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Abstract
Large language models (LLMs) have show
their remarkable ability in various natural lan-
guage tasks. However, there are concerns that
LLMs are possible to be used improperly or
even illegally. To prevent the malicious us-
age of LLMs, detecting LLM-generated text
becomes crucial in the deployment of LLM ap-
plications. Watermarking is an effective strat-
egy to detect the LLM-generated content by
encoding a pre-defined secret watermark to fa-
cilitate the detection process. However, the
majority of existing watermark methods lever-
age the simple hashes of precedent tokens to
partition vocabulary. Such watermarks can
be easily eliminated by paraphrase and, cor-
respondingly, the detection effectiveness will
be greatly compromised. Thus, to enhance
the robustness against paraphrase, we propose
a semantics-based watermark framework, Se-
maMark. It leverages the semantics as an
alternative to simple hashes of tokens since
the semantic meaning of the sentences will be
likely preserved under paraphrase and the wa-
termark can remain robust. Comprehensive
experiments are conducted to demonstrate the
effectiveness and robustness of SemaMark un-
der different paraphrases. Our code is available
at github.com/renjie3/SemaMark.

1 Introduction

Large language models (LLMs) have shown their
great ability in various natural language processing
(NLP) tasks like Question Answering (QA) (Lu
et al., 2022), reasoning tasks (Wei et al., 2022;
Creswell et al., 2022) and code development (Xu
et al., 2022). However, tremendous concerns have
been raised that LLMs are possible to be used im-
properly and illegally. For example, indistinguish-
able fake news are easy to be fabricated (Kreps
et al., 2022; Zellers et al., 2019) by language
models, which, when disseminated, could insti-
gate widespread panic. Similarly, in the com-
mercial sphere, convincingly generated reviews

can manipulate consumer perceptions, leading to
unethical business competition (Salminen et al.,
2022). Therefore, detecting LLM-generated text
has become crucial in the real-world applications
of LLMs (Wu et al., 2023; Sadasivan et al., 2023;
Xu et al., 2023).

Among diverse methods to detect LLM-
generated texts, the watermark strategies have
demonstrated outstanding precision (Liu et al.,
2023b; Tang et al., 2023; Ren et al., 2024). It is
proposed to encode a secret watermark into the gen-
erated texts, such that we can tell whether a text is
generated by detecting this watermark. One repre-
sentative strategy (Kirchenbauer et al., 2023a; Yoo
et al., 2023) is to encode the watermark based on
the “partition of vocabulary”. In detail, given a lan-
guage model, these methods devise a mapping from
precedent tokens to a particular partition of the vo-
cabulary by a partition function for the consequent
token. The partition function leverages the hashes
of the input as the seed of a random generator to
split the vocabulary to a green list and a red list.
During the text generation phase, the consequent
token has an increased probability to be sampled
from the green list. In this way, the watermark is
encoded through the matching between the prece-
dent tokens and the vocabulary partition for the
consequent token. The detection is also facilitated
by detecting this matching in generated contents.
However, recent works (Krishna et al., 2023; Kad-
dour et al., 2023) reveal that this watermark may
be easily eliminated by sentence paraphrasing.
Individuals seeking to improperly utilize LLMs
without being detected can paraphrase the gener-
ated contents, like altering the order and the choices
of the words, and only retain the general meaning
of the text to achieve their malicious goals like fak-
ing news. These paraphrases will change the seed
of the partition function, i.e. the token hashes, and
as we show in the Section 4.4, the partition func-
tion is sensitive to small changes. Consequently,
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the matching between the precedent tokens and the
green list will be disrupted, and the detection ef-
fectiveness of the watermark can be dramatically
compromised.

In this paper, we propose to leverage the seman-
tic meaning of precedent token sequences as the
seed for partition function, instead of simple hashes
of precedent tokens, since the core semantic mean-
ing is expected to be maintained after paraphrase.
To achieve this goal, one key obstacle is how to
capture the semantics when applying them for the
partition function to watermark the generated texts.
It is a common practice to quantify the semantics
via embeddings (Reimers and Gurevych, 2019; Gao
et al., 2021; Li et al., 2020; Giorgi et al., 2021). Em-
beddings indeed can represent consistent semantics
after paraphrase. Since the embeddings are high-
dimensional vectors in the continuous space, they
often present some minor changes after paraphrase.
Although the main semantics are preserved, these
minor changes can lead to a substantial difference
in the partition of vocabulary because the random
generator in the partition function is sensitive to
the change of the seed, as shown in Section 4.4.

To overcome the above challenge, i.e., to make
the quantified semantics invariant and make the wa-
termark robust under paraphrase, we propose a new
watermark method, SemaMark, which discretizes
the continuous embedding space. Intuitively, the
discretization can coarsen the representation of the
embeddings which could tolerate the potential mi-
nor changes caused by paraphrase. By proper dis-
cretization, the paraphrased semantics could stay
in the same discrete section with a high probability
and the discretized quantified semantics will likely
remain the same even after paraphrase. Therefore,
the partition results will not change. However, di-
rectly converting the high-dimensional embedding
space into discrete is intricate and challenging. For
example, discretizing each dimension will lead to a
large amount of discrete values which is exponen-
tial to the number of dimensions. Thus, the minor
changes by paraphrase can still cause the change
of discrete values because the number of discrete
values are too dense and each discrete value can
tolerate only small changes. Therefore, the mi-
nor changes of high-dimensional embeddings can
have a strong impact on the partition function. To
address this problem, SemaMark first uses a Multi-
Layer Perception (MLP) to condense the contin-
uous high-dimensional embeddings into normal-
ized vectors in 2D space. The vectors are located

on a unit circle named Normalized Embedding
Ring (NE-Ring). Then the condensed NE-Ring is
equally divided into various sections, transforming
the continuous space into distinct discrete values,
i.e., “semantic values”. Based on the discretiza-
tion, SemaMark further introduces two strategies
to advance the watermark’s concealment and to
improve the robustness under paraphrase. First,
SemaMark leverages the uniformity (Wang and
Isola, 2020) of Contrastive Learning(CL) (Chen
et al., 2020) to strength the MLP and mitigate the
problem that the semantics are unevenly concen-
trating on some discrete sections on NE-Ring. The
unevenly distribution will cause the final discrete
semantic values overly monotonous. It raises the
concern that the watermark might be cracked by
counting token frequency (Zhao et al., 2023). Sec-
ond, SemaMark utilizes an offset detection method
to further enhance the robustness at the boundary of
different discrete sections whose semantic values
are possibly vulnerable to paraphrase. Comprehen-
sive experiments are conducted to demonstrate the
effectiveness and robustness of SemaMark under
different paraphrases.

2 Related works

LLM-generated detection. As the development
of LLMs, various LLM-generated detection tools
have also been proposed. Learning-based meth-
ods train a classification model to detect the dif-
ference between human-written text and machine-
generated text like Guo et al. (2023); Wang et al.
(2023); Li et al. (2023). Other works do not rely on
the classification model, but try to use the property
of the LLM to test whether a given text is generated
by LLMs. For example, DetectGPT (Mitchell et al.,
2023) assumes that the generated text will have
high likelihood. GPT-who (Venkatraman et al.,
2023) uses UID-based features to model the unique
statistical signature of each LLM and human author
for accurate authorship attribution. These methods
do not interact the generation process of LLMs and
thus have to explore unknown features of LLMs
for detection. Instead, watermarks can change the
model with a small but pre-defined rule which ac-
celerates the detection process effectively.

Watermark. The distinction between watermark
and other methods is that watermark can proac-
tively change the generation to insert a concealed
watermark into the generated text. This gives
clear difference between watermerked and non-
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Figure 1: The watermarking process of SemaMark

watermarked texts. Watermark shifts the text using
a small but pre-defined rule to make the detection
much more effective. The partition of the vocabu-
lary for each token is a representative watermark
method (Kirchenbauer et al., 2023a; Yoo et al.,
2023; Kirchenbauer et al., 2023b). In each auto-
regressive step of generating one token, the method
uses the previous tokens’ hashes, to select a part
of the vocabulary as “green” at a ratio of γ. Subse-
quently, they elevate the likelihood of the tokens by
boosting the logits of the softmax by δ. Through
this approach, at each token position, the probabil-
ity of this matching between the seed and green
tokens tends to increase.

For a sentence with L tokens, it is viewed as a
sample set of size L. Each token is one sample
from the vocabulary. A non-watermarked sentence
is expected to have γL tokens showing this match,
while the watermarked sentence is expected to have
more. The watermark detection is approached as
a z-test with null hypothesis that the text is non-
watermarke. If the z-statistic is large, i.e. it is
significantly different from the null hypothesis, the
null hypothesis can be rejected and the text can be
predicted as watermarked:

z =
(G− γL)√
Lγ(1− γ)

, (1)

where G is the number of tokens showing the
matching between seed and the green list. Yoo et al.
(2023) further expand this watermark of green and
red list to more lists for multi-bit encoding.

(Liu et al., 2023a) propose a semantic invariant
method to watermark the generated text of LLM.
However, their method employs two additional
models, introducing redundant encoding processes
in the text encoder, which can be time-consuming.

3 Method

In this section, we introduce the detailed design
of SemaMark. We first present how to use the
semantic information as the seed for watermark
methods that are based on random partition of vo-
cabulary in Section 3.1. Then in Section 3.2 and
Section 3.3, we introduce the CL training scheme
and the smoothed detection method for further im-
proving the robustness, respectively.

3.1 The framework of SemaMark

As aforementioned, the existing watermark meth-
ods based on partition of vocabulary are susceptible
to paraphrase. Paraphrase can easily change the
previous tokens and disrupt the matching between
tokens and the partition of vocabulary, without sig-
nificantly affecting the semantic meaning. Thus,
SemaMark uses the invariant semantics for water-
marking by discretizing the embedding space to
accommodate the minor perturbation of semantics
and provide a stable mapping between semantics
and vocabulary partition for the consequent token.

However, discretization in a high-dimension
space is intricate and non-trivial. Therefore, we
first reduce the high-dimensional embedding space
onto the 2D NE-Ring and then discretize via NE-
Ring. The whole watermarking process is shown
in Figure 1. SemaMark first reduces the dimen-
sion of the embedding space to obtain the discrete
semantic values by two steps, i.e., weighted embed-
ding pooling and discretizing by NE-Ring, and then
uses the semantic value to partition the vocabulary.
The logits of green list is shifted to increase the
probability of matching between semantics and the
consequent token for watermarking the LLM, f . In
the following, we introduce more details about the
two steps to obtain a stable semantic value.
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S1: weighted embedding pooling. To enhance
the robustness, we aggregate the semantics of pre-
vious m tokens by the weighted mean pooling func-
tion P (·) before dimension reduction, instead of
using only one preceding token’s embedding. In
the ablation studies of Section 4.4, we show that
the method has the best performance when m is
neither too big nor too small. For the token se-
quence {ti:i+m−1} starting at position i, we use
their semantics to generate the token in the m
position, ti+m. We denote their embeddings as
{ei:i+m−1}. {ei:i+m−1} can be easily obtained
from the LLM, f , that we want to watermark. In-
tuitively, in {ti:i+m−1}, the embeddings of tokens
far from ti+m contain semantic information that is
more distant from ti+m than the closer ones. The
connection between distant tokens might be more
possible to change after paraphrase compared with
closer tokens. Thus, in the sequence {ti:i+m−1},
the embeddings of distant tokens might be less ro-
bust. To increase the robustness for the green list
of the current token position ti+m after paraphrase,
the pooling embeddings should rely more on the
closer tokens, therefore, we use a linear weight
function to assign lower weights to tokens far from
ti+m and higher weights to those in closer proxim-
ity:

P ({ei+1:i+m}) =
K∑

j=1

j + K
2

wsum
ei+j ,

where wsum = K2+K/2 is the sum of all weights.
We denote the weighted output P ({ei:i+m−1}) ∈
Rd as ePi,m for short. By pooling, more semantics
are used for a seed, which enhance the robustness
under paraphrase.

S2: discretizing by NE-Ring. After aggregating
the embeddings by weighted pooling, SemaMark
uses MLP gθ to transform ePi,m to a normalized
vector in 2D embedding space. The normalized
vectors locate on a unit circle in the 2D space,
which is named as Normalized Embedding Ring
(NE-Ring). The discretization function, D(·), dis-
cretizes NE-Ring by equally segmenting into differ-
ent sections. It takes the polar angle ϕ of gθ(ePi,m)
as input and outputs the discretized semantic val-
ues a ∈ [K], where [K] := {1, 2, ...,K}. D(·) is
defined as

D(ϕ) =

⌊
ϕ
K

2π

⌋

It first maps the input from [0, 2π) to [0,K), and
then discretizes all the values in [i, i+ 1) to i, for
∀i ∈ [K − 1]. Even though there could be sub-
tle changes in semantics by paraphrase, the para-
phrased ã will likely locate in the discrete section
[i, i + 1). Some tokens may still have a ̸= ã if
the normalized vector is close to the boundary of
[i, i+ 1). Therefore, in Section 3.3, we introduce
an offset detection to strengthen the tolerance for
this mismatch and correct some unstable cases.

With the two steps, we can get a stable discrete
semantic value as the seed for the partition function
to partition the vocabulary for the consequent token.
Following Kirchenbauer et al. (2023a), the vocab-
ulary is partitioned into green and red lists. We
increase the logits of the tokens in the green list by
δ and recalculate the probability distribution based
on the shifted logits. For each token to generate, we
increase the possibility of the green list based on
its previous m tokens’ semantics. Thus, all the gen-
erated tokens will be likely to have this matching
between the semantics and the consequent green
token. By detecting the matching, we can discrimi-
nate whether a text is watermarked or not and then
detect the LLM-generated contents effectively. Be-
sides, SemaMark proposes two strategies to reduce
the risk of being cracked by Contrastive Learning
and further increase the robustness by the offset
detection in the following sections.

3.2 Training gθ by Contrastive Learning
The MLP is expected to produce a uniform dis-
tribution of gθ(ePi,m) on NE-Ring. If different
semantics unevenly distributed on NE-Ring, the
resulting discrete semantic values will be overly
monotonous and the green list is more changeless.
Consequently, the green list might be revealed by
counting the token frequency, which compromises
the concealment of watermark and leads to the risk
of being cracked. Ideally, SemaMark should gener-
ate a wider variety of semantic values for different
sentences, while each semantic value is robust and
stable if its corresponding sentence is paraphrased.
To achieve this goal, we propose to use Contrastive
Learning to train MLP since Contrastive Learning
has the property of uniformity that the data will be
evenly distributed in the whole feature space (Wang
and Isola, 2020). The uniform distribution can help
the normalized vectors cover all the semantic val-
ues. As a result, NE-Ring can generate a wider
variety of semantic values to prevent the watermark
from being cracked.
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In Contrastive Learning, we first input the sen-
tences into the model f to get a batch of sequences
of m tokens and their pooling embeddings ePi,m ,
denoted as {ej}, where j ∈ [B] and B is the batch
size. To compose a contrastive loss, we construct
the positive and negative pairs by a soft augmenta-
tion:

ej+B = e+j = ej + ϵ,

where ϵ ∼ N (0, σ2) is a Gaussian noise. The
soft augmentation can simplify the construction
of positive samples. With this soft augmentation,
we can assign the samples sharing similar embed-
dings from the same sequence as positive pairs
and samples from different sequences as negative
pairs. This is consistent with our intuition that the
paraphrased semantic embeddings will not change
significantly and can remain robust. Then the con-
trastive loss is

Lj = − log
exp

(
sim

(
gθ(ej), gθ(e

+
j )

)
/τ

)
∑

k ̸=j,k∈[2B] exp (sim (gθ(ej), gθ(ek)) /τ)
,

where sim(·) is cosine similarity and τ is the tem-
perature. By Contrastive Learning, the output of
reduced semantic embeddings can be evenly dis-
tributed in all of the space on NE-Ring, and cover
all the discrete sections to improve the robustness
of SemaMark.

3.3 Q-offset detection

Figure 2: Q-offset detection vs. existing detection

Existing detection methods check the matching be-
tween partition seed and the consequent tokens in
a one-to-one manner as shown in Figure 2(a). The
detection method first recalculates the seed for each
token position and gets the partition of the green

list, and then checks whether the consequent token
is in the partitioned green list token by token. In
SemaMark, this strategy can be effective when the
text is not paraphrased. However, after paraphrase,
this detection could be suboptimal because the se-
mantic values of some sequences which are close
to the boundaries of the discrete section [i, i + 1)
might change as shown in Figure 2(b). This is be-
cause the window of m tokens will slide token by
token during the auto-regressive generation process,
and the semantic change will also accumulate when
the window is sliding. The semantic values closed
to the boundary usually happen when the change
accumulates to some extent. This change of bound-
ary semantic values will lead to some mismatch
and reduce the accuracy like t̃5 in Figure 2(b).

To mitigate the influence of this error, we pro-
pose Q-offset detection. As shown in Figure 2(c),
we offset the discrete seed by q tokens to detect the
matching between semantics and the consequent
tokens, where q ∈ {−Q,−(Q− 1), ..., 0, 1, ..., Q}
and the sign of q indicates the direction of the off-
set. We choose the maximal z-statistic in differ-
ent q as the Q-offset score. However, Q-offset
detection will also increase the Q-offset score of
non-watermark text, which indicates that the de-
tected green word fraction γ of non-watermark text
is higher. The γ in Eq. (1) is possibly inaccurate.
Thus during generation, we set γ to a fixed value,
while in detection process, we treat γ as a hyper-
parameter and use a validation set to determine its
value in practice. In Section 4.4, we discuss the
ablation studies of Q-offset and γ and show that
Q-offset can impressively improve the detection
performance with robustness.

4 Experiment

In this section, we conduct experiments to demon-
strate the robustness of SemaMark. In Section 4.2,
we demonstrate that its robustness is better than the
baseline methods. In Section 4.3, we show that our
watermark has almost no influence on the quality
of generated texts. In Section 4.4, we use ablation
studies to demonstrate the effectiveness of partition
function and Q-offset detection, and show the sen-
sitivity of the partition function. In Section 4.5 we
visualize the distribution of NE-Ring and provide
analysis on the feature distribution of Contractive
Learning.
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Paraphrase
ROC-AUC F1 with best threshold

LeftHash SelfHash EXP-Edit ours LeftHash SelfHash EXP-Edit ours

OPT-2.7B

No paraphrase 0.9913 0.9886 0.9799 0.9948 0.9921 0.9861 0.9708 0.9905
Translation 0.9091 0.8147 0.8749 0.9692 0.8456 0.7622 0.8157 0.9330
Dipper 0.9878 0.9728 0.9736 0.9911 0.9727 0.9400 0.9620 0.9701
GPT-3.5 0.9028 0.7908 0.9392 0.9406 0.8358 0.7378 0.8852 0.8902

OPT-6.7B

No paraphrase 0.9918 0.9930 0.9784 0.9949 0.9911 0.9863 0.9705 0.9858
Translation 0.8807 0.8098 0.8625 0.9308 0.8129 0.7468 0.8013 0.8882
Dipper 0.9904 0.9747 0.9728 0.9871 0.9786 0.9432 0.9620 0.9821
GPT-3.5 0.8990 0.7909 0.8996 0.9377 0.8300 0.7367 0.8354 0.8766

Table 1: Watermark detection results under three paraphrases. (The best performance under paraphrase is bolded.)

4.1 Experiment setups

Backbone models and datasets. We test our
method by watermarking two models, OPT-2.7B
and OPT-6.7B (Zhang et al., 2022) which are re-
ferred to as the backbone models in following sec-
tions. For dataset, we use the news-like subset of
C4 (Raffel et al., 2020), which covers a variety of
topics. From the news-like subset of C4, we extract
a training set, a validation set and a test set. For
each sample, we use the first half of text as prompt
to generate watermark sentences. More details can
be found in Appendix A.

Baseline methods. We compare our method
with three baselines LeftHash, SelfHash (Kirchen-
bauer et al., 2023b) and EXP-Edit (Kuditipudi
et al., 2023). LeftHash and SelfHash are two meth-
ods based on the partition of vocabulary using the
hashes of tokens. EXP-Edit uses a private sequence
to encode the watermark by changing the proba-
bility distribution of the sequence of tokens. More
details on the implementation can be found in Ap-
pendix A.

Paraphrase setups. We use three representa-
tive methods to paraphrase the watermarked text,
round-trip translation (Tiedemann and Thottingal,
2020), Dipper (Krishna et al., 2023) and GPT-3.5.
For round-trip translation, we first translate from
English to another language and then transform
back to English, such that some words and expres-
sions will be changed because the translation is not
an one-to-one mapping. For Dipper, we follow the
parameter setting in Kirchenbauer et al. (2023b).
For GPT-3.5, we use the prompt in Kirchenbauer
et al. (2023b) to query GPT-3.5 for paraphrase. The
examples of the three paraphrases can be found at
Appendix B.

Evaluation metrics and hyper-parameters.
We use F1 score with best threshold and ROC-
AUC to measure the performance of the watermark
detection. All the metrics are calculated based on

at least 500 watermarked samples and 500 non-
watermark samples. The length of watermarked
samples before paraphrase and non-watermark sam-
ples is 200 ± 25. In generation, we set γ = 1/4
for LeftHash, SelfHash and SemaMark. In detec-
tion, we set γ = 1/3 and δ = 2 based on the
validation set in Section 4.4(b). In SemaMark, we
set m = 15, Q = 15, K = 5 for OPT-2.7B and
K = 4 for OPT-6.7B.

4.2 Main Results

In this subsection, we demonstrate the robustness
of the proposed SemaMark under paraphrase by
comparing it with three baseline methods on two
backbone models. We first generate watermarked
texts and use three paraphrase methods to remove
the watermarks. The detection performance of both
texts with and without paraphrase is reported in Ta-
ble 1. As we can see, before paraphrase, all the
watermarked methods have good detection perfor-
mance. After paraphrase, SemaMark has the best
detection performance most of the time across all
the backbone models and all the paraphrase meth-
ods, which suggests that our method is more robust
against paraphrase.

In detail, by round-trip translation, the para-
phrase reduces the detection ability of baseline
methods effectively, while the watermark of Se-
maMark is robust. Under round-trip translation,
the best ROC-AUC of baselines is 0.9091 on OPT-
2.7B and 0.8807 on OPT-6.7B, respectively. But
ROC-AUC of SemaMark is 0.9692 and 0.9308,
which is at least 0.05 higher than all the baseline
methods. Similarly, under paraphrase of GPT-3.5,
SemaMark is better than all the baselines. The best
baseline performance under GPT-3.5 is 0.9392 in
ROC-AUC on OPT-2.7B and 0.8990 in ROC-AUC
on opt-6.7B, but SemaMark has higher AUC-ROC
of 0.9406 and 0.9377. For Dipper, we note that all
methods are robust to Dipper since it does not sig-
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nificantly reduce the detection performance. How-
ever, SemaMark is still one of the most robust. On
OPT-2.7B, it performs best in ROC-AUC, while
on OPT-6.7B, it has the best F1 score. From Ta-
ble 1, the results show an obvious improvement of
SemaMark in robustness. This implies that using
semantics as the seed for the partition function is
effective under paraphrase.

4.3 Text Quality

(a) OPT-2.7B (b) OPT-6.7B

Figure 3: Text quality (perplexity)

Watermark should not compromise the generation
quality of LLMs. In this subsection, we com-
pare the text quality by calculating perplexity and
demonstrate that our watermark has almost no influ-
ence on the generated quality. Perplexity measures
the likelihood that a sentence is generated by one
model. Lower perplexity means the watermarked
text is more predictable. In other words, it is more
consistent with the reasoning of the given model.
In Figure 3, we use OPT-6.7B with no watermark
to get perplexity for all the watermarked methods.
All the results in Figure 3 are calculated without
paraphrase, because the generation quality of text
is not related to paraphrase. From Figure 3a on
OPT-2.7B, we can see that our watermark, Left-
Hash and SelfHash have almost no influence on the
generation quality. They has perplexity at around 6
which is similar as the generated text without water-
mark. Instead, EXP-Edit has much higher perplex-
ity, which means that EXP-Edit changes the gener-
ated text in an aggressive way and much reduces
the generation quality after watermarking. This is
probably because EXP-Edit adjusts the logits on
the whole vocabulary. From Figure 3b, we can
draw similar conclusions for OPT-6.7B. EXP-Exit
also increases the perplexity by around 10, while
the average perplexity of LeftHash, SelfHash and
ours is around 1 higher than the non-watermarked
generated text. In summary, our SemaMark can

Figure 4: ROC-AUC and m

(a) ROC-AUC and offset Q (b) ROC-AUC and γ

Figure 5: Text quality (perplexity)

keep the quality and robustness simultaneously.

4.4 Ablation Study
In this subsection, we study the influence of the
length of the sequence we use for generating one
semantic value and the sensitivity of the partition
function.

a) Length of previous sequence tokens, m. In
the first step of SemaMark, i.e., weighted embed-
ding pooling, we use the semantic of the previous
m tokens to get the more stable embedding. But
if the length of the sequence is too long, it will
also hurt the robustness. In Figure 4, we test water-
mark on OPT-2.7B with different m and draw the
ROC-AUC. The results show that before m = 15,
ROC-AUC is in the trend of increase as the m
changes. But when m > 15, ROC-AUC becomes
fluctuating. It is possibly because that the distant
tokens will include more change after paraphrase
as we mentioned in Section 3.1. Another possi-
ble reason is that in the beginning of generation
for the first m tokens, the number of previous to-
kens is smaller than m and NE-Ring can only use
the embeddings of limited tokens for prediction,
which may be unstable. Thus, too long or too short
sequence will hurt the robustness of SemaMark
against paraphrase. In our experiments, we choose
m = 15 for all the settings.

b) Q-offset detection In this subsection, we show
that the effectiveness of the proposed Q-offset de-
tection. In Figure 5a, we demonstrate the change
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of ROC-AUC of SemaMark with different Q in
offset detection under three different paraphrases.
Q-offset detection searches the highest z-statistics
from −Q to Q as the Q-offset score. From Fig-
ure 5a, we can see that when Q increases, ROC-
AUC first increases and decreases after Q is around
15. When Q < 15, the offset can help correct
the errors of semantic values close to the bound-
ary. Compared with detection without offset, i.e.
Q = 0, ROC-AUC of SemaMark is much better,
which means that the offset can help to solve the
errors of semantic values around the boundaries
that are more vulnerable to paraphrases. When
Q > 15, the correction of this error is limited, be-
cause the offset will also increase the Q-offset score
of negative samples as it also searches the highest
z-statistics of negative samples. On the other hand,
the computation cost will also increase if Q is too
large because it has to search more possible q. In
practice, we set Q = 15 in all the experiments,
which can effectively reduce the influence of the
errors of semantic values at the boundaries.

Since the Q-offset detection searches the highest
green word fraction, the fraction of green list word
of non-watermarked text will be higher than the
γ that we used to randomly select the green list.
Thus, it is not accurate to use the original γ for
z-statistics. We treat γ as a hyper-parameter and
use a validation set to select its value. As shown
in Figure 5b, the detection performance of Sema-
Mark under paraphrases of Dipper and GPT-3.5
will reach the highest when γ is around 1/3, while
it will continue to increase under paraphrase. In
practice, we set γ = 1/3 for Q-offset detection.

c) Sensitivity of partition function. As we men-
tioned, the partition function is sensitive to any
change of the input because it only uses the input
as the seed of the random generator. To validate its
sensitivity to continuous embeddings, we adopt the
embedding vector as the input to show that, with
tiny change of the embeddings, the partition of vo-
cabulary can be very different. We propose a hash
method based on md5sum (Deepakumara et al.,
2001) to adopt the partition function by transform-
ing the continuous embeddings to an integral seed.
We use 1000 sequences to test the sensitivity. For
each sequence embedding, we first get a green list
from the partition function. Then we change one
dimension of the embedding by only 1e-5 to get a
new partition result. The overlapping of the green
list before and after changing is 24.99% on the av-

ROC-AUC F1 with best threshold
LeftHash SelfHash ours LeftHash SelfHash ours

LLaMA-7B 0.819 0.838 0.846 0.748 0.774 0.781
LLaMA2-7B 0.811 0.841 0.872 0.749 0.773 0.810

Table 2: Watermark detection results under different
model size.)

erage of 1000 sequences. It is consistent with γ
we use to watermark, because the random partition
with the changed embedding is independent from
the original one. It means the partition function is
sensitive to any small change in its input. Instead,
after we use NE-Ring to discretize the embeddings,
the overlapping of green list after changing embed-
dings by 1e-5 is 100%, which means the discretiza-
tion can effectively handle this change. In practice,
SemaMark can provide the tolerance that is much
larger than 1e-5, which makes the watermark more
robust under paraphrase. With the improvement
of Q-offset, the detection of SemaMark is more
robust and effective.

d) Model size. To show the robustness of our
method on different model sizes, in this section,
we also test the watermark under round-trip trans-
lation paraphrase on LLaMA-7B and LLaMA2-
7B, which have larger size and different architec-
tures. As indicated in Table 3, our approach consis-
tently exhibits the highest robustness against para-
phrasing. Specifically, in the LLaMA2-7B model,
SemaMark significantly outperforms the baseline
models, achieving an increase of 0.06 and 0.03 in
ROC-AUC. Similarly, in the LLaMA-7B model,
our method shows superior performance with an
increase of 0.027 and 0.009 in ROC-AUC.

4.5 Distribution on NE-Ring based on CL

(a) NE-Ring (b) Distribution on ϕ

Figure 6: Visualization of NE-Ring

In this subsection, we demonstrate that Con-
trastive Learning can help evenly distribute the
semantics on the NE-Ring. The even distribution
can help the sequences reach all possible semantic
values and provide more diverse semantic values
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to prevent the watermark from being cracked by
counting token frequency. In Figure 6a, we use
Gaussian density estimation (Chen, 2017) to get
the distribution of the semantics on the NE-Ring
before discretization. We use different colors to
show the density. The NE-Ring in Figure 6a shows
that, the distribution is uniform. All the density
is between 0.052 and 0.054. We further plot the
density based on the polar angle ϕ in Figure 6b
where the density has almost no change on all the
polar angle from 0 to 2π. This implies that the
training based on Contrastive Learning can ensure
the semantics will reach all possible discrete values.
It can prevent the case where the discrete values
will gather in some discrete sections and produce
monotonous vocabulary partitions. As a result, it
can protect the watermark from being cracked by
counting token frequency.

5 Conclusion

In this paper, we use the semantic information for
watermarking to enhance the robustness against
paraphrase. The existing watermark methods use
the matching between the previous tokens and the
partition vocabulary. This matching can be easily
broken by paraphrase. However, we construct the
mapping between the semantics and the vocabu-
lary. In this way, the semantics will stay stable
under paraphrase and the robustness of watermark
can be enhanced. To make use of semantics, we
propose SemaMark to discretize the embedding
space on NE-Ring and propose a training method
based on CL. In addition, we use Q-offset detec-
tion to further advance the robustness by increasing
the tolerance of the semantic values close to the
discrete boundary. In experiments, we demonstrate
our method can perform much better compared
with baseline methods under paraphrase while hav-
ing little influence on the generation quality.

6 Limitations

In some cases, the customers may rely on some
API-based LLMs and do not have the access to
the embeddings and the permission to modify the
logits during generation. Although our watermark
method can effectively detect the LLM-generated
content and increase the detection success rate un-
der paraphrase, it is not applicable for black-box
LLMs. The second weakness of our method is that
the NE-Ring is dependent on the semantic embed-
ding of LLMs. For each LLM, we need to train a

specialized EN-Ring, which might be inflexible if
we want to produce a general model for NE-Ring or
fine-tune the LLMs. Despite the weaknesses, our
method is successful in the problem of robustness
under paraphrase. In the future work, we will con-
tinue to extent our method into black-box LLMs
and a universal model that does not require cus-
tomized training for various specific LLMs.

Potential risk. Our discussion about the robust-
ness might provide motivation for the attackers
to find other methods like adaptive attack. Al-
though we provide robustness under paraphrase,
if the unauthorized people propose possible attack
method focusing on the green-list based watermark
from other perspectives, the detection rate for LLM-
generated texts are still possible to be reduced.
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A More details on experimental settings

All the baseline models, backbone models and
datasets we use are open source and available
for academic purpose. For backbone models,
we use the open-sourced model from Hugging-
face1. The implementation is based on Pytorch2

framework and also depend on packages includ-
ing NLTK (Bird et al., 2009) and Numpy (Har-
ris et al., 2020). For baseline methods, we use
the released official code from the authors. For
paraphrase models, we use OPUS-MT translation
model and Dipper on Huggingface repository3, and
API of ChatGPT4.

B Examples of paraphrases

In Table 3, we provide the examples of three para-
phrases.

1https://huggingface.co/facebook/opt-2.7b
2https://pytorch.org/
3https://huggingface.co/Helsinki-NLP/opus-mt-en-zh and

https://huggingface.co/kalpeshk2011/dipper-paraphraser-xxl
4https://chat.openai.com/chat
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Original Paraphrased
Translation The course ran from Feb. 16 to Feb. 18

and was designed to address officers’ re-
sponse to critical incidents and to enhance
officer safety. “I am excited by the training
and professionalism demonstrated by the
officers at the training session. They were
receptive and focused on learning new tech-
niques and approaches to policing.” Com-
missioner Walwyn added.

The training, which was held from 16
February to 18 February, was aimed at dis-
cussing police responses to major incidents
and enhancing police security. " I am ex-
cited about the training and professional-
ism shown by police officers in the course,
who are willing to accept and focus on new
policing techniques and methods. " Com-
missioner Walwyn adds.

GPT She tells him she wants to protect him. She
asks what else she can do. Stefan tells her
not to trust Chad. She vows she won’t.
Stefan offers to get rid of Chad for her if
she wants. She says she wants Chad and his
family gone. She wants to have his babies.
She tells him to get out of her way. She
doesn’t know if she can love him, but she
wants his babies. She wants to be a mother.
Stefan tells her she deserves a real man.
He’ll love her and protect her. She says
she wants him and his babies. She wants to
have his babies. Stefan says she deserves
a real man. He’ll love her and protect her.
She says she wants him and his babies. She
wants to have his babies. Stefan says she
deserves a real man. He’ll love her and
protect her. She says she wants him and his
babies.

According to Reuters, China has already
taken steps to solidify its presence in the
South China Sea. It has constructed an
airstrip on one island and In a tense con-
versation, a woman expresses her desire
to protect a man, Stefan, and seeks his ad-
vice on how to do so. Stefan advises her
not to trust a person named Chad, to which
she firmly pledges her distrust. Stefan of-
fers to eliminate Chad from her life if she
desires, and she responds by expressing
her wish for Chad and his family to disap-
pear entirely. In a surprising revelation, she
declares her desire to have Stefan’s chil-
dren, emphasizing her longing to become a
mother. Despite uncertain feelings of love
towards Stefan, she insists on wanting his
babies and urges him to step aside. Stefan,
in turn, assures her that she deserves a gen-
uine partner who will love and safeguard
her. Yet, undeterred, she asserts her desire
for both Stefan and his offspring, reiterat-
ing her ambition to have his babies.

DIPPER Kewanee got the ball again with 7.2 sec-
onds to go, but couldn’t get a shot off. “I
think it was something we needed to have
a plan for and it was one that worked in
the end. We did it well enough,” Keene
said. “We were trying to get to the rim.
A lot of times when you are in a situation
like that and you can’t score, it’s better to
just foul.”Macomb was 12-for-27 from be-
hind the arc (42 percent). The Grinnell of-
fense is centered around perimeter shooters.
The two perimeter players for Macomb are
Emerick and Reilly Rieder. The next clos-
est shooter on the team is Rieder with 10
points. Nolan led Kewanee with 15 points.
Macomb, now 14-5, now travels to Jack-
sonville on Thursday to play Jacksonville

Kewanee had the ball again with 7.2 sec-
onds left but couldn’t get off a shot. “I think
that’s something we needed to have a plan
for and in the end, it worked,” coach Lam-
bert said. “We did it well enough,” Keene
said. “We were trying to get to the rim.
Often when you are in a situation like that
and you can’t score, it’s better to foul.” Ma-
comb was 12 for 27 from beyond the arc
(42 percent). The Grinnell offense is based
on sharpshooting players. Macomb’s two
shooters are Emerick and Rieder. Rieder
has ten points. Nolan led Kewanee with
15 points. Macomb, now 14-5, will play at
Jacksonville Thursday.

Table 3: Paraphrase examples.
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