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Abstract

Extracting structured information from unstruc-
tured text is critical for many downstream NLP
applications and is traditionally achieved by
closed information extraction (cIE). However,
existing approaches for cIE suffer from two
limitations: (i) they are often pipelines which
makes them prone to error propagation, and/or
(ii) they are restricted to sentence level which
prevents them from capturing long-range de-
pendencies and results in expensive inference
time. We address these limitations by propos-
ing REXEL, a highly efficient and accurate
model for the joint task of document level
cIE (DocIE). REXEL performs mention de-
tection, entity typing, entity disambiguation,
coreference resolution and document-level re-
lation classification in a single forward pass to
yield facts fully linked to a reference knowl-
edge graph. It is on average 11 times faster
than competitive existing approaches in a sim-
ilar setting and performs competitively both
when optimised for any of the individual sub-
task and a variety of combinations of different
joint tasks, surpassing the baselines by an av-
erage of more than 6 F1 points. The combi-
nation of speed and accuracy makes REXEL
an accurate cost-efficient system for extracting
structured information at web-scale. We also
release an extension of the DocRED dataset to
enable benchmarking of future work on DocIE,
which will be available at https://github.
com/amazon-science/e2e-docie.

1 Introduction
Extracting structured information from unstruc-
tured text is a critical step for many downstream
NLP tasks like knowledge graph construction
(Muhammad et al., 2020), question answering
(Yao and Van Durme, 2014), knowledge discov-
ery (Trisedya et al., 2019), and text summarization

*Work completed whilst at Amazon Alexa AI

(Genest and Lapalme, 2012). In cIE, this is defined
as extracting an exhaustive set of (subject, relation,
object) triples, or facts, from unstructured text that
are fully linked, i.e., consistent with a predefined set
of entities and relations from a knowledge graph
(KG) schema. cIE can be further decomposed into
the subtasks: mention detection (MD), entity typ-
ing (ET), entity disambiguation (ED), and relation
classification (RC).

Traditionally, cIE is done by combining these
subtasks sequentially (Nasar et al., 2021), which
involves the use of separate and often different
models for each task to yield facts that can be in-
gested into a KG. However, such pipeline architec-
tures are prone to error accumulation from each
component leading to significant deterioration of
the overall performance (Miwa and Sasaki, 2014;
Trisedya et al., 2019; Mesquita et al., 2019). Addi-
tionally, pipeline architectures assume a one-way
dependency between the subtasks, disregarding the
dependencies among components that could effec-
tively boost performance. For instance, while ED
typically informs RC, recent works have demon-
strated that RC information can also be effectively
utilised for the ED task (Ayoola et al., 2022a),
and help preventing issues such as popular entities
overshadowing less common entities (Provatorova
et al., 2021). Consequently, various joint/end-
to-end (E2E) systems have been proposed to ad-
dress this issue by jointly performing NER and RC
(Miwa and Sasaki, 2014; Pawar et al., 2017). This
joint task is often referred to as relation extraction
(RE). However, these approaches do not address
ED and thus do not yield facts fully linked to a KG.

Another drawback of existing approaches for
cIE is that they mostly operate at sentence level,
i.e., perform RC between two entities from a sin-
gle sentence at a time (Cai et al., 2016; Han et al.,
2018; Feng et al., 2018). Thus, they capture limited
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Figure 1: REXEL model architecture illustrating the interaction between different components. The model takes the
raw text as input and yields fully linked facts expressed across a document.

sentence-level context and miss the facts that are
expressed between entities across sentences. This
severely limits the amount of information that can
be extracted from the web. According to (Yao et al.,
2019), 40.7% of the facts in a document can only be
determined at the document level. Also, sentence-
level approaches require a forward pass for each
sentence, often leading to higher inference times,
which makes them inefficient for web-scale appli-
cations. In contrast, document-level RC is compu-
tationally more efficient as it extracts triples over
an entire document in a single forward pass. To
address these issues, several models have been pro-
posed for document-level RC (Zeng et al., 2020;
Wang et al., 2020; Xu et al., 2021; Zhang et al.,
2021) but they do not perform the remaining sub-
tasks needed for DocIE.

To address the above problems we introduce
REXEL, a computationally efficient E2E model
for DocIE. REXEL takes unstructured text
and extracts facts which are fully linked to
a reference KG in a single forward pass per
document. It has a modular architecture in which
the various subtasks for DocIE inform each
other by leveraging intermediate embedding
representations. Thus, the proposed framework
facilitates deployment not only for DocIE but
also for various combinations of its 5 subtasks
(e.g., use MD and ET only for NER). The
combination of modularity, fast inference speed
and high accuracy makes REXEL suitable for
performing DocIE or its sub-tasks at industry scale.

To summarize, our contributions are as follows:

1. We introduce REXEL, a unified E2E model
for DocIE, i.e., extracting facts at document
level fully linked to a reference KG in a single
forward pass per document.

2. We demonstrate that though REXEL is op-
timised for the E2E task of DocIE, it main-
tains a competitive edge with related work in
E2E RE setting and all its individual subtasks.
Specifically, REXEL improves upon the base-
lines for the E2E RE task by an average of >6
F1 points across datasets. When comparing
the performance of individual subtasks, we ob-
serve that REXEL outperforms the baselines
by an average of 6 F1 points.

3. We also demonstrate that when compared to
other E2E RE models, in the same setting
REXEL is on average 11 times faster.

4. Finally, we release an extension of the Do-
cRED (Yao et al., 2019) dataset released
by (Eberts and Ulges, 2021) augmented with
silver standard labels for entity linking to facil-
itate benchmarking of future work on DocIE.
We name this extension DocRED-IE.

2 Related work

2.1 Closed Information Extraction (cIE)
Several E2E systems have been proposed for cIE
(Liu et al., 2018; Trisedya et al., 2019; Sui et al.,
2021; Josifoski et al., 2022). However, all these
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methods are sentence-level architectures and there-
fore they inherently lose triples expressed across
sentences. They are also prohibitively expensive
for deployment at web-scale since the inference
compute increases linearly with the number of sen-
tences requiring a forward pass for each sentence.

In comparison, DocIE is a significantly more
challenging task as it involves capturing long-range
dependencies effectively to extract relations be-
tween entities which are further apart from each
other in the text. Scaling cIE to document level
from sentence level also requires an additional sub-
task of coreference resolution (Coref), i.e., group
all the different mentions in the document referring
to the same entity.

2.2 Document-level Relation Extraction
Various E2E models have been proposed that com-
bine the task of NER and document-level RC in
a joint setting (Eberts and Ulges, 2021; Zaporo-
jets et al., 2021). Other works such as REBEL
(Huguet Cabot and Navigli, 2021) and KBIE (Ver-
linden et al., 2021) have proposed using additional
data like the Wikipedia text, hyperlinks and Wiki-
data KG to further improve RE performance. How-
ever, these approaches do not perform ED and
hence do not yield facts fully linked to a reference
KG. Thus, ingesting the output of such models in
a KG necessitates a separate ED model to link the
extracted entities. This again results in a pipeline
architecture between RE and ED models.

To the best of our knowledge, REXEL is the first
E2E model to extract facts which are fully linked to
a reference KG, at document level and address the
task of DocIE. Also, while relation classification
(RC) is also usually referred to as relation extrac-
tion (RE), the E2E literature has adopted different
conventions. For sake of consistency with prior
works (Eberts and Ulges, 2021; Miwa and Bansal,
2016), we use RC to refer to the extraction of re-
lations between entity pairs and RE to refer to the
E2E task including MD, ET, RC, and Coref.

3 REXEL
We introduce REXEL (Relation Extraction and
Entity Linking), a novel end-to-end model for Do-
cIE. REXEL extracts triples fully linked to a KG
by jointly performing MD, ET, document level RC,
Coref and ED in a single forward pass. It com-
bines the 5 subtasks in a unified architecture via
intermediate embedding representations. This fa-
cilitates each task to inherently benefit from each

other, significantly boosting task accuracy, extract-
ing facts expressed across sentences, and maintain-
ing computational efficiency for web-scale deploy-
ment. Figure 1 illustrates the architecture and each
module is detailed in following sections.

3.1 Task Formulation
Given a KG with a set of entities
E = {e1, e2, . . . , e|E|}, entity types
T = {t1, t2, . . . , t|T |}, and relations R =
{r1, r2, . . . , r|R|}, let X = {x1, x2, . . . , x|X|} be
the sequence of tokens in a document(d). The
goal of DocIE is to extract linked facts, i.e.,
G : X → G with G ⊆ E × R × E being a set
of triples. This is done by (i) MD: extracting
mention spans resulting in a list of subsets of X ,
(ii) Coref: clustering mentions into entities, (iii)
ET: extracting the entity types for each cluster, (iv)
RC: extracting relations by mapping entity pairs
{e1, e2} to relations r ∈ R and (v) ED: assigning
each cluster of mentions to a corresponding KG
entity e ∈ E.

3.2 Mention Detection (MD)
We encode the tokens xi in the input text docu-
ment using RoBERTa (Liu et al., 2019) and use
the contextualised token embeddings hi from the
final layer of the encoder for the token xi. The
tokens are encoded using the BIO tagging format
(Ramshaw and Marcus, 1995). We then train a lin-
ear layer to perform token classification from the
token embeddings hi using cross-entropy loss Lm

with respect to the gold token labels. We obtain
mention embeddings mi for each mention mi by
average pooling the contextualised token embed-
dings (hi) for all tokens in a mention from the final
transformer layer. The output of this module is a
list of mention spans present in the input text along
with their contextualised embeddings.

3.3 Entity Typing (ET)
Given a fixed set of types t ∈ T , the ET module is
trained by applying a linear layer f1 followed by a
sigmoid activation to the mention embedding mi to
predict an independent unnormalised score for each
type t for each mention mi. REXEL produces two
independent predictions for ET. The ETed layer
predicts fine-grained Wikidata types (1.3k) that are
later used to inform ED. We do not train on this ex-
plicitly, but via ED (see Section 3.6). The ETfinal

layer predicts the type(s) for each mention accord-
ing to the ones permissible within the target dataset
for the target task. We train this module from the
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gold entity types using binary cross-entropy loss
Lt corresponding to ETfinal predictions. There
are two separate predictions for ET as the target
dataset may not have as many or the same fine
grained types. Fine grained entity types provide
critical additional information that can inform ED
and thus boost overall performance. We aggregate
predictions at entity cluster level by selecting the
most frequent type among the cluster mentions as
the entity type. REXEL supports both single and
multiple type classification.

3.4 Relation Classification (RC)
REXEL extracts relations at mention-level using
a cross-attention transformer and uses the corefer-
ence resolution predictions to map the extracted
relations to the entity-level. We employ top-k prun-
ing from (Lee et al., 2018) to extract relations only
for the k mention pairs with highest probabilities
of being connected by a relation. This probability
is computed for each mention pair using a bilin-
ear layer. This first stage results in less accurate
but more efficient predictions and is referred to as
the coarse stage. However, in REXEL the coarse
stage is adopted for both: relation classification
and coreference resolution. The coarse stage is
then followed by the fine stage, which extracts rela-
tions between surviving mention pairs. The result-
ing coarse-to-fine RC module yields competitive
accuracy with high efficiency. Similar to the ET
module, we have multiple prediction layers for RC:
RCed, which predicts the Wikidata relations and
is used as an input to the ED module, RCcoref ,
which predicts the pairwise coreference scores for
the Coref module, and RCfinal, which is the fi-
nal prediction layer on the target relations of the
given dataset. This module is trained from the gold
mention spans, gold entity types, gold entity IDs
and gold clusters using binary cross-entropy loss
Lr with respect to the gold triples on the RCfinal

prediction layer only.

3.5 Coreference Resolution (Coref)
This module has two stages: the first predicts pair-
wise coreference scores for each mention pair that
remains after top-k pruning, and the second uses
pair predictions to form entity clusters by using av-
erage linkage clustering based on a given distance
threshold. Other approaches like greedy clustering,
complete linkage and clustering via Wikidata iden-
tifiers resulted in similar performance. More details
can be found in Appendix A. The first stage can be
expressed as a relation classification task with one

relation that determines whether two mentions are
coreferent to each other. Hence, we delegate this
stage to the RC cross-attention transformer. The
training is done with respect to the predicted coref-
erence scores only. We train this module from the
pairwise scores of the gold mention spans using bi-
nary cross-entropy loss Lc with respect to the gold
clusters. The output of this module is a group of en-
tity clusters in a document and their corresponding
mentions.

3.6 Entity Disambiguation (ED)
REXEL links each entity mention in the text to
a unique Wikidata ID using a training procedure
similar to (Ayoola et al., 2022a). The ED module
takes as input the mention embeddings mi, entity
type predictions for ED ted and RC predictions for
ED red. We also add a global entity prior P̂ (e|m)
(PEM score), which is the probability of an en-
tity given the mention text and is obtained from
hyperlink count statistics as done in (Raiman and
Raiman, 2018). We train this module from gold
mention spans and gold entity types ted by using
binary cross-entropy loss Ld with respect to the
gold entity IDs. Note that we do not train on ETed

and RCed explicitly, instead, the training for those
predictions is done using the signal from Ld only.
REXEL performs ED for each mention and we get
the entity IDs at the cluster level (i.e., when mul-
tiple mentions are clustered together by coref) by
taking the majority vote of the entity IDs for all the
mentions in the cluster.

3.7 Optimization and Inference
REXEL is optimised using a weighted sum of the
module-specific losses with fixed weights, which
are tunable hyperparameters as follows:

L = λ1Lm + λ2Lt + λ3Ld + λ4Lc + λ5Lr (1)

When training on a single subtask, the weights
for all the other task losses are set to zero. When
training for the RE task, λ3 is set to zero. For
individual subtask inference, we use gold labels
for the other tasks. For the RE inference, we use
the predicted mention spans, predicted entity types,
predicted coref clusters and predicted entities as in-
put. Training environment details are in Appendix
B.

4 Experiments
4.1 Datasets
We report performance on DWIE (Zaporojets et al.,
2021), the only dataset available supporting Do-
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cIE. We also augment the end-to-end DocRED
split (DocRED-E2E) (Eberts and Ulges, 2021),
which does not support annotations for ED, with
silver annotations for entity links, and release the
resulting dataset for future works. For this, we
use the SoTA EL model ReFinED (Ayoola et al.,
2022b) to link the mention spans against Wikidata
and report DocIE performance on the DocRed-E2E
split augmented with these entity links. We also
report performance on DocRED-E2E for the E2E
RE task, which allows comparison with existing
approaches. More details on the datasets can be
found in Appendix C.

4.2 Evaluation settings
4.2.1 Subtask
In the Subtask training setting, we train and eval-
uate each of the 5 DocIE subtasks independently
as mentioned in 3.7. This setting measures the
ceiling performance of each component. We re-
port these metrics to understand the impact of the
performance of each component as we move from
independent subtask training to E2E RE and E2E
DocIE training settings.

4.2.2 Relation Extraction (RE)
Despite the recent works on the joint entity and re-
lation extraction task for document-level RE, there
has been a lack of a cohesive task definition and
consistent baselines, leading to discrepancies in
dataset usage and evaluation procedures, as dis-
cussed in (Taillé et al., 2021). We follow the hard-
metric setting to evaluate the E2E RE task in line
with previous works (Eberts and Ulges, 2021; Za-
porojets et al., 2021). More precisely, a triple is
considered as correct if the relation type and the
entity clusters associated to the head and tail en-
tities are correct. An entity cluster is correct if
the clustered mentions and the entity type match
a ground truth entity cluster. Finally, a mention is
correct if it matches exactly a ground truth mention
span. This evaluation setting penalizes clustering
mistakes, i.e., if a given predicted entity cluster is
incorrect, all the gold triples associated with all the
gold entity clusters which have at least one mention
span belonging to that predicted entity cluster will
not be resolved correctly. Other metrics have been
proposed to alleviate the constraint on predicted
clusters, such as the soft metric in (Zaporojets et al.,
2021).

While DocRED is restricted to one type per en-
tity, DWIE allows multiple types per entity. Hence,

for DWIE we aggregate mention-level predictions
to form the entity-level types predictions by taking
the union of the predicted types of the mentions in
the cluster in agreement with previous work (Za-
porojets et al., 2021; Verlinden et al., 2021).

4.2.3 Document level closed Information
Extraction (DocIE)

As document-level RE does not link entities, we
extend the evaluation setting to address the joint
DocIE task. We introduce the DocIE hard metric
for the E2E task: A triple is correct if the relation
type and the entity clusters associated with the head
and tail entities are correct. An entity cluster is
correct if the clustered mentions, the entity type
and the entity identifier match a ground truth entity
cluster. Finally, a mention is correct if it matches
exactly a ground truth mention span.

4.2.4 Inference Speed
Since we are pioneering the task of DocIE, we
do not have a related work to compare REXEL’s
performance in this setting. Thus, we compare
REXEL’s inference speed with JEREX (Eberts and
Ulges, 2021) and DWIE (Zaporojets et al., 2021)
in the RE setting. We use the code released by
the authors to report the inference time. Both of
these works support inference only for their re-
spective datasets, i.e., DocRED-E2E and DWIE
respectively.

5 Results
We summarize all results from single runs in Table
1. Note that DWIE and KBIE (Verlinden et al.,
2021) report performance on NER instead of MD
and ET separately. Therefore, they are only com-
parable for Coref and RC in the subtask setting. In
E2E RE and E2E DocIE settings, we also report
REXEL’s performance on NER, which requires
both the mention span and the entity type to be
correct. We follow (Zaporojets et al., 2021) for
the scoring mechanism for evaluating NER perfor-
mance. We demonstrate that the performance of
REXEL on joint tasks (RE and DocIE) is on par
with task-specific learning, while being more effi-
cient due to shared parameters and training steps.

5.1 Subtask
In order to assess the performance of each compo-
nent of REXEL, we train and evaluate each sub-
task individually on DWIE and DocRED-E2E split.
When trained on individual subtasks only, REXEL
improves upon the SoTA model on DWIE by an
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Training Setup Dataset Model Subtasks E2E

MD ET NER ED Coref RC

Subtask DWIE DWIE N/A N/A 87.1 N/A 91.1 71.3 N/A
REXEL 96.37 93.53 N/A 93.22 96.05 74.89 N/A

DocRED JEREX 92.66 95.29 N/A N/A 90.46 59.76 N/A
REXEL 90.56 96.01 N/A 86.74 90.93 60.10 N/A

RE DWIE DWIE N/A N/A 88.8 N/A 91.6 N/A 50.4
KBIE N/A N/A 75 N/A 91.5 N/A 52.1
REXEL 95.88 93.00 90.59 N/A 95.12 68.3 65.8

DocRED JEREX 92.99 80.10 N/A N/A 82.79 N/A 40.38
KBIE N/A N/A 71.8 N/A 83.6 N/A 25.7
REXEL 90.68 95.78 87.49 N/A 89.02 57.38 39.06

DocIE DWIE REXEL 95.35 92.76 89.39 91.19 93.01 62.04 53.77
DocRED* REXEL 90.1 95.63 86.19 86.23 86.59 53.63 27.96

Table 1: Model evaluations under various training setups evaluated individually on each subtask and the end-to-end
(E2E) task. N/A denotes that the model does not support evaluation for that task. The best performing models are
marked in bold and the second best are underlined. For DocIE training, we report the first numbers for the two
datasets. * DocRED end to end split augmented with ReFinED (Ayoola et al., 2022b) entity links.

average of 4 F1 points while surpassing the SoTA
on DocRED-E2E on all subtasks except MD. Note
that JEREX and DWIE are not only the SoTA in
the RE setting but also in the subtask setting.

5.2 Relation Extraction (RE)
In the E2E RE setting, we compare with three other
related works: JEREX (Eberts and Ulges, 2021),
DWIE (Zaporojets et al., 2021) and KBIE (Verlin-
den et al., 2021). JEREX and DWIE report perfor-
mance on DocRED-E2E and the DWIE dataset for
RE, as well as performance on each subtask, thus
being directly comparable with our setting. On the
other hand, KBIE only reports performance when
trained for the E2E task. We do not compare with
REBEL (Huguet Cabot and Navigli, 2021) since
their E2E evaluation is less strict and thus is not a
fair comparison to JEREX and REXEL 1.

We find that REXEL outperforms the baselines
on DWIE for all the individual subtasks and im-
proves upon the SoTA on the E2E RE task by al-
most 14 F1 points. However, on DocRED-E2E
even though REXEL improves upon JEREX for
the subtasks by an average of >6 F1 points the im-
provement does not translate into a corresponding
boost in E2E RE task. This can be attributed to
the false negatives prevalent in the dataset (64.6%),
which penalize the model due to missing annota-
tions (Tan et al., 2022), significantly hampering the
E2E hard metric. Also, while subtask training set-
ting involves a single task-specific loss, the E2E RE
setting involves multiple losses (cf. equation (1)),
which dilutes the training effort over all the sub-

1https://github.com/lavis-nlp/jerex/issues/15

tasks. This explains the slight drop in the subtasks’
performance when comparing models trained in
the E2E RE setting against models trained in the
subtask setting. However, the E2E approach yields
better E2E performance than the pipeline approach
as it does not suffer from the propagation of errors.

5.3 Document level closed Information
Extraction (DocIE)

For both datasets, we observe that REXEL is able
to scale from the E2E RE to E2E DocIE by in-
corporating ED. For all the subtasks we observe
comparable performance between models trained
for RE and DocIE, indicating that adding ED to
the joint task setting does not deteriorate REXEL’s
performance on individual subtasks.

On the other hand, we observe a significant drop
in the E2E task because of the additional criterion
in the proposed hard metric for DocIE. In this set-
ting, a cluster is considered incorrect if its corre-
sponding entity identifier is incorrect, thus all the
triples extracted for such a cluster are considered
incorrect.

5.4 Inference Speed
We report the comparison of inference speed across
datasets in Table 2. REXEL is on average al-
most 11 times faster than the baselines (19x on
DocRED and 3x on DWIE) in the E2E RE setting,
i.e., without performing ED. This can be explained
by our coarse-to-fine approach, which reduces train-
ing/inference time while still preserving compet-
itive accuracy. Even in the E2E DocIE setting,
REXEL remains faster than the baselines while
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performing the additional task of ED.

DocRED DWIE

JEREX 344 N/A
DWIE N/A 82
REXEL (RE) 18 27
REXEL (DocIE) 90 74

Table 2: Inference speed comparison in seconds.
The best values are in bold and the second best are
underlined. N/A denotes that the code release does not
support inference on the target dataset.

6 Conclusion
In this work we introduce REXEL, a highly effi-
cient and accurate end-to-end model for document-
level closed information extraction. REXEL ex-
tracts facts from unstructured text which are fully
linked to a reference KG for an entire document
in a single forward pass. We further demonstrate
that REXEL is 11 times more computationally ef-
ficient than baselines in the same setting, while
improving upon the existing baselines on E2E RE
by an average of 6 F1 points across datasets and
across different task settings. Specifically, we im-
prove upon the state-of-the-art on DWIE for E2E
RE by almost 14 F1 points. We report the first
numbers for DocIE on DWIE and DocRED-E2E
augmented with entity links. We also release the
latter dataset to facilitate benchmarking of future
works on DocIE. Thus, the combination of accu-
racy, speed and scale makes REXEL suitable for
being deployed to extract fully linked facts from
web-scale unstructured data with state-of-the-art
accuracy and an order of magnitude lower cost than
existing approaches.

Limitations

One limitation of our work is that REXEL currently
supports fact extraction for entities only and will
miss the facts for relations where either the subject
or object is a string literal. We leave the extension
of REXEL to extract string literal-based facts for
future work. Another limitation is that, for a given
document, the context length of REXEL is limited
to the maximum number of tokens that can be en-
coded by the base transformer, which is RoBERTa
(Liu et al., 2019) in our case (see Section 3.2). This
implies that the model cannot capture triples that in-
volve very long-range dependencies that go beyond
the maximal context length. In practice, we find
that this problem is negligible in our case as only a
few triples fall into that category for both DocRED
and DWIE. However, this might have a stronger

impact for other applications. In addition, this limi-
tation is not specific to the REXEL architecture per
se but is inherent to the transformer used. Finally,
while the proposed DocIE hard metric provides a
common ground for future benchmarks on DocIE,
it may not fully align with some industrial applica-
tions where missing a few mentions within entity
clusters is not critical. In such contexts, the hard
metric would provide a lower bound on the per-
formance, and other metrics can be considered for
better alignment with specific application require-
ments.
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A Coref clustering

We detail the different approaches used for corefer-
ence clustering in the following sections.

A.1 Entity Linking
We use entity disambiguation for predicting an
identifier for each mention, and then cluster men-
tions which have the same identifier. This approach
relies on external knowledge. Also, this approach
necessitates performing entity disambiguation to
obtain the identifiers, which may not always be part
of the task of interest, e.g., RE does not require ED.

A.2 Greedy approach
Let’s consider a set of mentions to cluster
(mi)1≤i≤N . The greedy approach comprises two
stages: first, forming a similarity matrix S ∈
RN×N from the pairwise scores, and second, form-
ing the cluster (Ci)i. The model is trained on the
pairwise scores only. The clusters are then defined
as follows:

Ci := {mj : ∀j ∈ [|1, N |]
such that Si,j > t and

mj /∈ Ck for 1 ≤ k ≤ i− 1}
(2)

where t ∈ [0, 1] is the coreference threshold and
Si,i = 1 ∀i ∈ [|1, N |]. This approach iteratively
considers each mention mi and constructs a cluster
based on the coreference scores between mi and
all other valid mentions, where a valid mention
is one that has not yet been assigned to a cluster.
Notably, each mention span is allocated to only
one cluster. However, it’s crucial to acknowledge
that the hard-metric constraint implies that any
absent mention within a cluster renders the entire
cluster invalid.

Hence, we explore an alternative approach that
relaxes the constraint of a mention belonging to
only one cluster. This variant, termed the Greedy
approach (multiple-clusters), allows mentions to be
assigned to multiple clusters simultaneously. Each
cluster is then defined as follows:

Ci := {mj : ∀j ∈ [|1, N |] such that Si,j > t}
(3)

A.3 Agglomerative Clustering
The agglomerative clustering approach also relies
on forming a similarity matrix, see Figure 2. The

COREF methods P R F1
Greedy 0.89 0.9 0.9
Greedy (multiple-clusters) 0.88 0.9 0.89
EL-based 0.88 0.89 0.89
Complete linkage 0.89 0.9 0.9
Average linkage 0.9 0.9 0.9

Table 3: Coref evaluation using different approaches

model is trained to predict pairwise coreference
scores rather than directly predicting the clusters.
Put simply, the coreference resolution component
of our model is optimized for predicting a simi-
larity matrix. Then, the second stage exploits that
matrix to form the clusters. The distance threshold
was chosen experimentally and we did not perform
hyperparameter tuning to optimize it. The coref-
erence performance may be further improved by
including the threshold in the training.

B Training Details

REXEL uses Hugging Face implementation of
RoBERTa (Wolf et al., 2019) and the model is op-
timised using Adam (Kingma and Ba, 2015) with
a linear learning rate schedule. Our main hyperpa-
rameters are represented in Table 4. Due to the high
computational cost of training the model, we did
not conduct an extensive hyperparameter search.
Training across datasets took approximately 24
hours on average on a single machine with 1 V100
GPU. REXEL has approximately 284M parameters
in its architecture setup.

Hyperparameter Value

learning rate 5e-5
batch size 2
max sequence length 510
dropout 0.1
RC threshold 0.2
description embeddings dim. 300
# training epochs 150
# candidates 30
# wikidata entity types 1400
mention transformer init. roberta-base
# mention encoder layers 12
description transformer init. roberta-base
# description encoder layers 2
# RC encoder layers 4
RC coarse-to-fine k 2000
# description tokens 32
λ1, λ2, λ3, λ4, λ5 (0.1, 0.005, 0.1, 0.02, 0.775)

Table 4: Our model hyperparameters
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Figure 2: Architecture of the Coreference Resolution module

C Datasets

C.1 DocRED and DWIE

The DocRED dataset was constructed from
Wikipedia documents, whereas DWIE was con-
structed from news articles. DocRED and DWIE
both comprise document-level and sentence-level
facts, and they are both annotated at entity-level,
i.e., facts are reported between entity clusters made
of several mentions, which motivates the additional
coreference resolution step for extracting relations.
Also, they both require different types of reasoning
to extract triples living across multiple sentences
(e.g, pattern recognition, logical or common-sense
reasoning). We report some statistics on these
dataset in Table 5. Another similarity is that both
datasets have a class-imbalance problem, which
increases the complexity of the RC task. More
precisely, 10 relations account for about 60% of
the facts in DocRED, while the 10 most frequent
relations account for more than 75% of the facts for
DWIE. In addition, DocRED-E2E contains some
duplicate annotations, which we remove at evalua-
tion stage following the convention introduced by
(Eberts and Ulges, 2021). Likewise, DWIE con-
tains some spurious empty clusters (see Table 6),
which we remove with their associated triples fol-
lowing the setting adopted by (Xu and Choi, 2022).

C.2 DocRED-IE

To facilitate future works on DocIE, we release
DocRED-IE, an extension of the DocRED (Yao
et al., 2019) dataset further equipped with entity
links, making it the second dataset to support

DocRED DocRED-E2E DWIE

# Documents 5051 4008 802
# Entities/doc 19.5 19.4 28.3
# Facts/doc 13.2 12.5 27
# Entity types 6 6 311
# Relations 96 96 65

Table 5: Some statistics for DocRED, DocRED-E2E
and DWIE. # Entities/doc and # Facts/doc refer respec-
tively to the averaged number of entities and facts per
document.

# Mentions/Entity DocRED-E2E (%) DWIE (%)

0 0 5.3
1 81.7 62.9
2 11.1 14.4
3 3.6 6.1
> 4 3.6 11.3

Table 6: Proportion of mentions per entity cluster in
DocRED-E2E and DWIE.
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Train Dev Test

# Documents 3008 300 700
# Entities 58708 5805 13594
# Entities linked 45874 4025 10191
# Facts 37486 3678 8787
# Entity types 6 6 6
# Relations 96 96 96

Table 7: Some statistics for DocRED-IE.

DocIE evaluation, thereby facilitating future
research on document-level closed information
extraction. DocRED-IE allows for training and
evaluation in a multitask setting encompassing
mention detection, entity typing, coreference
resolution, document-level relation classification,
and entity linking, along with any combination
thereof in a joint setting, such as the end-to-end
RE task and DocIE.

DocRED-IE builds on the end-to-end DocRED
release introduced in (Eberts and Ulges, 2021)
(DocRED-E2E). We employ a state-of-the-art en-
tity linking model (Ayoola et al., 2022c) to popu-
late each mention in DocRED-E2E. Statistics of
the DocRED-IE dataset are shown in Table 7.

C.3 Dataset Licenses
The DWIE dataset (Zaporojets et al., 2021) and the
code has been released under GNU GPLv3 license
2. Both the DocRED-E2E 3 dataset (Eberts and
Ulges, 2021) and DocRED-IE are released under
MIT licence.

2https://github.com/klimzaporojets/DWIE/blob/master/LICENSE
3https://github.com/lavis-nlp/jerex/blob/main/LICENSE
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