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Abstract
Detecting dialogue breakdown in real time is
critical for conversational AI systems, because
it enables taking corrective action to success-
fully complete a task. In spoken dialogue sys-
tems, this breakdown can be caused by a va-
riety of unexpected situations including high
levels of background noise, causing STT mis-
transcriptions, or unexpected user flows. In par-
ticular, industry settings like healthcare, require
high precision and high flexibility to navigate
differently based on the conversation history
and dialogue states. This makes it both more
challenging and more critical to accurately de-
tect dialogue breakdown. To accurately de-
tect breakdown, we found it requires process-
ing audio inputs along with downstream NLP
model inferences on transcribed text in real
time. In this paper, we introduce a Multimodal
Contextual Dialogue Breakdown (MultConDB)
model. This model significantly outperforms
other known best models by achieving an F1 of
69.27.

1 Introduction

Dialogue breakdown detection is important in in-
dustry settings, because it allows the system to
correct for mistakes in real time. While it is even
better to avoid dialogue breakdown to begin with,
in many industry settings there are components
of the pipeline that have noise in real world set-
tings. For example, the vendor or system making
a voice call could drop some audio packets. The
ASR vendor or model could miss some transcripts
or have very noisy transcripts, especially when the
user is in a setting with a lot of background noise
or using a phone line with a poor network. With
dialogue breakdown, we can detect that there was
likely some missing context and say something like
“Sorry I missed that, could you repeat yourself?” to
get the conversation back on track.

While dialogue breakdown is a challenging prob-
lem in general, there are some unique challenges

Figure 1: Example of dialogue breakdown in a phone
call conversation caused by loud noise from user audio.
See more examples in Section A

in industry settings. In professional settings, users
do not use as much explicit language or profanities.
Instead of detecting this strong language, we often
need to rely more on tone or cadence to detect user
frustration. Additionally, there is low tolerance for
incorrect responses. For example, in the healthcare
domain a failed conversation could affect the time
it takes for a patient to receive treatment. Finally,
some industry use cases, including ours, have very
complex and varied flows. For example, the aver-
age conversation in our domain consists of about
100 turns and context from early in the conver-
sation can affect the flow even at the end of the
conversation.

There are additionally unique challenges for de-
tecting dialogue breakdown in phone call settings.
Over the phone, there are strict latency require-
ments (e.g. delayed or repeatedly incorrect re-
sponses can cause frustration or even hang ups
from users interacting with the system). In contrast,
text-based chatbot systems often have visual feed-
back to indicate processing time and often target
users and use cases with more leniency around la-
tency and potential hallucinations. Thus, detecting
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dialogue breakdowns in a timely manner is cru-
cial for real-time conversational speech AI systems.
It is an extremely challenging task because there
are multimodal factors in different components of
the system pipeline which can appear as diverse
downstream issues.

We found that prior state of the art models were
not able to accurately capture dialogue breakdown
in our industry setting. In this paper, we propose a
new model which uses audio and text signals to pre-
dict dialogue breakdown generalizable to various
industry use cases.

2 Related Work

The Dialogue Breakdown Detection Challenge
(DBDC) has been a pivotal platform for advancing
research in this area (Higashinaka et al., 2016; Hori
et al., 2019). Higashinaka et al. (2016) defines the
task description, datasets, and evaluation metrics
for DBDC and provides insights into the design and
methods used in these challenges. These challenges
involve detecting inappropriate system utterances
that lead to dialogue breakdowns in chat, utilizing
datasets composed of chat dialogues with anno-
tated breakdown instances. The methodologies
employed range from traditional machine learn-
ing techniques to advanced neural network models.
Hendriksen et al. (2021) explore different variants
of LSTM for dialogue breakdown detection. This
work highlights the exploration of different model
types and word embeddings, adding depth to the
understanding of how various machine learning
models and linguistic features can be utilized for
breakdown detection. Sugiyama (2021) demon-
strate a novel approach on dialogue breakdown de-
tection by integrating BERT’s powerful language
understanding capabilities with traditional dialogue
features like dialogue acts. This hybrid approach
aims to capture the nuances of conversational flow
and detect potential breakdowns more effectively.

Another significant contribution in this field is
the exploration of semi-supervised learning meth-
ods to improve dialogue breakdown detection, as
discussed in Ng et al. (2020). Their research
demonstrates the use of continued pre-training on
the Reddit dataset and a manifold-based data aug-
mentation method, showing a substantial improve-
ment in detecting dialogue breakdowns. The find-
ings across these papers consistently indicate that
the integration of advanced language models with
contextual and conversational features significantly

enhances the detection of dialogue breakdowns.
There were a few approaches using acoustic

signals or multimodality in previous related chal-
lenges (Min et al., 2019; Li et al., 2020; Tsubokura
et al., 2022). For more related work to our ap-
proach, Meena et al. (2015) used the output from
automatic speech recognition system (ASR) sys-
tems as features to detect dialogue breakdowns
from spoken dialogues but they used only surface
forms of STT texts or extracted text features from
them rather than latent vectors of acoustic signals
directly. Also, Abe et al. (2018) utilized acous-
tic features and found that they can classify non-
breakdown dialogues and awkward conversation
flows better than traditional text features but they
used manually designed feature vectors extracted
from emotion challenge dataset (Schuller et al.,
2009).

In this paper, we explore novel multimodal ar-
chitectures and the most recent state-of-the-art ap-
proaches for dialogue breakdown detection using
both text and audio signals of real-time conversa-
tions in industry settings. We propose a model
which uses deeper contextual signals across both
audio and text inputs than prior works. This system
is able to capture dialogue breakdowns in phone
conversations in industry settings.

3 Method

3.1 Data

We collected our data from calls driven by our con-
versational AI agents to verify insurance benefits
of patients for covering target medications. For our
dialogue breakdown detection model training and
testing, we used 1,689 phone call conversations
between our AI agent1 and users (e.g., insurance
company employees) in which human intervention
was required due to dialogue breakdowns (e.g., AI
agent misclassified intent due to mistranscribed
STT caused by the high level of noise during the
phone calls) from August 2023. More specifically
for our objective of benefit verification calls, hu-
man intervention is required when 1) AI agents
do not follow standard operating procedures as in
the task definition and diverge from correct paths
of conversations, 2) users get frustrated during the

1The AI agent is an independent model architecture sepa-
rate from our dialogue breakdown system; we used the output
of intermediate components of this architecture as input to our
dialogue breakdown detection models.
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Dataset Type Calls Turns AVG STDV
Train 1,181 124,384 105.32 28.34
Validation 338 35,985 106.46 28.33
Test 170 17,690 104.06 27.63
Generalizability 94 10,505 111.75 34.45

Table 1: Phone call dialogue breakdown dataset. ‘AVG’
column is the average number of turns for each call
in the corresponding dataset and ‘STDV’ column is
standard deviation of turns for each call.

interaction2 or 3) AI agents make critical mistakes
which may cause call failures immediately or in
the later phase of the calls. We used 70% for train-
ing, 20% for validation and 10% for testing for
our model experiments. Then, we additionally col-
lected 94 calls from September 2023 to test the
generalizability of our best model (Table 1). Each
phone call contains 104 to 112 turns on average be-
tween AI agents and users. The calls are randomly
sampled to minimize any potential sampling bias
towards specific gender, age or ethnicity of users.
Binary labels of ‘breakdown’ (turns for which hu-
man intervention was required) and ‘no breakdown’
(turns with coherent conversation flows) are used
for our dialogue breakdown detection tasks.

3.2 Models
We explored potential methods including the state-
of-the-art models for text only dialogue break-
down detection. For baseline, we replicated the
approaches which obtained the state-of-the-art per-
formances from the previous work: LSTM and
BERT (Sugiyama, 2021). We implemented 4 dia-
logue breakdown detection models that can lever-
age transcribed texts, and several available signals
such as speaker information, intent classification
of our AI model agent and raw audio signal.

Text LSTM. In this model we have extended the
work of Hendriksen et al. (2021) which utilizes
pre-trained GloVe embeddings to model utterance
representations and use different variants of LSTM
to detect dialogue breakdown (Pennington et al.,
2014). In our implementation, we have extracted
contextualized token embeddings using pre-trained
RoBERTa (Liu et al., 2019) model instead of non-
contextualized GloVe embeddings3. The choice
of embedding is inspired by the recent surge of
Transformer (Vaswani et al., 2017) based embed-
dings in the literature where they are proven to

2Reasons can include repeated noncritical mistakes or slow
responses of AI agents.

3See more details in Section C.1

yield better performance than non-contextualized
GloVe embeddings. While Hendriksen et al. (2021)
generates utterance embeddings by averaging all
the word embeddings in an utterance, we employ a
Bi-LSTM layer and attention to further process and
combine the RoBERTa based token embeddings
into the utterance embedding. We have employed
another layer of Bi-LSTM and attention to accu-
mulate contexts from the current and all previous
utterance embeddings. The contextualized utter-
ance embedding is then passed through a linear
classifier layer, that classifies each utterance into
either breakdown or non-breakdown class.

End-to-End LLM Classifier. In the previous
Text LSTM model, we used an LLM, RoBERTa as
a feature extractor for extracting the token embed-
dings in the input utterances, but we did not use the
RoBERTa model in end-to-end settings. To lever-
age the full capabilities of an LLM, in this LLM
model we finetune the RoBERTa-base model with a
classification head on top to classify the input utter-
ance into breakdown or non-breakdown classes. In
this implementation, we get rid of additional Bidi-
rectional LSTM (Bi-LSTM) and attention networks
for contextualization as we incorporate contextual
information as the input to the model. Similar to
the previous model, each utterance is represented
as a concatenation of the speaker tag, utterance
text and intent4. The linear layer and the layers of
RoBERTa-base model are fine-tuned end-to-end.
We have experimented with different configura-
tions of the linear layers and based on the empirical
results, we use 2 linear layers with 784 and 2 neu-
rons each and the latter works as a classification
layer.

Multimodal Transformer (MulT A+T). Tsai
et al. (2019) introduced the Multimodal Trans-
former model for emotion recognition, which lever-
ages the transformer architecture and cross-modal
attention mechanisms. This model serves as a pop-
ular baseline for emotion recognition tasks. In our
research, we have adapted this model to suit the
specific task of dialogue breakdown detection. The
original implementation of the Multimodal Trans-
former incorporated three modalities (audio, video,
and text) but we focus on using audio and ASR-
generated text5 and used positional encodings to
enhance the model’s understanding of positional

4See more details in Section C.2
5See more details in Section C.3
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Figure 2: MultConDB model architecture.

information.
The core component of our model is the cross-

modal transformer which facilitates the integration
of information from both audio and text. In the
first transformer block, acoustic inputs are used
as queries, while textual inputs serve as both keys
and values. In the second block, these roles are
reversed, with textual inputs as queries and acous-
tic inputs as keys and values. This approach en-
ables effective crossmodal information exchange
through attention mechanisms. Within the cross-
modal transformer blocks, we employ a stack of
12 crossmodal attention layers (4 attention heads
per layer). Then, the outputs are passed through
traditional self-attention-based transformers (6 at-
tention layers and 4 attention heads per layer). Fol-
lowing this, we apply pooling operations to the
outputs from both transformer blocks and concate-
nate them. This concatenated representation is then
passed through a series of linear layers for classi-
fication. Our architecture includes two projection
layers and one classification layer.

MultConDB. We introduce a model named
Multimodal Contextual Dialogue Breakdown de-
tection, or MultConDB, which is inspired by and
built upon the model proposed by Miah et al.
(2023) in their work on hierarchical online dia-
logue act classification. Our model consists of
two unimodal encoder branches and one multi-
modal encoder branch. The unimodal encoder

branches individually handle textual and acoustic
features, producing two distinct unimodal encod-
ings: one for acoustic data and one for textual data.
We used Wav2Vec2 (Baevski et al., 2020) as our
acoustic feature extractor. We standardize every
user or AI agent utterance by converting it into
15.0 second chunks through padding or trimming
and subsequently extract frame-level features using
Wav2Vec2, with each frame having a duration of 25
ms and a stride of 20 ms. For textual data, Token-
level features are extracted in a similar manner,
utilizing RoBERTa as described in ‘Text LSTM’.

These unimodal encoder branches share an iden-
tical architecture. Initially, frame-level or token-
level features undergo processing via temporal con-
volutional layers, each equipped with 256 kernels
(size = 5). This temporal convolution operation
contextualizes the frames. Following temporal con-
volution, we apply a max-pooling operation to gen-
erate a single embedding vector for each utterance.
We pass these utterance embeddings through an
LSTM and an attention network to incorporate con-
textual information from a set of previous utter-
ances. This process yields both acoustic and textual
utterance embeddings.

In the multimodal branch, we employ two Bi-
LSTMs along with an attention network to sepa-
rately process token embeddings and frame embed-
dings. This approach results in a pair of utterance
embeddings derived from textual and acoustic fea-
tures. These embeddings are concatenated to cre-
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Model Inputs Prec Rec F1
Text LSTM S+U+I 39.78 65.30 49.44
End-to-End LLM S+U+I 64.03 52.35 57.61
MulT A+T S+U+I+A 63.51 55.29 59.12
MultConDB S+U+I+A 65.96 72.94 69.27

Table 2: Model performance for dialogue breakdown
detection. Columns are defined as ‘Inputs’: types of
inputs, ‘Prec’: precision, ‘Rec’: recall and ‘F1’:dialogue
breakdown prediction F1 score. Each row of ‘Input’
column values are defined as following: ‘S’: speaker tag
(AI agent or User), ‘U’: utterance, ‘I’: intent prediction
of AI agent model, ‘A’: audio recording of utterances.

ate a multimodal embedding at the utterance level.
To further enrich contextual understanding, we in-
troduce another layer of LSTM and an attention
network, taking into account context from both the
current and past utterances. We empirically deter-
mine the optimal attention window size to be 5.
Subsequently, we concatenate the two unimodal
and one multimodal contextualized utterance em-
beddings to form a fusion embedding. This fusion
embedding undergoes further processing through
linear layers, consisting of 256 neurons and 2 neu-
rons. Finally, the last linear layer classifies whether
each input utterance is a dialogue breakdown.

4 Results and Analysis

We conducted dialogue breakdown classification
tasks using the previous state-of-the-art models and
MultConDB and analyzed MultConDB to investi-
gate its inference process and capability with quali-
tative visualization analysis.

4.1 Task Evaluation

Dialogue Breakdown Performance Analysis: We
evaluated the models in our dialogue breakdown
dataset collected from August 2023 (Table 1). We
conducted hyperparameter tuning of each model
architecture using the validation set (random 20%
of the August calls) and trained with our training
set (random 70% of August calls). Each model
took speaker tags, utterances, AI agent model in-
tents of the current turn and historical turns within
its context window as input and predicted whether
the current turn is dialogue breakdown. We re-
ported their performances on test set (random 10%
of August calls). We conducted fine-tuning and
hyperparameter tuning of each model on August
validation set.

For preliminary analysis, we used plain texts
without intents predicted by our conversational AI

model agent for each model architecture and in-
context learning (ICL) approaches (Brown et al.,
2020) with Gemini Pro and the best F1 was 40.31
(see more details in Section B). This result sug-
gested that it might be difficult to capture phone call
dialogue breakdowns within a few shots without
audio context such as noise or intonation or voice
tones of users. Thus, we first explored text based
models by fine-tuning and training with dialogue
breakdown turns as labels so they can leverage the
full training dataset (‘Text LSTM’ and ‘End-to-
End LLM’). Then, we trained multimodal models
with both acoustic and text signals (MulT A+T and
MultConDB).

In general, multimodal models obtained higher
F1 scores than text only models. This trend sug-
gests that multimodal settings leveraging both text
and audio signals are more effective for capturing
phone call dialogue breakdowns. Among Multi-
modal models, MultConDB obtained the best F1
score for classifying dialogue breakdowns 15% F1
score improvement over Multimodal Transformer
(p < 0.001). This may indicate that multimodal
contextual model architecture and training process
designed specifically for detecting dialogue break-
down are critical to obtain the performance level of
practical use.

False Positive Analysis: In addition to detecting
exact dialogue breakdown turns, it is also impor-
tant for models to make false positive dialogue
breakdown predictions as near as possible to the
actual breakdown down point if any. In industry
settings in which a large scale automated phone
calls concurrently happen, the dialogue breakdown
detection model should bring human in the loop
near the breakdown points otherwise human feed-
back at the false positive turns are not useful as well
as overall call failure rates may increase because
other phone calls with actual dialogue breakdown
may not get support from human intervention in
time.

In Figure 3, we measured the number of turns be-
tween the dialogue breakdown turns and the first di-
alogue breakdown predictions of the models. Mul-
timodal models tend to make dialogue breakdown
predictions in nearer turns to breakdowns than text
only models do. This difference might have been
caused by audio context which can provide noise
or speech timing of user and AI agent which might
cause dialogue breakdown in the near future. Al-
though End-to-End LLM had the smallest number
of false positives more than 5 turns away from
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Figure 3: Number of turns between dialogue breakdown
ground truth and first model predictions.

the breakdown points, it has the largest number of
false negatives (‘No prediction’ in Figure 3) and
this trend can increase overall dialogue breakdown
detection failure rates. MultConDB obtained the
highest of true positive predictions and the second
lowest number of false positives more than 5 turns
away and false negatives following the extreme
high precision model (End-to-End LLM) and high
recall model (Text LSTM) respectively.

4.2 MultConDB Qualitative Analysis
Model Output Analysis: We analyzed the effi-
cacy of our dialogue breakdown detection model in
terms of whether our multimodal contextual model
architecture is effective for capturing phone call
dialogue breakdowns.

In Figure 4, model inputs in Before figure show
that breakdown and non-breakdown turns are not
linearly separable and difficult to be classified with-
out contextualization; they are spread around with-
out any specific patterns. In contrast, our model
outputs in After suggest that our model architecture
was quite effective for all types of dialogue break-
down turns; breakdown turns are clustered in the
most right side of the figure. Dialogue breakdown
turns are difficult to be captured because the same
utterance text can be a dialogue breakdown turn
or natural conversation flow turn based on the con-
text and acoustic signals. Also, the same sentence
can be a question, statement, or continuing speech
with a short pause before the following statement
based on its intonation and context so the response
of our AI agent is likely to cause dialogue break-
down and provide negative experience to users if
it interrupts users’ speech or it goes silent when
it misunderstood a question as a statement. This

Figure 4: Breakdown and non-breakdown turns of users
and our conversational AI model captured by our model
output layer. Before figure shows 2D t-SNE of our
model input embedding (concatenation of speaker tag,
utterance, AI agent intent and audio) and After figure
shows the last output layer of our model right before
prediction head softmax layer.

analysis suggests that MultConDB can classify dia-
logue breakdown utterances leveraging these types
of subtle nuances and contexts.

Underlying Causes of Breakdowns: For ad-
ditional analysis to validate whether MultConDB
is effective for inherently categorizing types of di-
alogue breakdowns further, we conducted a visu-
alization analysis for MultConDB output layers
for its capability of categorizing the causes of dia-
logue breakdown. Among dialogue breakdown ut-
terances in our testset phone calls, we identified the
most distinguishable and clear causes of dialogue
breakdowns as following: AI agent went silent (34
turns)6, AI agent interrupted users (23 turns)7, and
AI agent skipped required actions or follow up ac-
tions (31 turns)8. Although we have not trained
MultConDB with explicit labels of types of dia-
logue breakdown, it inherently captured which type
of underlying causes led to dialogue breakdown.
In Figure 5, the turns after which AI agent went
silent were clustered on the top left and the turns
in which AI agent interrupted the speech of users
were clustered on the bottom left. Finally, the turns
where AI agent skipped required actions or follow

6For example, AI agent may wait for responses when it mis-
classifies the end of speech from users as continuing speech
or upstream STT finalization was delayed (Figure 8).

7For example, AI agent may misclassify continuing speech
of users as the end of speech and ask a next question while the
users are providing their answers (Figure 7).

8For example, loud noises can cause a high rate of STT
mistranscriptions which cause intent misclassfication of AI
agent (Figure 1).
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Figure 5: 2D t-SNE of MultConDB output layers col-
ored by types of dialogue breakdown.

up actions were clustered on the right side. This
suggests that MultConDB can capture abnormal
conversation flows based on acoustic and text con-
texts such as the voices of AI agents and users are
combined in one turn9 or AI agent not following
up after the question intonation of users’ speech
breaking the alternating turns of each voice.

4.3 Dialogue Breakdown Detection Model
Generalizability Testing

In real-world industry settings, dialogue flow and
utterance distributions in phone calls keep changing
everyday because outbound call target users have
different call volumes everyday and they may ask
different types of questions based on their policy
changes. Also, the conversational AI agent mod-
els are maintained and updated with new releases.
Thus, it is critical for the dialogue breakdown mod-
els to generalize effectively to various types of dia-
logue flows and interactions which have not been
observed during its training process.

To that end, we tested our dialogue detection
model on unseen data. We used 94 calls from
September 2023 (Table 1) which include calls
driven by updated AI agent models with new re-
leases to validate how well MultConDB can gen-
eralize to unseen calls. MultConDB obtained F1
score 71.22 with precision 65.77 and recall 77.66
maintaining a high performance. In Figure 6, it had
an almost similar pattern to its prediction pattern
from its August 2023 call data although the model
is used for classifying dialogue breakdown calls in
a different month. Even though it had a relatively
high number of false positive predictions more than
5 turns away from the actual dialogue breakdown
differently from the call data August, it still had

9Potential acoustic signals of AI agents interrupting users.

Figure 6: Number of turns between dialogue breakdown
ground truth and first model predictions in September
2023 calls.

the largest number of true positive predictions (0
in the figure) followed by no prediction as the sec-
ond highest number of prediction category. These
results suggest that MultConDB was not biased to-
wards the types of dialogue breakdowns caused by
the previous release version of AI agent model and
it can generalize well to other types of dialogue
breakdowns including the in correct reponses or ab-
normal conversation flows caused by the updated
version of AI agent model or potentially other types
of context introduced in a different month.

5 Conclusion

As the first work of multimodal dialogue break-
down detection in healthcare industry settings, we
explored various approaches leveraging both au-
dio and text and developed a high-performance
multimodal model (F1 = 69.27) which generalized
well to various types of context of conversations
driven by conversational AI models across multiple
version releases in industry settings. Additionally,
we conducted thorough qualitative model analysis
which provided insights with its output patterns
which can cluster dialogue breakdown samples and
their categories in separate groups. We hope the
strong results of our dialogue detection approach
here leads to more reliable conversational AI model
development in the future research.

Limitations

Due to PHI concern, we cannot make our dataset
publicly available and we explored model architec-
tures which can be locally hosted instead of API
calls.
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A Phone Call Dialogue Breakdown
Examples

Differently from dialogue breakdown examples
from interactions between users and text only chat-
bot AI agents, conversation flows of dialogue break-
down from our phone call data contain various
types of examples with a higher complexity caused
by additional factors such as audio-related issues,
real-time conversation latency expectations and
health insurance benefit verification standard op-
eration procedures. For example, users can take
various lengths of pause between their utterances
while they provide long sequences of information
(e.g., phone numbers, patient ID, processor con-
trol number or bank identification number) so AI
agents may confuse short pauses of users in the
middle of the full sequence with an end of speech
and start asking next questions (Figure 7). The
variance of speech pace and lengths of pauses from
users can confuse AI agents and aggravate the sit-
uation even further when the user speech contains
multiple confusing utterances in a row due to poten-
tially various underlying factors such as incorrect

Figure 7: AI Agent misunderstood a partial sequence
‘abc’ followed by a relatively long pause from the user
as a full reference number and interrupted the user by
asking its next question in the middle of the user speech.

STT finalization which may cause intent misclas-
sification in the downstream pipeline of AI agents
(Figure 8). More complex examples include more
subtle nuanced situations in which AI agents ap-
parently drove conversations correctly but missed
required actions which may lead to call failure in
the later phase of the call (Figure 9).

B Preliminary Analysis

We conducted preliminary analysis using the latest
state-of-the-art conversational AI models to val-
idate the task, dataset and level of difficulty for
dialogue breakdown model development.

B.1 Gemini Pro In-Context Learning

We used in-context learning (ICL) approaches
with Gemini Pro as this model did not support
fine-tuning and selected Gemini over other LLM
vendors due to the status of security review at the
time to remain HIPAA compliant. We provided
randomly selected N calls from training set with
the prompt in the following format10:

10We designed this prompt and experiment settings based
on the characteristics of our phone call conversation dataset
and the previous ICL exploration work (Brown et al., 2020;
Min et al., 2022a; Logan IV et al., 2022)
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Figure 8: AI Agent went silent even when the user
provided an answer due to the combined factors of ASR
STT finalization, downstream intent misclassification.

Figure 9: AI Agent should have asked if there is an
active prior authorization which can cover target med-
ication when the user said ‘one in process’ instead of
proceeding with the pending prior authorization asking
its next question.

Given a conversation between an AI agent and a
user, find a dialogue breakdown turn which may
need a human intervention.
The conversation is in the following format "(turn
number)[AI Agent]: what the AI Agent said|(turn
number)[User]: what the user said". Return
which turn needs human intervention due to
dialogue breakdown. For example, from the
conversation input "(1)[User]: How are you to-
day|(2)[AI Agent]:I want to eat ice cream", you
can return 2 because the second turn was off-the-
topic.
Which turn do you think may cause a dialogue
breakdown so it may need some human interven-
tion from the following conversation?
Here are some real phone call conversation ex-
amples:
{ Example N calls randomly selected from train-
ing set in the given conversation format along
with their ground truth breakdown turns }
Now, provide your answer from this conversa-
tion:
{Testset call in the given conversation format}

The largest number of sample calls were used as
examples in context as long as Gemini Pro con-
text limit allows (32,000 tokens); prompts with 33
call or more examples caused ‘invalid argument’
errors based on the lengths of sampled calls. We
used temprature = 0, top_p=1, top_k=40, candi-
date_count=1 and max_output_tokens=800011 so
the results can be reproducible. We conducted ran-
dom sampling for ICL call examples with random
seed of default value (None) and from 0 to 9 and
reported mean, 25% and 74% percentile F1 perfor-
mances of 11 iterations of each number of example
calls. The highest mean F1 score of Gemini Pro
PCL was 40.31 when it had 31 random example
calls and this number was reported in our main
paper (Section 4.1).

The general trend of F1 score was increasing up
to this point with a few decreasing patterns in the
middle and this general trend aligns well with the
findings from related prior work (Zhao et al., 2021;
Liu et al., 2022; Min et al., 2022b). However, Gem-
ini does not have explicitly encoded information
for the healthcare industry phone calls from our
datasets so its performance tend to fluctuate based

11We used a large number of output tokens because Gem-
ini may provide long answers such as ‘There is no dialogue
breakdown in this conversation.’ or ‘The conversation does
not contain the answer to this question.’
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on which calls are sampled as context examples for
detecting dialogue breakdowns from the given test
calls.

C Model and System configurations

C.1 Text LSTM

Input Processing. Each utterance is represented
in the format - ‘speaker: speaker tag (AI agent or
user) | utterance: utterance text generated by ASR |
intent: intent of the utterance from AI Agent input
classification model’ and passed as the input to the
feature extractor model.

C.2 End-to-End LLM

Input Processing. Each input to the model is
represented in the format - ‘<s> current utterance
representation </s> four previous utterance repre-
sentations </s>.’ Then we join the current utter-
ance representation and the four previous context
utterance representations with separator token. The
input is passed to the RoBERTa-base model and we
extract the embedding of the sentence start token,
<s> as the utterance embedding and pass it to a set
of linear layers for classification.

C.3 MulT A+T

Input Processing. Specifically, we employ
RoBERTa as the textual feature extractor, follow-
ing a similar process as described in 3.2 to extract
token embeddings. For acoustic features, we utilize
Wav2Vec2 (Baevski et al., 2020) to extract infor-
mation from the raw waveform data. To ensure
consistency, we pad or trim every utterance signal
to a fixed duration of 15.0 seconds. After extract-
ing the modality-specific features, we apply two
1D convolutional layers, each consisting of 256
kernels with a size of 5, to make the input features
aware of their temporal neighborhood.

C.4 MultConDB

Hyperparameters. To ensure the reliability of
the results, each experiment is carried out using
three different seeds. The primary metric for evalu-
ating the results is the F1 score. The training pro-
cess continue for 40 epochs, with an early-stopping
mechanism implemented to stop training if there
is no improvement in the F1 score for five con-
secutive epochs. Table 3 displays a detailed list
of hyperparameters along with the values selected
based on experimentation.

Name Best Value
Batch size 32
Hidden dimensions of encoders 128
Kernel size of conv layers 5
No of channels of conv layers 256
Window size for context modeling 5

Table 3: Choice of hyperparameters

Design Choices. In our implementation, we use
Wav2vec2 as the acoustic feature extractor instead
of Whisper which is used as a feature extractor in
Miah et al. (2023). However, Whisper (Radford
et al., 2023) requires audio chunks to be adjusted
to a fixed length of 30 seconds, which significantly
exceeds the typical duration of utterances in our
dataset. Wav2Vec2 offers flexibility in terms of
audio chunk length, allowing us to use 15 sec-
ond chunks. This not only makes our model more
memory-efficient but also speeds up the inference
process to meet the demands of our online task. To
improve the model’s online performance, we opt to
restrict the context size to 5. Through experimenta-
tion with various context lengths during inference,
we observe that while a larger context typically
yields better performance, it also increases the in-
ference time. In our design, we use a context length
of 5, which strikes a balance between achieving
satisfactory performance and maintaining fast in-
ference speed. The inference time is 0.06s for each
utterance.
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Figure 10: Gemini Pro in-context learning dialogue breakdown prediction performance changes among the number
of example calls provided in context.
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