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Abstract

The rapid advancements in large language mod-
els (LLMs) have ignited interest in the tem-
poral knowledge graph (tKG) domain, where
conventional embedding-based and rule-based
methods dominate. The question remains open
of whether pre-trained LLMs can understand
structured temporal relational data and replace
them as the foundation model for temporal
relational forecasting. Therefore, we bring
temporal knowledge forecasting into the gen-
erative setting. However, challenges occur
in the huge chasms between complex tempo-
ral graph data structure and sequential nat-
ural expressions LLMs can handle, and be-
tween the enormous data sizes of tKGs and
heavy computation costs of finetuning LLMs.
To address these challenges, we propose a
novel retrieval-augmented generation frame-
work named GenTKG combining a temporal
logical rule-based retrieval strategy and few-
shot parameter-efficient instruction tuning to
solve the above challenges, respectively. Ex-
tensive experiments have shown that GenTKG
outperforms conventional methods of temporal
relational forecasting with low computation re-
sources using extremely limited training data
as few as 16 samples. GenTKG also high-
lights remarkable cross-domain generalizabil-
ity with outperforming performance on unseen
datasets without re-training, and in-domain gen-
eralizability regardless of time split in the same
dataset. Our work reveals the huge potential of
LLMs in the tKG domain and opens a new
frontier for generative forecasting on tKGs.
The code and data are released here: https:
//github.com/mayhugotong/GenTKG.

1 Introduction

Forecasting the future lies in the intrinsic nature
of humans to take controllability over the futural
uncertainty ever since the existence of ancient for-
tunetellers who predict the future with insights into
historical events. As the wave of Artificial General

Intelligence (AGI) led by Large Language Models
(LLMs) (Bubeck et al., 2023) showcases a persis-
tent craving for ability to model the complex infor-
mation evolving in the real world, master the im-
plicit rules and give predictions of what might hap-
pen next based on the historical observations (Mi-
alon et al., 2023; Matsuo et al., 2022), we term
this challenge for LLMs as Generative Forecasting.
We find Temporal Knowledge Graph (tKG) is a
natural instance for investigating such a challenge
attributed to the evolving world knowledge it con-
tains and the task performed on it, namely temporal
knowledge graph forecasting. In short sentence,
tKGs are multi-relational, directed graphs with la-
beled timestamped edges between entities (nodes)
and can be viewed as streaming data sources where
events come hourly, daily, or yearly, etc., and tKG
forecasting task aims to forecast future events at
timestamp t based on past historical events before
t. Specifically, tKG originates from Knowledge
Graph (KG) (Nickel et al., 2015) which structures
knowledge fact in the real world in the form of
triples (es, r, eo), such as (Paris, the capital of,
France), where es, eo represent the subject and
object entity respectively, and r represents the ob-
served predicate between the two entities. As world
knowledge evolves constantly over time such as the
inaugurated presidents of the USA, the Temporal
Knowledge Graph (tKG) was introduced by (Tresp
et al., 2015) to indicate the temporal effectiveness
of the world events by extending a timestamp t to
form quadruples (es, r, eo, t). For example, (Don-
ald Trump, the president of, the USA, 2021) is fol-
lowed by (Joe Biden, the president of, the USA,
2023). The tKG forecasting task aims to answer
queries (es, r, ?, t) that predict the missing object
given history events before t.

In tKG, the first embedding-based representa-
tion learning method is introduced by (Ma et al.,
2019). The following conventional embedding-
based methods (Goel et al., 2020; Han et al., 2020a;

4303

https://github.com/mayhugotong/GenTKG
https://github.com/mayhugotong/GenTKG


Sun et al., 2021; Yang et al., 2020; Li et al., 2022)
require carefully designed models that embed in-
dexed quadruples into hidden latent space and
hence lose the semantic aspects of events in tKGs.
Besides, they require separate training for differ-
ent datasets and hence suffer to handle even slight
dataset modification and time split adaptation. In
stark contrast, the rule-based methods (Liu et al.,
2022) focus on mining temporal logic rules within
the tKG graph structure in a symbolic way using
neural networks. However, it possesses limited
scalability to only similar datasets sharing simi-
lar rules. With the huge advancements emerging
with numerous large language models (LLMs) (Wei
et al., 2022), for example utilizing the emergent
in-context learning (ICL) ability of LLMs (Dong
et al., 2022) by sequentializing temporal ascend-
ing ordered tKG facts to texts but failed to com-
pete with the above conventional methods (Lee
et al., 2023). The question remains open: Can
pre-trained LLMs understand structured tem-
poral relational data and replace conventional
methods as the foundation model for temporal
relational forecasting?

To address the above issue, we bring temporal
knowledge forecasting into the generative fore-
casting setting and deliberately prioritize the most
influential factors in these two domains: the tem-
poral and structural characteristics of tKGs and
the flexible natural language processing abilities of
Large Language Models (LLMs). However, two
challenges stand in the middle how to integrate
them organically. The first is the modality chal-
lenge between data structures. As tKG are com-
plex temporal multi-relational graph data with tens
of thousands of quadruples, it is hard to adapt to
sequential natural language expressions that LLMs
can process. The second is the computation chal-
lenge with the enormous costs of fine-tuning LLMs
especially with tens of thousands of quadruples re-
quiring months of training time on consumable
graphic cards.

To solve the above two challenges, we propose
GenTKG, a novel retrieval-augmented generation
framework that solves the tKG forecasting task
in the generative forecasting setting, outperform-
ing embedding-based, rule-based and ICL methods.
Besides, GenTKG serves as an instantiation that
sheds light on the promising generative forecasting
ability of LLMs. For the first modality challenge
between structured temporal graph data and sequen-
tial natural languages, we solve it in the retrieval

phase. We utilize a temporal logical rule-based re-
trieval strategy (TLR) that mines the temporal logic
rules of the tKGs and forms a rule bank. These
rules serve to retrieve the most temporally and log-
ically relevant historical facts to the given query.
These facts are then sequentialized to natural lan-
guages in the ascending temporal order and filled in
a specialized prompt template for LLMs. Although
the prompts are in the form of sequential natural
languages, they inherit structural information in
the tKG implicitly since the extraction process is
highly dependent on learned structural rules. These
prompts enable LLMs to comprehend temporal re-
lational data, and TLR enables the input window
of LLM to serve as the implicit and decouplable in-
terface for communicating temporal and structural
relational data to LLMs. Moreover, TLR deliv-
ers improvement over the recent pure ICL method,
regardless of the backbone LLM being used.

For the second computation challenge between
huge tKG size and high computation costs of LLM,
we solve it in the generation phase. We propose
a few-shot parameter-efficient instruction-tuning
strategy (FIT) that aligns LLM with a temporal
relational forecasting task and reforms it into an
autoregressive generation task. We further decom-
pose the second computation challenge in two sub-
tasks from the perspective of model and data re-
spectively. The first subtask is to deal with the
enormous computation costs and hardware require-
ments in training LLM. We solve this subtask
with a parameter-efficient fine-tuning (PEFT) adap-
tation method, specifically Low-rank Adaptation
(LoRA) (Hu et al., 2021). The second subtask is
to deal with the enormous size of training data in
tKGs. We deliberately think out of the box by by-
passing learning the data like conventional methods
and instead, letting the LLM learn the generative
forecasting task on tKG. In other words, we reform
data-centric model learning to task-centric LLM
alignment that aligns LLMs with tKG forecasting
task through instruction tuning. We have specially
designed task instructions, retrieved facts as input,
and generative predictions as output. Besides, we
introduce few-shot tuning that further reduces train-
ing data to only 1024 prompt-response pairs which
is as few as 0.27% of original tens of thousands
of training data with exceeding performance. Un-
der extreme cases, we could further reduce to as
few as 16 samples which is 0.0042% of original
data while maintaining comparable performance to
conventional methods.
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Our approach offers a foundational framework
for future explorations in generative forecasting on
temporal knowledge graphs. Our contributions are:

1. Opening a frontier of generative forecast-
ing on tKG. To the best of our knowledge, we
are the first to introduce instruction-tuned gen-
erative LLM to the tKG domain. Our frame-
work GenTKG proposes a novel retrieval aug-
mented generation paradigm for tKG forecast-
ing, regardless of the backbone LLM.

2. Drastically low computation costs with
exceeding performance. With only 16-
shots parameter-efficient instruction tuning,
we can already reach comparable results to
conventional methods. With 1024-shots tun-
ing, we can outperform existing rule-based,
embedding-based, and the recent in-context-
learning method.

3. Task reformulation from data learning to
task alignment. We bypass designing specific
models to learn specific tKG datasets. Instead,
we novelly reform the data-centric learning to
task-centric LLM alignment that aligns LLMs
to generative forecasting task on tKG.

4. Generalizability across datasets without re-
training. With one-time training on a single
dataset, our GenTKG has showcased remark-
ably both cross-domain and in-domain gen-
eralizability with exceeding performance on
multiple datasets without retraining.

2 Generative Forecasting on Temporal
Knowledge Graph

In this section, we explain our GenTKG framework
following its two-phase methodology: Retrieve-
then-Generate, in two sections. In Section 2.1, we
explain the retrieval phase, which proposes a tem-
poral logical rule-based retrieval strategy (TLR) to
capture historical facts that exhibit high temporal
relevance and logical coherence. In Section 2.2,
we delve into the details of the few-shot parameter-
efficient instruction-finetuning strategy (FIT), an
essential component that aligns Large Language
Models (LLMs) to the task of generative forecast-
ing on temporal knowledge graphs.

2.1 Temporal Logic Rule-based Retrieval
The TLR retrieval strategy is inspired by the phe-
nomenon that a pair of entities can have many inter-
actions at different timestamps such as a president

visiting the same country multiple times. Another
intuition behind this is that some relations tend to
be temporally and logically sequential, for example
in ICEWS14 we can see (Angela Merkel, discuss
by telephone, Barack Obama, 2014/07/22) and (An-
gela Merkel, consult, Barack Obama, 2014/08/09).
Therefore, we borrow a partial idea of TLogic (Liu
et al., 2022) that mines the temporal logic rules hid-
den in the tKG structure. Notably, we opt to choose
first-order temporal logic that complies with the
input context constraints of the LLMs, and don’t
apply rules directly for ranking each entity as it did.
Then we propose the novel TLR that retrieves the
most temporally related and logically supportive
history events for the given query based on these
learned rules. To help understand our retrieval strat-
egy, two definitions and the algorithm are given in
the following.

Definition I (Temporal Random Walk) A non-
increasing temporal random walk W starting from
subject entity es ∈ E to object entity eo ∈ E
in the tKG G is defined as a cycle of edges
((es, r1, eo, t2), (es, r2, eo, t1)) with t2 > t1 where
(es, ri, eo, ti) ∈ G and i ∈ 1, 2. The time con-
straints ensure that the edges are traversed only
backward in time.

Definition II (Temporal Logical Rule) A
cyclic temporal logical rule R is defined as
(E1, rh, E2, T2)← (E1, rb, E2, T1) with T2 > T1,
where Ei and Ti for i ∈ 1, 2 are replaceable vari-
ables that represent entities and timestamps. The
left-hand side of R is called the rule head, with rh
being the head relation, while the right-hand side
is called the rule body, with rb being the body rela-
tion. A rule head can be supported by multiple rule
bodies denoting different rules as T R. A T R im-
plies that if the rule body holds then the rule head
is true for a future timestamp T2. The confidence
of a rule conf(T R) is defined as dividing the rule
support by the body support, where the support is
the number of quadruples satisfying rule bodies or
rule heads with time constraints within T R .

Rule Learning Let rh be a fixed relation, for
which we want to learn rules. We sample an edge
(e1, rh, e2, t), which will serve as the rule head, uni-
formly from all edges with relation rh. Then the
temporal random walker samples iteratively candi-
date edges adjacent to the current object C(e2, t) :={(

e2, r, e1, t̂
)
|
(
e2, r, e1, t̂

)
∈ G, t̂ < t

}
, where t̂

is the timestamp associated with the next transition
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Figure 1: Framework of GenTKG. GenTKG first retrieves relevant facts based on a temporal logical rule-based
retrieval strategy (TLR) then samples K prompts for few-shot parameter-efficient instruction-tuning (FIT) that
aligns LLM to the task of generative temporal knowledge graph forecasting.

edge. Besides, we use an exponentially weighted
transition distribution that prioritizes temporally
closer edges during sampling which is defined as

P (u; e2, t) =
exp (tu − t)∑

û∈C(e2,t) exp (tû − t)
(1)

where tu denotes the timestamp of edge u. After
a fixed sampling we can collect a set of tempo-
ral walks satisfying the rule (E1, rh, E2, T2) ←
(E1, rb, E2, T1). We then estimate the confidence
of the rules following the definition II.

Temporal Logic Rule-based Retrieval After
gaining learned temporal logical rule sets, we or-
der them according to the associated confidence
scores. For a given forecast query (es, r, ?, t) we
retrieve a candidate subgraph Gs(es, r, t) from the
TKG G containing temporally and logically rele-
vant histories for the given query, with respect to
the subject entity, relation, and timestamp. Since
the query subject entity is fixed, there are two key
factors in the retrieval algorithm, i.e. time window
and rule grounding. First, we define the time win-
dow as TW = [t−, t] with t− := t − w, where
the w ∈ N+ represents the time window length
backward starting from the query timestamp. The
maximum length of w is min {tmax, t} with tmax

denoting the maximum timestamp of the datasets.
Second, the query relation r is fixed as a rule head
rh. Within each TW , we first use rule-head to
retrieve history facts satisfying (es, rh, eo, t− w).
Then, we apply the learned rules T R and select top

k various rule bodies rb1 , rb2 , · · ·, rbk regarding r
in descending confidence and add historical events
(es, rb, eo, t−w) to Gs(es, r, t) for the given query.
The size of Gs(es, r, t) can be adjusted dynamically
with respect to w and k. We stop the retrieval until
a maximum history length N is reached. For in-
stance, we retrieve history events iteratively with
the descending confident rule bodies for each time
window backtrace step until a maximum history
length of 50 is reached. At the end of the retrieval
phase, we reorder all history events in temporal
descending order for each query. The pseudo-code
is attached in Appendix B.2.

2.2 Align LLM to Generative tKG
Forecasting

The second phase of the proposed GenTKG frame-
work contributes to transforming the conventional
data-centric tKG model learning task into an align-
ment task that aligns LLM with generative fore-
casting on tKGs. We utilize a few-shot parameter-
efficient instruction tuning strategy (FIT) under the
settings of low GPU resource consumption with
a single graphic card. In 2.2.1, we describe the
instruction prompt design. In 2.2.2, we describe
the parameter-efficient instruction tuning for train-
ing our generative model. In 2.2.3 , we explain
the few-shot tuning strategy that efficiently per-
forms alignment with as few as 1024 samples and
explores the lower-bound of samples for few-shot
tuning. In 2.2.4, we describe the generalization
ability of generative forecasting on tKG.
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Figure 2: Instruction Prompt Design

2.2.1 Instruction Prompt Design
Instruction Tuning is a crucial technique that fine-
tunes LLMs with human-curated instruction and
response pairs as the training data, empowering
LLMs with instruction-following capability (Zhou
et al., 2023). The construction of an instruction
sample is usually composed of three parts, i.e.
task instruction, task input, and task output. Task
instruction clarifies the definition of the task for
LLMs to comprehend and gives explicit solutions
for LLMs to follow and execute. Task input in nat-
ural languages is input data serving as context for
LLMs. Task output is the decoding results based on
the input prompt. In our proposed GenTKG frame-
work, we adapt the temporal knowledge graph fore-
casting task to the instruction task for LLMs with
individual adaptation for the three parts partially
following the setting in (Lee et al., 2023). The in-
struction is depicted in Figure 2. Except for the
designed task instruction, the task input is mod-
eled as ordered historical events retrieved from the
TLR phase for a given query (es, r, eo, t) as de-
scribed in 2.1. Each fact is filled in the template
of “t : [es, r, neo .eo]“. The query (es, r, eo, t) is
expressed in a similar but partial way as “t : [es, r,“
for LLM to complete as generative predictions. It is
worth noting that we conserve the format in (Lee
et al., 2023) that maps each candidate object eo
with a numerical index neo as a fair comparison.
However, (Lee et al., 2023) try to avoid unfair tok-
enization for different entities with this index and
use the probabilities of index tokens generated by
the LLMs to get ranked scores of output entities
in an indirect way. But this can only be used on
GPT-like model and cannot handle LLaMA-like
models harnessing individual tokenization. There-
fore we use top generated entity names directly for
prediction evaluation.

2.2.2 Parameter-efficient Instruction Tuning
Direct fine-tuning of the entire model is computa-
tionally demanding and time-consuming. To ad-

dress these computational challenges, we adopt
the Low-Rank Adaptation (LoRA) technique (Hu
et al., 2021). LoRA involves the freezing of
pre-trained model parameters θ0 while introduc-
ing trainable additional parameters θ0 that can
be decomposed into low-rank matrices ∆θ0 =
BA,B ∈ Rd×r,A ∈ Rr×k, r ≪ min(d, k) that
incorporat supplimentary information to the LLM.

At present, there are large amounts of LLMs re-
leased, such as GPT series (Kojima et al., 2022;
Radford et al., 2019), T5 series (Raffel et al.,
2020), CHinchilla (Hoffmann et al., 2022), and
LLaMA (Touvron et al., 2023), etc.. Among these,
proprietary models can only be accessed by APIs
such as ChatGPT with limited adaptation and align-
ment possibilities that hinder the research purpose.
To facilitate the research of generative forecast-
ing on temporal knowledge graph, we carefully
opt for the open-sourcing LLMs, i.e. GPT-NeoX-
20B (Black et al., 2022) and LLaMA2-7B (Touvron
et al., 2023), which is the third-party reproduction
of GPT-3 and open-source public model respec-
tively. Due to hardware limitations, we leave GPT-
NeoX-20B frozen to investigate the effectiveness of
our retrieval phase through its in-context learning
ability. We perform the whole GenTKG framework
on LLaMA2-7B with consumable adaptation.

2.2.3 Efficient Alignment with Few-shot
Tuning

Our framework contributes a remarkably efficient
and effective few-shot training strategy. The hy-
pothesis has been proven that alignment can be
a simple process where the LLMs learn the style
or format for responding to prompts and expose
the knowledge and capabilities that were already
acquired during pretraining (Zhou et al., 2023).
Therefore, considering the volume of temporal
knowledge graphs that usually possess tens of thou-
sands of training data, we propose a K-shot tuning
paradigm where only an extremely limited num-
ber of K samples are uniformly sampled from the
temporal-ordered training set for language model
adaptations. In our case, we select only 1024 sam-
ples which takes up as few as 0.27% of the original
GDELT dataset sizes that conventional methods
usually fully trained on. We further prove that our
method can acquire temporal relational forecast-
ing capability rapidly with severely limited train-
ing data (0.0027%) with an extreme 16-shot train-
ing setting while maintaining comparable perfor-
mances to conventional methods.
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2.2.4 Generalization Ability of GenTKG
Due to the novel transformation from data-centric
learning to task-centric alignment which forces the
LLM is aligned to the temporal relational forecast-
ing task itself rather than the learning of the tKG
data. GenTKG also delivers remarkable generaliz-
ability in various generalization settings.

Cross-domain generalizability. LLM trained
on one dataset can be inferred directly on other
datasets. A generalized GenTKG only requires
learning the temporal-logical rule-based retrieval
strategy for the new datasets in the first phase to en-
sure proper prompts with relevant histories. How-
ever, it doesn’t require retraining LLM in the sec-
ond phase. Still, high-performance gains are main-
tained and even comparable to the original setting.

In-domain generalizability. GenTKG main-
tains high-performance gains on the same dataset
even trained on only partial training data. The parti-
tion can be limited to a small fraction such as 5% of
original training data. This characteristic exceeds
conventional methods which always suffer drastic
performance drops even with a minor change of
critical value of the forecasting timestamp between
the train and evaluation set.

3 Experimental Setup

In this section, we describe the experimental setup
of GenTKG framework. Specifically, we describe
four datasets, the evaluation protocols, and the ex-
perimental design.

Datasets Four benchmark datasets are used to
evaluate GenTKG: 1) ICEWS14 (Boschee et al.,
2015) 2) ICEWS18 (Boschee et al., 2015) 3)
GDELT (Leetaru and Schrodt, 2013) 4) YAGO
(Mahdisoltani et al., 2013). The two versions of the
Integrated Crisis Early Warning System (ICEWS)
both consist of timestamped political events, e.g.,
(Angela Merkel, Visit, India, 2015-03-25). The
GDELT and YAGO datasets are extracted from the
subsets of GDELT and YAGO knowledge bases
containing facts and time information. Dataset
statistics is shown in Table 3 in the Appendix B.4.

Evaluation Since GenTKG generates entity pre-
dictions directly, we use the temporal-aware fil-
tered (Gastinger et al., 2023) Hits@1/3/10 metric to
evaluate extrapolated link prediction. Hits@1/3/10
denotes the proportion of the actual missing entities
ranked within the top 1/3/10.

Baselines Since GenTKG is the first method
to introduce instruction-tuned generative models

into the tKG forecasting domain, it is necessary
to include three typical types of existing meth-
ods as baselines. The first are embedding-based
methods, represented by RE-GCN (Li et al., 2021),
xERTE (Han et al., 2020a), TANGO (Han et al.,
2021), and Timetraveler (Sun et al., 2021). The
rule-based method is TLogic (Liu et al., 2022) and
the third type is the LLM-based ICL method with
frozen parameters (Lee et al., 2023).

Experiment Design In order to comprehensively
analyze GenTKG compared to different conven-
tional methods, there are three research questions
to be answered. RQ1: How is the overall perfor-
mance of the proposed GenTKG framework com-
pared with the existing conventional embedding-
based, rule-based TKG methods and LLM-based
ICL method? RQ2: How well is the cross-domain
and in-domain generalizability of GenTKG on dif-
ferent settings? RQ3: How do the components of
the GenTKG affect its effectiveness?

4 Experimental Results

4.1 Main Results

To answer the RQ1, our results from Table 1
achieve state-of-the-art performance, surpassing
all three types of existing conventional including
embedding-based models, rule-based method, and
LLM-based in-context learning method across four
datasets regarding metric Hit@1 and Hit@3 while
maintaining comparable results regarding Hits@10.
Our method demonstrates the promising trend for
retrieval-augmented LLMs to serve as the foun-
dation model for temporal relational forecasting,
opening a new frontier in the TKG domain. We
refer to GenTKG utilizing LLaMA2-7B as instanti-
ation unless otherwise specified.
Compared to embedding-based methods. For all
datasets, GenTKG outperforms its best embedding-
based model xERTE on ICEWS14, ICEWS18,
GDELT, and Timetraveler on YAGO. Specifi-
cally, the highest performance gain is observed
on GDELT with more than 58% higher on Hits@1.
Compared to the rule-based method. Compared
to the rule-based model TLogic, GenTKG out-
performs TLogic on Hits@1 and Hits@3 while
maintaining comparable performance regarding
Hits@10. The slight drops regarding Hits@10
on ICEWS14 and ICEWS18 are because TLogic
is carefully designed on these datasets while our
method has more generalizability and demonstrated
better performance regarding accuracy than recall.
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Table 1: Temporal link prediction results on temporal-aware filtered Hits@1/3/10(%). The best results among each
metric are highlighted in bold and the second bests are underlined.

Method Type
Models

Datasets ICEWS14 ICEWS18 GDELT YAGO
Hits@1 Hits@3 Hits@10 Hits@1 Hits@3 Hits@10 Hits@1 Hits@3 Hits@10 Hits@1 Hits@3 Hits@10

Embedding-based

RE-GCN 31.3 47.3 62.6 22.3 36.7 52.5 8.4 17.1 29.9 46.8 60.7 72.9
xERTE 33.0 45.4 57.0 20.9 33.5 46.2 8.5 15.9 26.5 56.1 72.6 78.9
TANGO 27.2 40.8 55.0 19.1 31.8 46.2 9.4 18.9 32.2 56.6 65.1 71.8
Timetraveler 31.9 45.4 57.5 21.2 32.5 43.9 11.2 18.6 28.5 60.4 77.0 83.1

Rule-based TLogic 33.2 47.6 60.2 20.4 33.6 48.0 11.3 21.2 35.1 63.8 65.0 66.0

ICL
GPT-NeoX-20B 32.6 44.0 54.2 18.2 29.5 41.4 6.8 12.0 21.1 72.6 81.0 84.6
Llama2-7B 25.8 43.0 51.0 13.5 27.6 32.6 3.6 12.5 22.0 67.7 79.0 81.8

GenTKG
GPT-NeoX-20B + TLR 35.0 47.4 57.5 21.1 33.9 45.6 10.2 16.7 27.3 73.6 83.0 86.8

Llama2-7B + GenTKG
36.85 ±

0.75
47.95 ±

0.75
53.5 ±

0.8
24.25 ±

0.75
37.25 ±

0.25
42.1 ±

1.1
13.9 ±

0.5
22.55 ±

0.55
30.45 ±

0.45
79.15 ±

2.25
83.0 ±

1.7
84.25 ±

1.55

Llama2-7B (Generalization) - - -
22.75 ±

0.65
36.2 ±

0.7
44.0 ±

0.8
13.75 ±

0.95
20.35 ±

1.05
27.6 ±

0.8
68.9 ±

0.6
75.45 ±

0.35
82.05 ±

0.35

Compared to in-context-learning method. We
analyze the performance of GenTKG on different
Language Model instantiations, i.e. GPT-NeoX-
20B and LLaMA2-7B respectively. For GPT-
NeoX-20B, we apply only the first retrieval phase
of GenTKG due to hardware limitations. How-
ever, a huge performance increase is observed
for all three metrics on all datasets even with
pure retrieval-augmented in-context learning. For
LLaMA2-7B, the performance gain of Hits@1 has
increased remarkably even outperforming GPT-
NeoX-20B which has two times more parameters,
indicating the potential for greater performance of
our proposed GenTKG framework if applied to
larger language models.

4.2 Cross-domain Generalization

To answer the second question of GenTKG’s perfor-
mance in the generalization setting, the empirical
results indicate that the GenTKG framework mani-
fests a substantial capability for cross-dataset gen-
eralization. Specifically, once the LLM has been
aligned to the tKG forecasting task in the second
phase on any dataset, the LLM can be applied di-
rectly to any other dataset. Therefore, on a new
dataset, GenTKG only requires dataset-specific
temporal-logical rule-based retrieval to formulate
proper prompts from the first phase, and can di-
rectly infer the predictions without retraining in the
second phase. As shown in Figure 3(a), all meth-
ods are trained and evaluated on GDELT, except
that the LLM in generalized GenTKG is trained
ICEWS14. Still, the generalized GenTKG deliv-
ers comparable performance metrics on GDELT to
conventional methods with a minor performance
drop compared to the original trained GenTKG.
We further demonstrate similar generalization re-
sults by cross-checking the training and evaluation

Figure 3: Cross-Domain Generalization Setting. (a) Sin-
gle dataset evaluation. All training and evaluation is on
GDELT except generalized GenTKG, which is trained
on ICEWS14. (b) Cross-checking. We cross-check
the trained LLaMA2 in GenTKG on different training
datasets and evaluation datasets. The performance drop
compared to the original training setting takes up only
small percentages. Even higher performance than ICL
can be observed. More discussions about experiment
settings and analysis are given in Appendix B.1, explain-
ing the huge relative difference on GDELT is due to its
poor baseline performances.

datasets as shown in Figure 3(b). Although the
LLM is trained exclusively on one dataset, it still
delivers comparable metrics on disparate datasets,
closely approximating the outcomes of methods
that were trained specifically on the identical eval-
uation dataset. This notable characteristic implies
that the GenTKG is effectively capturing the under-
lying task-related features, as opposed to merely
carefully designed for the dataset data, a limitation
commonly shared in conventional methods.

4.3 In-domain Generalization

Apart from cross-domain generalizability, how well
does GenTKG generalize to different training parti-
tions within the same dataset? To investigate such
a problem, we carefully designed various partitions
of time-ordered training data ranging in {5%, 10%,
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Figure 4: In-domain generalizability. GenTKG exceeds
conventional methods on all different partitions of train-
ing data on ICEWS14. Values in Appendix Table 6.

Figure 5: (a) Both TLR and FIT phases contribute to
GenTKG. (b) Increasing the few-shot training parameter
K improves performance.

20%, 30%, 50%, 75%, 100%}. All models trained
on different training partitions are evaluated on the
same evaluation set starting from the same times-
tamp. According to Figure 4, experiments have
shown that conventional methods suffer from in-
sufficient training data while GenTKG remains ex-
ceeding performance even with as few as 5% train-
ing data. This further proves that GenTKG success-
fully transforms conventional data-centric learning
to the task-centric alignment of LLMs and over-
comes the prediction instability under the changing
value of time split in the forecasting setting.

4.4 Ablation study

We undertake ablation studies on ICEWS14 to eval-
uate the contribution of each phase in GenTKG
with three distinct variants of the GenTKG: TLR,
FIT, and TLR+FIT configurations. Here, TLR rep-
resents the variant that exclusively employs tem-
poral logical rule-based retrieval on top of ICL
learning, FIT denotes the variant solely implement-
ing few-shot parameter-efficient instruction tuning
with naive fact retrieval (Lee et al., 2023), and
TLR+FIT encapsulates the integration of all com-
ponents within GenTKG. Figure 5(a) draws the
conclusion that both phases in GenTKG framework
contribute to distinct performance improvements.
The whole pipeline enables GenTKG the ability to
outperform existing methods.

4.5 Few-shot Tuning

To delve further into the impact of sample size
within the few-shot tuning, we conducted a series of
experiments on the ICEWS14 dataset employing a
range of shot sizes K from the set {16, 512, 1024}.
For each configuration, we employed uniform sam-
pling on the temporally-ordered training dataset.
Empirical results indicate a consistent trend of per-
formance improvement correlating proportional to
the increase in the number of training samples, as
visualized in Figure 5(b). Remarkably, our findings
suggest that the GenTKG framework is capable
of outperforming naive ICL method even when as
few as 16 shots are used for tuning. This notable
finding unlocks significant potential for GenTKG
in the context of aligning LLMs with temporal re-
lational forecasting tasks from the perspective of
efficient alignment or a larger scale.

5 Discussion

Q1: How does the index or lexical format of the
prompt affect the results? To ease the concern
of data leaks in the pre-training process of LLMs,
we investigate whether the lexical or index format
prompt affects the LLM generative forecasting abil-
ity. We conduct experiments with ChatGPT 1 using
index format following ICL baseline settings in
(Lee et al., 2023) as a fair comparison. Due to the
restriction of training ChatGPT, we equipped Chat-
GPT with the temporal logical retrieval strategy
(TLR) of GenTKG compared to the ICL baseline
in both lexical and index form. The experiment
results are reported in Table 2.

Table 2: Performance (Hits@1) between index and lexi-
cal for gpt-3.5-turbo on ICEWS14.

Configuration Model
lexical index
Hits@1 Hits@1

GenTKG-TLR gpt-3.5-turbo 0.21 0.26
ICL gpt-3.5-turbo 0.18 0.16

Three interesting insights can be derived here.
(1) First, the index form conter-intuitively outper-
forms the lexical form and therefore the concern
of data leakage in the pre-trained LLMs is relieved.
(2) Second, our TLR retrieval strategy steadily out-
performs ICL baseline retrieval on ChatGPT, fur-
ther proving its LLM-agnostic retrieval enhance-
ment. (3) Instruction-tuned models like ChatGPT
should make better use of semantic priors. How-

1ChatGPT (gpt-3.5-turbo) version 02.2024 is used here.
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ever, our reverse results in the configuration of
GenTKG-TLR indicate that the successful TLR
retrieval strategy, which heavily relies on the tem-
poral and structural patterns, lets instruction-tuned
models like ChatGPT grasp latent patterns more
easily with index and outweigh the benefit brought
by semantic priors. This reveals the ability of LLM
to learn temporal relational patterns more than re-
lying on semantic priors, which we believe is a
beneficial finding for future research.

Q2: How well is the qualitive improvement of
TLR retrieved facts? We conduct a qualitative
study regarding the temporal logic rule-based
retrieval strategy (TLR) to intuitively understand
its retrieval quality. The ICL-baseline (Lee et al.,
2023) retrieves the most recent histories and
retrieves histories igoring relation relevance. While
TLR retrieves history with temporal logic rules and
therefore the relations in the history facts are more
related to the query. For example, given the query
334: [Abdul, Make_an_appeal_or_request,? ],
ICL-baseline retrieves facts mostly with general
relations like Host_a_visit and Make_a_visit.
However, TLR retrieves facts containing relations
like Acknowledge_or_claim_responsibility and
Cooperate_militarily, which are significantly more
logically relevant. These two respective rules are
visible in the TLR rule bank with high confidence,
which justifies the better predictive performance
with precise retrieval.

Q3: How does temporal information affect Gen-
TKG? To assess how GenTKG comprehend the
temporal information of historical events, we set
four temporal configurations on ICEWS14. Origi-
nal organizes retrieved facts into ascending order,
where the latest event is set closest to the test query,
while Reverse configuration is in descending order.
We further set two settings with Random temporal
order and Removal of timestamp.

The results in Figure 6(a) show that all configura-
tions other than the original ascending order lead to
a deterioration in performance. Among them, the
Removal indicates a least performance deteriora-
tion implying that the sequential order of events has
an implicit consistency in the Original ascending
order for LLM to reason the temporal information.

Q4: How does history length affect GenTKG’s
performance? Due to the limitation of LLM con-
text length, we evaluate the impact of the history
length of TLR retrieved facts. We conduct a set of

Figure 6: (a) Other temporal configurations deteriorate
performance. (b) Increasing the history length limit
improves performance.

experiments on ICEWS14 using varying truncated
history lengths, i.e. the upper length limit, with four
configurations {10, 20, 30, 40, 50}. Our results, as
shown in Figure 6(b), indicate that improving his-
tory length generally leads to better performance
and imply that most temporal and logically relevant
facts are retrieved in the near past, and retrieving
less relevant facts will affect performance.

6 Conclusion

This paper raises the question and proves that pre-
trained LLMs can understand structured temporal
relational data and replace existing tKG models as
the foundation model for temporal relational fore-
casting task. We propose a retrieval-augmented
generative framework GenTKG that can efficiently
align LLM with temporal relational forecasting task
through two stages: temporal logical rule-based
retrieval (TLR) and few-shot parameter-efficient
fine-tuning (FIT). Extensive experimental results
demonstrate that GenTKG outperforms conven-
tional embedding-based, rule-based and ICL meth-
ods. Moreover, GenTKG is training-light through
comsumable computation resources with extremely
few training data, and exhibits strong cross-domain
and in-domain transferability breaking the barriers
of conventional data-centric learning.

7 Limitation and Future Directions

GenTKG is limited by the input context window
of LLMs. Specifically, for LLaMA2, the input
context window is 4096 tokens with an average
upper length limit of 50 history facts that limit the
performance of Hit@10. This RAG framework
of GenTKG has the potential to combine better
retrieval strategies and prompt LLMs with longer
context windows to fully utilize temporal reasoning
of LLMs. The strong generalization ability may
also benefit inductive settings, zero-shot, or few-
shot tasks in tKG, which we leave to the future.
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Ethics Statement

GenTKG is tailored to generative forecasting on
temporal knowledge graphs and can be applied to
a wide variety of downstream tasks with genera-
tive forecasting settings, such as recommendation
systems, anomaly detection, etc. It can also power
search and serve to improve users’ lives. GenTKG
can help protect data with its generalizability which
requires less training over various datasets. The
risk of GenTKG might come from risks inherited
in open-source LLMs, such as hallucinations.

Liscence

The datasets used in this research work are open-
sourced and can be seen in references. We derive
some datasets from the original version within the
intended use term. For the GDELT dataset, as
stated in the terms of use of GDELT2, this project
is an open platform for research and analysis of
global society and thus all datasets released by
the GDELT Project are available for unlimited
and unrestricted use for any academic, commer-
cial, or governmental use of any kind without fee.
One may redistribute, rehost, republish, and mirror
any of the GDELT datasets in any form. How-
ever, any use or redistribution of the data must
include a citation to the GDELT Project and a
link to this website (https://www.gdeltproject.org/).
ICEWS follows the MIT license on its official web-
site (https://github.com/andybega/icews?tab=MIT-
2-ov-file) and YAGO is licensed under a Creative
Commons Attribution 4.0 International License
(https://yago-knowledge.org/).
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A Related Works

Temporal Knowledge Graphs Temporal knowl-
edge graphs (tKGs) are multi-relational, directed
graphs with labeled timestamped edges between
entities (nodes). Let E and P represent a finite set
of entities and predicates. A quadruple (es, r, eo, t)
represents a timestamped and labeled edge between
a subject entity es ∈ E and an object entity eo ∈ E
at a timestamp t ∈ T . Let F represent the set of
all true quadruples, i.e., real events in the world, the
temporal knowledge graph forecasting task predicts
missing object entity at timestamp t, i.e. (es, r, ?, t)
based on a set of observed factsO before t, which is
a subset of F . Current methods can be categorized
into two streams. Embedding-based models learn
representations of the quadruples with carefully de-
signed embedding models (Han et al., 2020a; Goel
et al., 2020; Sun et al., 2021; Han et al., 2020b;
Ding et al., 2022). Rule-based methods mine the
temporal logical rules extracted and extract candi-
dates directly on the tKGs (Liu et al., 2022).

Investigating Static KG with LLMs Later ideas
also investigated static KG with LLMs utilizing
the knowledge-aware prompting methods (Galkin
et al., 2023; Li et al., 2024; Baek et al., 2023; Rony
et al., 2022; Sun et al., 2023; Zhang et al., 2022).
However, they cannot be transferred to the tKG do-
main due to their ignorance of temporal character-
istics. Specifically, (Li et al., 2024) uses structured
retrieved triples for reasoning on KG and conducts
a much simpler task of reasoning on static KG.
GenTKG is not only more pioneer but also more
powerful since tKG forecasting is more difficult
due to its temporal dynamics and we contribute our
distinct RAG framework for temporal reasoning
with LLMs.

Investigating TKG with Language Models The
semantic part stored in the temporal knowledge
graphs is heavily overlooked in either embedding-
based or rule-based temporal knowledge graph
methods. Early explorers had tryouts in introduc-
ing language models in the TKG domain, some
fused pre-trained language representations to the
temporal knowledge embeddings (Han et al., 2022),
and some flattened explicit temporal events with
the emergent in-context learning ability of large
language models however not comparable with con-
ventional performance (Lee et al., 2023). (Ding
et al., 2023) explores LLM in the zero-shot rela-
tional learning settings in the TKG forecasting task.
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B Supplimentary Materials

B.1 Discussion on Cross-domain
Generalizability

We give further details regarding cross-domain gen-
eralizability experiments in Sec 4.2 and Figure 3.

Cross-check Experiment Settings To assess the
cross-domain generalizability according to the 4
test benchmarks in this paper, we conduct 4 se-
ries of cross-domain generalization settings respec-
tive to each benchmark. We define that a series of
cross-checking settings consists of a center evalua-
tion dataset A with the other three cross-checking
datasets denoted as B, C,D. Inside a series, a sin-
gle evaluation on A is conducted by comparing
all inference results on the center A including (1)
all baseline methods trained on A, (2) original
GenTKG trained on A, and (3) generalized Gen-
TKG trained one of the other three cross-checking
dataset, e.g. B. In total, 4× 3 = 16 cross-checking
experiments are conducted.

Experiment Results Figure 3 reports results for
the cross-domain generalizability of GenTKG. Fig-
ure 3(a) visualizes a single evaluation in a se-
ries, taking GDELT as the evaluation dataset, and
ICEWS14 as the cross-checking dataset for an ex-
ample. Figure 3(b) visualizes the result differences
between generalized GenTKG compared with orig-
inal GenTKG (-Ori), and compared with ICL base-
line (-ICL). The upper row represents the relative
difference(%) of generalized GenTKG subtracted
by original GenTKG (-Ori). The lower row rep-
resents the relative difference(%) of generalized
GenTKG subtracted by ICL baseline (-ICL). Please
refer to Table 4 with absolute value differences and
Table 5 with relative value differences.

Regarding Fig 3(a), similar patterns can be seen
in other series of cross-checking. Table 1 with
the last row reports the results of GenTKG trained
on ICEWS14 and tested with on other 3 datasets
ICEWS18, GDELT, and YAGO. The generalized
GenTKG trained on ICEWS14 have comparable
and even exceeding results on ICEWS18, GDELT,
and YAGO, compared to baselines, and suffer only
slight drops compared to the setting of original
training setting.

Regarding Fig 3(b), two conclusions can be
drawn. First, generalized settings have a perfor-
mance drop compared to the original ones. Second,
similar datasets tend to have better generalization
performance when exchanging the training dataset.

Third, even the cross-checking setting of the dis-
tant dataset can obtain better performance than ICL
with minor cases of performance drop but still com-
parable.

This is accountable for dataset similarities.
ICEWS14 and ICEWS18 originate from the same
political event database with differences in the
year where the data come from. ICEW14 collects
data from 2014 while ICEWS18 from 2018 with
a time interval of day. Therefore, the two datasets
share similar patterns regarding events and patterns.
GDELT documents events between global enti-
ties with a time interval of 15 minutes and YAGO
originates from WIKI with a time interval of year
hence they contain more complex relations and are
much more distant than that between ICEWS14
and ICEWS18.

B.2 Detailed TLR Algorithm

Algorithm 1: TLR Retrieval
Input :Temporal knowledge graph G,

query (es, r, ?, t)
Parameter :Time window length w ∈ N+,

learned rules T R
Output :A set of retrieved facts

Gs(es, r, t)
1 Gs(es, r, t)← ∅;
2 for (es, r, ?, t) ∈ G do
3 TW ← [t− w, t];
4 for fact← (es, rh, eo, t− w < t) ∈ G

do
5 Gs(es, r, t)← Gs(es, r, t) ∪ fact
6 end
7 for top k rules w.r.t rh ← rb ∈ T R do
8 Get a list rb ← rb1 , rb2 , · · ·, rbk
9 end

10 for
fact← (es, r ∈ rb, eo, t−w < t) ∈ G
do

11 Gs(es, r, t)← Gs(es, r, t) ∪ fact
12 end
13 return Gs(es, r, t)
14 end
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B.3 Implementation Details.
We run experiments 3 times and take averages with
A40 GPU. For the TLR part, we use the rule length
of 1, the number of random walks of 200, the time
window of the maximum length of each dataset,
and the maximum history length of 50. In the
FIT training, we use the batch size of 1024, the
learning rate of 3e− 4, the context length of 4096,
the target length of 128, the LoRA rank of 8, the
LoRA dropout rate of 0.05, and few-shot tuning
of 1024-shots. Besides, we use the Adam opti-
mizer (Kingma and Ba, 2014).

B.4 Supplementary Statistics

Table 3: Dataset statistics.

Datasets #train #valid #test #entity #relations time gap
ICEWS14 74854 8514 7371 7128 230 1 day
ICEWS18 373018 45995 49545 23033 256 1 day
GDELT 79319 9957 9715 5850 238 15 mins
YAGO 220393 28948 22765 10778 23 1 year
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Table 4: Absolute difference value for cross-checking between generalized GenTKG compared with original
GenTKG (-ori), and compared with ICL baseline(-ICL).

Eval
Train Hits@1 Hits@3 Hits@10

ICEWS14 ICEWS18 GDELT YAGO ICEWS14 ICEWS18 GDELT YAGO ICEWS14 ICEWS18 GDELT YAGO

∆(-Ori)

ICEWS14 - -0.05 -0.04 -0.05 - -0.05 -0.03 -0.03 - -0.04 -0.05 -0.05
ICEWS18 0.02 - -0.02 -0.02 -0.02 - -0.02 -0.02 -0.02 - -0.04 -0.04
GDELT -0.04 -0.12 - -0.09 -0.07 -0.15 - -0.10 -0.08 -0.17 - -0.11
YAGO -0.08 -0.11 -0.09 - -0.07 -0.09 -0.06 - -0.02 -0.06 -0.03 -

∆(-ICL)

ICEWS14 - 0.05 0.05 0.04 - -0.01 -0.01 0.00 - -0.02 -0.03 0.01
ICEWS18 0.08 - 0.03 0.03 0.04 - 0.02 0.02 0.05 - 0.04 0.07
GDELT 0.05 -0.02 - 0.00 0.04 -0.08 - -0.03 0.03 -0.11 - 0.00
YAGO -0.05 -0.04 -0.09 - -0.05 -0.04 -0.09 - -0.09 -0.07 -0.10 -

Table 5: Relative difference (%) value for cross-checking between generalized GenTKG compared with original
GenTKG (-ori), and compared with ICL baseline(-ICL).

Eval
Train Hits@1 Hits@3 Hits@10

ICEWS14 ICEWS18 GDELT YAGO ICEWS14 ICEWS18 GDELT YAGO ICEWS14 ICEWS18 GDELT YAGO

∆(−Ori)
Ori × 100%

ICEWS14 - -13.71 -10.75 -12.63 - -9.43 -5.33 -6.35 - -7.10 -9.06 -8.88
ICEWS18 7.83 - -8.76 -10.60 -4.31 - -5.17 -6.61 -5.10 - -9.28 -8.12
GDELT -23.24 -65.95 - -46.49 -23.38 -53.96 - -35.25 -21.51 -46.65 - -31.01
YAGO -10.77 -15.66 -12.31 - -9.13 -12.13 -7.69 - -3.05 -7.51 -4.20 -

∆(−ICL)
ICL × 100%

ICEWS14 - 18.65 18.25 17.46 - -3.28 -1.87 -0.94 - -2.98 -4.96 1.79
ICEWS18 58.59 - 26.56 24.22 13.24 - 6.25 8.82 15.79 - 11.76 22.60
GDELT 88.33 -28.33 - 3.33 21.95 -46.34 - -18.90 13.01 -44.31 - 0.41
YAGO -7.55 -6.19 -14.20 - -6.97 -4.74 -11.58 - -11.12 -8.68 -12.35 -

Table 6: Appendix table for few-shot results of conventional methods and GenTKG.

Top 5% Top 10% Top 20% Top 30% Top 50% Top 75% Top 100%
Hits@1 Hits@3 Hits@10 Hits@1 Hits@3 Hits@10 Hits@1 Hits@3 Hits@10 Hits@1 Hits@3 Hits@10 Hits@1 Hits@3 Hits@10 Hits@1 Hits@3 Hits@10 Hits@1 Hits@3 Hits@10

RE-GCN 13.79 22.09 30.27 16.47 25.23 34.19 19.63 29.67 39.83 19.30 30.66 42.97 24.05 36.72 48.84 27.23 40.42 54.04 31.30 47.30 62.60
xERTE 06.95 14.17 25.46 15.27 26.79 39.43 17.80 29.26 42.08 20.56 31.39 43.63 22.51 34.15 46.59 24.25 36.07 48.27 33.00 45.40 57.00
TANGO 11.29 17.18 22.97 11.34 17.47 22.98 11.25 17.38 23.38 11.25 17.39 23.40 14.37 17.51 22.77 11.25 16.90 22.50 27.20 40.80 55.00

Timetraveler 21.06 34.78 49.10 23.10 35.71 49.96 26.69 39.42 51.78 27.98 40.14 53.23 30.05 42.82 54.74 32.11 45.33 57.14 31.90 45.40 57.50
TLogic Original 26.03 37.42 46.50 27.65 39.55 48.72 28.72 40.48 50.71 29.11 41.79 51.90 29.84 42.40 53.37 31.89 45.01 57.37 33.20 47.60 60.20

GenTKG 30.60 42.20 49.30 34.00 45.40 52.10 34.90 46.60 54.00 34.70 46.90 54.40 36.00 48.70 55.50 36.50 48.30 55.30 37.20 48.80 56.30
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