokens) in LLaMA-2 models
could be more suitable than the context length of
2048 tokens in FLAN-T5-Large. Nonetheless, the
improvements for fine-tuned LLaMA-2 models in
our In-Domain dataset are quite narrow.

(ii) Case Study on Instruction Variations: Here,
we study the performance of some LLMs in
terms of the variations in instructions. For the
case study, we use the best-performing FLAN-T5-
Large and compare it with two zero-shot larger
LLMs, one API-based: GPT-3.5, and one open-
source: LLaMA-2-7B13. We find that on our In-
Domain dataset, FLAN-T5-Large performs bet-
ter in Medium summaries, whereas GPT-3.5 and
LLaMA-2-7B are better in Short and Long sum-
maries, respectively. In QMSUM-I, we find that all
LLMs perform the best in Medium summaries.

4.3.3 Human Evaluation Results
To provide more insights on LLM performance,
we conduct a human evaluation to rate the LLM-

13We select LLaMA-2-7B since it is the smallest one among
all zero-shot LLMs, making it more suitable for deployment.
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Figure 1: Average ROUGE scores based on the instruction types for Fine-Tuned (FT) and Zero-Shot (ZS) LLMs.

In-Domain QMSUM-I

Model F C FC F C FC

FLAN-T5-Large-FT 4.7 4.6 4.4 3.1 2.8 3.4
GPT-3.5-ZS 5.0 3.9 4.5 4.1 3.8 3.9
LLaMA-2-7B-ZS 4.8 3.5 3.3 3.8 3.4 3.9

Table 4: Human Evaluation Results in terms of Fluency
(F), Coherence (C), and Factual Consistency (FC). Here,
‘FT’ denotes ‘Fine-Tuned’, ‘ZS’ denotes ‘Zero-Shot’.

generated summaries on a scale of 1 to 5 in terms of
Fluency, Coherence, and Factual Consistency. We
compare the best-performing smaller LLM: FLAN-
T5-Large with two zero-shot baselines: GPT-3.5
and LLaMA-2-7B. From the results in Table 4, we
find that similar to the performance in terms of
ROUGE scores, all LLMs generally achieve bet-
ter performance on our In-Domain dataset than
the QMSUM-I dataset. We also find that on aver-
age, the performance of FLAN-T5-Large is better
than GPT-3.5 and LLaMA-2-7B on our In-Domain
dataset. Much longer meetings in the QMSUM-I
dataset could be the reason behind FLAN-T5-Large
performing poorly on this dataset.

5 Using LLMs in Real-World Systems

To deploy LLMs in the real world, we study the
following aspects: cost/GPU and inference speed.

Cost/GPU: As of the time of writing this pa-
per, the pricing14 in OpenAI for the GPT series
models are as follows: the 4K context version of
GPT-3.5 that we use costs 0.0015$ per 1K input
tokens and 0.002$ per 1K output tokens. Mean-
while, for PaLM-2, the pricing15 in Google Cloud
is 0.00025$ per 1K characters and 0.0002$ per 1K
output characters. Approximately, 1 token is con-

14https://openai.com/pricing, last accessed:
01/25/2024.

15https://cloud.google.com/vertex-ai/pricing,
last accessed: 01/25/2024.

sidered as 4 characters. Thus, the cost for PaLM-2
is 0.0010$ per 1K input tokens and 0.0008$ per 1K
output tokens, making it slightly cheaper than GPT-
3.5. In terms of open-source LLMs (using 16-bit
floating-point precision), we find that LLaMA-2-
7B requires at least a machine with 1 NVIDIA L4
GPU (24GB VRAM), while the LLaMA-2-13B
model requires 2 L4 GPUs (48GB VRAM). On
the contrary, the FLAN-T5-Large-780M consumes
about 6GB of VRAM. Thus, it can be run on much
cheaper GPUs.

Inference Speed: We also measure the infer-
ence speed of different LLMs in a machine having
1 L4 GPU. For this purpose, we use 100 transcripts
consisting of real-world business conversations col-
lected from Laskar et al. (2023b). We find that
on average, FLAN-T5-Large only takes 4.2 sec-
onds per transcript, whereas LLaMA-2-7B takes
15 seconds per transcript (Laskar et al., 2023b).

6 Conclusion

In this paper, our extensive study involving various
LLMs led to several key insights on building an
efficient meeting summarization system for real-
world usage. While most larger LLMs usually out-
perform their smaller counterparts, we find that
FLAN-T5-Large is an exception in this regard. On
our In-Domain dataset, with only 780M parameters,
FLAN-T5-Large not only outperforms larger zero-
shot LLMs, but also it achieves comparable perfor-
mance with larger fine-tuned LLMs. This makes
FLAN-T5-Large more suitable for real-world us-
age, especially in scenarios where the meetings are
not too long. Since the performance of FLAN-T5-
Large is still quite below in comparison to other
larger LLMs on QMSUM-I dataset that has longer
meetings, future work should investigate the per-
formance of FLAN-T5 by applying various chap-
terization techniques (Laskar et al., 2023b).
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Limitations

One of the limitations of this work is that only
three types of instructions were utilized. Thus, in
the future, LLMs should be evaluated across more
instructions.

Another limitation of this work is that the GPT-
4 generated summaries were utilized as reference
summaries instead of human annotations. Nonethe-
less, one of the major focuses of this work is to
ensure the efficient development of a real-world
meeting summarization system. Since there is a
lack of in-domain annotated datasets, we investi-
gate the performance of different LLMs to mimic
the performance of GPT-4 and so GPT-4 generated
responses are utilized as the gold reference sum-
maries. However, future work should evaluate the
quality of GPT-4 generated summaries based on
human evaluation.

Another limitation that should be pointed out is
that the performance of LLMs that were evaluated
was based on truncating the transcript to the first
N tokens that can be covered by the maximum se-
quence length of the respective LLM. While this
is done since the motivation of this work was to
build an efficient summarization system that may
reduce the production cost in a real-world industrial
environment (note that our in-domain dataset also
has shorter meetings), future work should investi-
gate the performance of smaller LLMs by applying
various chapterization techniques.

Finally, studying the effects of the size of the
datasets used for fine-tuning smaller LLMs were
left out of the scope of this work and will need to
be considered in future research.

Ethics Statement

License: We maintained the licensing require-
ments accordingly while using different tools from
the providers (e.g., OpenAI, Google, Meta, Mistral,
HuggingFace).

Privacy: To protect user privacy, sensitive data
such as personally identifiable information (e.g.,
credit card number, phone number, person names)
were removed while constructing the In-Domain
datasets.

Intended Use: Note that our model is intended
to provide business organizations with a quick
overview of the meetings. While poor summariza-
tion quality may lead to a bad user experience, it
should not lead to any ethical concern since the

summary is required to be generated based on only
the given transcript. Meanwhile, the LLM that
would be used in production for summarization
will only do inference but will not be re-trained
on live meeting transcripts. Only the users of a
particular meeting will have access to the summary.
Thus, information from any other meetings will not
be revealed to the users.

Human Evaluation: Additional compensations
were not required for the human evaluation since
it was conducted by in-house full-time employees
having expertise in computational linguistics.
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