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Abstract
The natural language generation domain has
witnessed great success thanks to Transformer
models. Although they have achieved state-of-
the-art generative quality, they often neglect
generative diversity. Prior attempts to tackle
this issue suffer from either low model capac-
ity or over-complicated architectures. Some
recent methods employ the VAE framework
to enhance diversity, but their latent variables
fully depend on the input context, restricting ex-
ploration of the latent space. In this paper, we
introduce VOLTA, a framework that elevates
generative diversity by bridging Transformer
with VAE via a more effective cross-attention-
based connection, departing from conventional
embedding concatenation or summation. Ad-
ditionally, we propose integrating InfoGAN-
style latent codes to enable input-independent
variability, further diversifying the generation.
Moreover, our framework accommodates dis-
crete inputs alongside its existing support for
continuous inputs. We perform comprehensive
experiments with two types of Transformers on
six datasets from three different NLG tasks to
show that our approach can significantly im-
prove generative diversity while maintaining
generative quality.

1 Introduction

The rapid advancement of Natural Language Gener-
ation (NLG) has been propelled by the remarkable
success of Transformer models, including the no-
table series of GPT models (Radford et al., 2018,
2019; Brown et al., 2020; Ouyang et al., 2022; Ope-
nAI, 2023b,a), T5 (Raffel et al., 2020), OPT (Zhang
et al., 2022), and LLaMA (Touvron et al., 2023),
etc. While they have demonstrated unparalleled
proficiency in autoregressive text generation (Li
et al., 2020b; Hu et al., 2022b; Li et al., 2022; Qiu
et al., 2024), they predominantly focus on learning
to reassemble text from large corpora with high
generative quality. However, the pursuit of genera-
tive diversity remains a critical yet underexplored

C
on

te
xt

Atop the Main Building’s gold dome is a golden
statue of the Virgin Mary. Immediately in front of
the Main Building and facing it, is a copper statue
of Christ with arms upraised with the legend "Ven-
ite Ad Me Omnes". Next to the Main Building
is the Basilica of the Sacred Heart. Immediately
behind the basilica is the Grotto ······

Q What type of statue is on the main building?
A golden statue of the Virgin Mary
Q What is the name of the copper statue on the main

building?
A a copper statue of Christ with arms upraised with ···
Q What is next to the main building?
A Grotto

Table 1: Examples of generation diversity by VOLTA
on the QAG task. Our framework enables generating
three distinct question-answer pairs.

frontier in NLG. Generative diversity is distinct
from mere paraphrasing, as it encompasses not only
altered syntax but also varied semantics. Early at-
tempts, such as diverse beam search (Vijayakumar
et al., 2018), have made strides in enhancing diver-
sity by modifying the decoding process. Nonethe-
less, these methods often fall short in enhancing the
model itself, limiting their ability to significantly
improve diversity.

Variational Autoencoder (VAE) (Kingma and
Welling, 2014) offers a framework addressing the
low-diversity issue. By encoding inputs into lower-
dimensional latent variables, VAE introduces the
opportunity to diversify the decoding process: per-
turbing these latent variables allows generated sen-
tences to deviate from annotated ones, thereby en-
hancing diversity. However, prior attempts like
Info-HCVAE (Lee et al., 2020), utilizing LSTM-
based VAEs, inherit limitations associated with
LSTMs. While Transformers have emerged as
the mainstream network, integrating them into
the VAE framework poses challenges due to the
parallelized self-attention mechanism. More pre-
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Figure 1: The overview of VOLTA. The encoder en-
codes the context into VAE latent variables. The vari-
ables, augmented with InfoGAN-style latent codes, can
be continuous or discrete based on the input type. Sub-
sequently, they are connected to the decoder through the
cross-attention mechanism. Leveraging the variability
inherent in the latent space, the decoder generates di-
verse content conditioned on the context.

cisely, this complexity arises from inserting a bot-
tleneck layer of latent variables between Trans-
former layers, as the embeddings of the entire se-
quence pass through the model simultaneously. Op-
timus (Li et al., 2020a), pioneering the fusion of
Transformers with VAEs, adopts BERT (Devlin
et al., 2019) as the VAE encoder and GPT-2 (Rad-
ford et al., 2019) as the VAE decoder. Subsequent
works attempt to improve upon Optimus (Hu et al.,
2022a; Tu et al., 2022; Deng et al., 2023), yet they
fall short in addressing its three major drawbacks.
Firstly, it introduces embedding concatenation and
summation to connect latent variables to the de-
coder, with Optimus performing optimally only
upon their combined use. In contrast, our novel
cross-attention-based connection proves more ef-
fective. Secondly, Optimus’ model architecture
is overly intricate. It relies on two distinct Trans-
former models, necessitating two unique tokenizers
and extensive pretraining. We streamline this com-
plexity by either employing a shared Transformer
decoder as the backbone network or leveraging an
encoder-decoder Transformer model. This renders
our framework compatible even with Large Lan-
guage Models (LLMs) such as LLaMA (Touvron
et al., 2023) or GPT-4 (OpenAI, 2023a). Lastly,
while Optimus solely handles continuous latent
variables, VOLTA expands its scope to cover dis-
crete inputs by encoding them into discrete latent
variables, enriching the model’s generalizability.

The VAE framework offers increased generative
diversity, yet its input-dependent latent variables
limit exploration within the latent space, restricting
the model’s ability to generate a wider array of di-
verse content. In pursuit of an input-independent
approach to vary the generation process, we pro-

pose attaching latent codes to VAE latent variables,
inspired by InfoGAN (Chen et al., 2016). Our
method employs the Variational Mutual Informa-
tion Maximization (VMIM) objective to encourage
the decoder to autonomously identify distinct se-
mantic features via latent codes. Consequently, this
enables more variability in generated content with-
out any reliance on the input. To the best of our
knowledge, our work represents the first utilization
of latent codes within NLG.

Our framework, dubbed VOLTA (VariatiOnal
MutuaL InformaTion Maximizing Autoencoder),
derives its name from its adherence to the Varia-
tional Autoencoder framework and the incorpora-
tion of the Variational Mutual Information Maxi-
mization objective from InfoGAN. To validate the
effectiveness of VOLTA, we benchmark it against
state-of-the-art baseline models across six datasets
from three representative NLG tasks: language
modeling, question-answer generation, and dialog
response generation. We also conduct comprehen-
sive ablation studies to examine the impact of the
different components of VOLTA.

The main contributions of this paper are:

• VOLTA proposes a novel cross-attention
mechanism to integrate Transformer with
VAE. It exhibits generalizability to both con-
tinuous or discrete latent variables and various
Transformer architectures, including decoder-
only or encoder-decoder Transformers.

• To attain input-independent variability, we
propose attaching InfoGAN-style latent codes
to VAE latent variables.

• Comprehensive experimental results on six
datasets spanning three distinct NLG tasks
validate the efficacy of our model in enhancing
generative diversity while upholding quality.

2 Related Work

In recent years, a multitude of Transformer-based
models has emerged, such as the GPT series (Rad-
ford et al., 2018, 2019; Brown et al., 2020; Ouyang
et al., 2022; OpenAI, 2023b,a), T5 (Raffel et al.,
2020), OPT (Zhang et al., 2022), and LLaMA (Tou-
vron et al., 2023), etc. These models are primar-
ily trained to optimize the alignment between gen-
erated content and annotations, often prioritizing
quality over diversity in the generative process.

Variational Autoencoders (VAEs) (Kingma and
Welling, 2014) represent a powerful approach to
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diverse generation in NLG. They diverge from Au-
toencoders (Hinton and Salakhutdinov, 2006) by
introducing low-dimensional latent variables. Orig-
inally applied in computer vision, VAEs were later
adapted for natural language processing. Early at-
tempts, such as Info-HCVAE (Lee et al., 2020),
employed LSTMs (Hochreiter and Schmidhuber,
1997) as both encoder and decoder, achieving diver-
sity in question-answer generation (QAG). How-
ever, these LSTM-based models suffered from ar-
chitectural complexities, utilizing separate LSTM
modules for encoding and decoding context, ques-
tions, and answers. Optimus (Li et al., 2020a) ad-
dressed some of these challenges by using BERT
(Devlin et al., 2019) as the encoder and GPT-2
(Radford et al., 2019) as the decoder, surpass-
ing LSTM-based models in VAE language mod-
eling. Subsequent models like VarMAE (Hu et al.,
2022a) focused on applying VAEs in language un-
derstanding, while RegaVAE (Deng et al., 2023)
attempted augmentation through retrieval methods,
and AdaVAE (Tu et al., 2022) explored the usage
of two adaptive GPT-2 models. Our VOLTA model
further simplifies the architecture by leveraging a
shared backbone network or utilizing an encoder-
decoder Transformer model.

In pursuit of more variability and subsequently,
higher diversity, several methods have employed
unique strategies such as special prompt tokens
or control phrases. These include SimpleTOD
(Hosseini-Asl et al., 2020), CTRL (Keskar et al.,
2019), Soloist (Peng et al., 2021), CGRG (Wu
et al., 2021), and MEGATRON-CNTRL (Xu et al.,
2020). Dathathri et al. (2020) proposed the Plug
and Play Language Model, which guides language
generation by plugging simple attribute classifiers
into existing language models. InfoGAN (Chen
et al., 2016) originally controlled image genera-
tion using latent codes trained with the Variational
Mutual Information Maximization (VMIM) objec-
tive. In computer vision, attempts to merge Info-
GAN with VAE for controllable generative mod-
els have resulted in models like VAE-Info-cGAN
(Xiao et al., 2020) and InfoVAEGAN (Ye and Bors,
2021). However, InfoVAE (Zhao et al., 2019),
InfoMax-VAE (Lotfi-Rezaabad and Vishwanath,
2020), Melis et al. (2022), and VAE-MINE (Qian
and Cheung, 2019) applied VMIM to VAE to ad-
dress the latent variable collapse problem rather
than focusing on improving variability. To the
best of our knowledge, our model is the first to
integrate Transformer models with the VAE and

InfoGAN frameworks in Natural Language Gener-
ation (NLG). Although we focus on diversity in this
paper, other aspects of NLG are also worth explor-
ing in the future (Song et al., 2023c,a,b; Ma et al.,
2023), such as multi-modality, bias, and fairness.

3 Our Method

Our VOLTA framework is meticulously designed
to facilitate diverse generation, leveraging latent
variables from the VAE framework (Kingma and
Welling, 2014) in conjunction with InfoGAN-style
latent codes (Chen et al., 2016). Initially, VOLTA
encodes the input into latent variables. Subse-
quently, by sampling new latent variables, slight
alterations in the decoded content can be achieved,
promoting greater diversity. Differing from VAE
latent variables, InfoGAN-style latent codes oper-
ate independently of input, providing the freedom
to explore a broader latent space. This distinct at-
tribute offers an alternative avenue to introduce in-
creased variability within the generated sequences.
Figure 1 includes an overview of VOLTA.

3.1 Preliminaries
In the natural language generation domain, various
tasks exist, including language modeling, dialog re-
sponse generation, and question-answer generation.
Generally, NLG aims to generate a new sequence
xg = [xg,1, . . . , xg,n] based on a provided con-
text sequence xc = [xc,1, . . . , xc,m], where each
x represents an individual token. The objective
is to identify a model f(·) capable of generating
an appropriate sequence using the given context:
f(xc) → xg. In cases like extractive answer gen-
eration, the answer is denoted by a pair of integer
indices (s, e) ∈ N2, indicating the start and end
positions of the answer span. Then the answer to-
kens xa = [xc,s, · · · , xc,e] can be located within
the context sequence xc. It constitutes a part of xg

unless explicitly specified otherwise.

3.2 Model Architecture
VOLTA adheres to the VAE framework, where
the encoder fenc(·) and the decoder fdec(·) are
both Transformer models. Unlike Optimus (Li
et al., 2020a), which utilizes BERT as the encoder
and GPT-2 as the decoder, our model offers the
simplicity of a shared backbone network between
the encoder and decoder. Additionally, VOLTA
can adapt encoder-decoder Transformers (Vaswani
et al., 2017) seamlessly into VAE, leveraging their
inherent encoder and decoder architecture.
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Latent variables from encoder. The encoder en-
codes the input sequence into multiple independent
continuous or discrete latent variables, selecting
the most suitable based on the input type. For
instance, dialog responses and questions are aptly
represented using continuous latent variables, align-
ing with their semantic nature. Conversely, discrete
latent variables prove advantageous in modeling
answer spans, aligning with their positions within
the context. Specifically, latent variables can be
calculated as follows:

henc = fenc(xc,xg),

µi, σi = FC(henc), πj = FC(henc),

zg,i ∼ N (µi, σ
2
i ), za,j ∼ Cat(πj),

(1)

where FC(·) is a single fully-connected layer and
each instance has a distinct set of learnable param-
eters, indexing is omitted for simplicity; N (·) is
the Gaussian distribution with parameters µi and
σi; Cat(·) is the categorical distribution whose pa-
rameters πj represent the event probabilities of k
categories. Back-propagation through the latent
variables is achieved using the Gaussian distribu-
tion reparametrization trick (Wolpe and de Waal,
2019) for zq = [zg,1, zg,2, zg,3, ···] and Gumbel-
Softmax (Maddison et al., 2017; Jang et al., 2017)
reparametrization for za = [za,1, za,2, za,3, ···].
Latent codes. Supplementing the VAE latent
variables, we incorporate InfoGAN-style latent
codes (Chen et al., 2016) to infuse the model with
input-independent variability. These latent codes
come in two types: continuous latent codes, which
can conform to either uniform distribution or Gaus-
sian distribution, and discrete latent codes, which
also adhere to categorical distribution:

cg = [cg,1, cg,2, cg,3, ···], cg,i ∼ Uni(−1, 1),

ca = [ca,1, ca,2, ca,3, ···], ca,j ∼ Cat(ρ),
(2)

where Uni(·) is the uniform distribution; the cat-
egorical distribution has parameters ρ = 1

k1 that
uses the same number of categories k as the dis-
crete latent variables za because this compatibility
is necessary as they will be concatenated together.

Cross-attention-based latent-space connection.
Optimus (Li et al., 2020a) uses two channels to
connect latent variables to the decoder: the ‘embed-
ding’ channel involves a fully-connected layer to
obtain a latent embedding, which is subsequently
added to word embeddings. Meanwhile, the ’mem-
ory’ channel generates latent embeddings for each

Transformer block within the decoder. These latent
embeddings are then concatenated with decoder
hidden states as past information. The optimal
performance is attained when both channels are
utilized, albeit complicating the architecture.

In Transformers (Vaswani et al., 2017), the atten-
tion mechanism can take the form of self-attention
or cross-attention. We introduce a unified and no-
tably more effective cross-attention-based connec-
tion between the latent space and the decoder:

Klatent = FC([zg, cg]),

Vlatent = FC([zg, cg]),

Attention(Q,Klatent, Vlatent)

= softmax(
QKT

latent√
dk

)Vlatent.

(3)

We facilitate the transmission of latent space in-
formation into the decoder using Klatent and Vlatent,
queried by the decoder via Q. In cases where the
Transformer model lacks pretrained weights for
cross-attention layers, such as decoder-only Trans-
formers, we retain Optimus’ connection method.
However, we streamline it by incorporating a
shared backbone for both the encoder and decoder.

Generation. VOLTA is trained in the typical au-
toregressive manner to predict subsequent tokens
by considering the preceding tokens:

hg,t = fdec(xc,xg,<t, [zg, cg]),

p(xg) =
n∏

t=1

p(xg,t | xc,xg,<t, [zg, cg])

=

n∏

t=1

softmax(FC(hg,t)),

(4)

where xg,<t means the first t− 1 tokens in xg.
The process for generating discrete data follows

a similar approach but involves a distinct predic-
tion head. Specifically, in the scenario of answer
generation:

ha = fdec(xc, [za, ca]),

p(s) = softmax(FC(ha,1:m)),

p(e) = softmax(FC(ha,1:m)),

s = argmax
s∈{1,···,m}

p(s),

e = argmax
e∈{1,···,m}

p(e),

xa = [xc,s, · · · , xc,e],

(5)

where ha denotes the hidden states obtained from
the decoder; the subscript 1 : m means slicing
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Specifications Quality Diversity
Model Type Para. EM F1 Dist1 Dist2 Dist3 Dist4 S-BL ↓
GPT-2 TFM-Dec 124M 56.28 67.86 8.23 38.63 62.58 75.42 32.09

BART TFM-Enc-Dec 139M 58.03 69.99 8.08 38.49 62.34 74.91 32.66

T5 TFM-Enc-Dec 222M 59.76 71.98 8.18 40.78 65.52 77.20 30.51

OPT TFM-Dec 331M 58.57 70.40 7.88 38.51 63.80 76.55 29.97

HCVAE VAE w/ LSTM 158M 61.81 73.68 7.00 33.47 57.24 71.68 32.66

Optimus VAE w/ TFM 233M 58.05 69.55 8.05 40.27 66.63 79.88 29.28

VOLTA VAE w/ TFM 124M 65.56 77.31 8.32 40.84 68.05 82.64 28.34

Table 2: Performance comparison on question-answer generation. Abbreviations: “HCVAE”: Info-HCVAE; “Para.”:
Parameter Count; “Distk”: Distinct-k; “S-BL”: Self-BLEU; “TFM”: Transformer; “Enc”, “Dec”: Encoder, Decoder;
“↓” means lower is better.

an array from index 1 to m, which corresponds
to the context tokens. This results in a generated
answer xa, where s denotes the starting index and
e denotes the ending index.

3.3 Training Objectives

Since the marginal likelihood p(x) is intractable
to compute, we approximate the true posterior
p(z | x) with q(z | x) based on our encoder
fenc(·). Following the standard VAE formula-
tion, we define the evidence lower bound (ELBO)
as ELBO = −LAE(x) − LREG(z). Here, LAE
stands for Autoencdoer (AE) reconstruction loss
and LREG represents DKL(q(z | x) ∥ p(z)) for
regularization.

Latent variable regularization loss. The KL di-
vergence for regularizing the continuous or discrete
latent variable is:

LREG(zg) = log
σ′

σ
+

σ2 + (µ− µ′)2

2σ′2 − 1

2
,

LREG(za) =

k∑

i=1

πi log
πi
π′
i

, (6)

where µ, σ,π follows Eq. (1); we assume that
the priors p(zg) and p(za) follow N (µ′, σ′2) and
Cat(π′), respectively. In practice, µ′, σ′ and π′

can be obtained by encoding only the context xc.
The total LREG is the mean over the latent variables.
The derivations are in Appendix A.3, A.4.

Latent code VMIM loss. To prevent the model
from ignoring the latent codes, we encourage it to
recover the latent codes in the generation phase
by optimizing the Variational Mutual Informa-
tion Maximization (VMIM) objective (Chen et al.,

2016):

I(c; fdec(x, [z, c]))

= H(c) + Ex′
[
DKL

(
p(c′ | x′) ∥ q(c′ | x′)

)

+ Ec′
[
log q(c′ | x′)

]]

≥H(c) + Ex′
[
Ec′
[
log q(c′ | x′)

]]

≜H(c)− LVMIM(c),

(7)

where x′ ∼ fdec(x, [z, c]); c′ ∼ p(c | x′) is
the recovered latent code. Because the posterior
p(c | x′) is difficult to obtain, an auxiliary dis-
tribution q(c | x′) based on fdec(·) is added to
approximate it. The entropy H(c) is a constant and
thus excluded from LVMIM(c). The derivation of
this objective is included in Appendix A.5.

In our model, a fully-connected layer is added to
the decoder for recovering each latent code c:

θ = FC(fdec(x, [z, c])),

LVMIM(c) = − log p(c′; θ),
(8)

where the parameter θ depends on the distribution
type of the corresponding latent code c. The total
VMIM loss is the mean over the latent codes.

Overall objective. By Eq. (6)(8), the overall loss:

L(x) = LAE(x) + βLREG(z) + γLVMIM(c), (9)

where β, γ denote the coefficients used to adjust the
loss weights; the Autoencoder reconstruction loss
LAE(x) corresponds to the standard cross-entropy
loss employed for language modeling.

4 Experiments

4.1 Tasks and Datasets
We evaluate VOLTA against various baselines
across six datasets, spanning three distinct NLG
tasks:
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Dataset PTB YELP YAHOO SNLI
Model PPL ↓ MI AU PPL ↓ MI AU PPL ↓ MI AU PPL ↓ MI AU
M. A. 101.40 0.00 0 40.39 0.13 1 61.21 0.00 0 21.50 1.45 2
C. A. 108.81 1.27 5 - - - 66.93 2.77 4 23.67 3.60 5
SA-VAE - - - - 1.70 8 60.40 2.70 10 - - -
Aggressive 99.83 0.83 4 39.84 2.16 12 59.77 2.90 19 21.16 1.38 5
AE-BP 96.86 5.31 32 47.97 7.89 32 59.28 8.08 32 21.64 7.71 32
Optimus 51.39 0.02 0 27.63 0.02 0 29.35 0.04 0 66.58 9.20 32
VOLTA 45.29 8.17 32 14.14 9.00 32 14.82 9.02 32 25.69 9.24 32

Table 3: Performance comparison on language modeling tasks. Baseline results are obtained from Li et al. (2020a),
excluding Optimus, which is not second-stage pretrained for a fair comparison. The maximum achievable AU is 32.

Quality Diversity Overall
Model Precision Recall F1
Seq2Seq 0.232 0.232 0.232
SeqGAN 0.270 0.270 0.270
CVAE 0.222 0.265 0.242
VHRED 0.341 0.278 0.306
VHCR 0.271 0.260 0.265
WAE 0.266 0.289 0.277
iVAEMI 0.239 0.355 0.285
T5 0.321 0.321 0.321
Optimus 0.313 0.362 0.336
VOLTA 0.373 0.401 0.387

Table 4: Performance comparison on dialog response
generation. Baseline results are from Li et al. (2020a)
except T5.

• Dialog response generation: we utilize the
DailyDialog dataset (Li et al., 2017b), com-
prising approximately 13K multi-turn conver-
sations, averaging eight turns per dialog;

• Question-answer generation (QAG): we em-
ploy the SQuAD dataset (Rajpurkar et al.,
2016), with approximately 100K question-
answer pairs where the answers are extractive;

• Language modeling: four LM datasets: Penn
Treebank (PTB) (Marcus et al., 1993), SNLI
(Bowman et al., 2015), YELP, and YAHOO
(Yang et al., 2017; He et al., 2019).

4.2 Implementation Details

We conduct experiments using two Transformer
model variants: the decoder-only Transformer,
leveraging the GPT-2 base model (Radford et al.,
2019), and the encoder-decoder Transformer, uti-
lizing the T5 base model (Raffel et al., 2020).

With the decoder-only Transformer, since it com-
prises solely Transformer decoder blocks, we em-
ploy it as the shared backbone for both the en-
coder and decoder within VOLTA. In contrast,
the encoder-decoder Transformer features dis-
tinct Transformer encoder and decoder, aligning
conveniently with the VOLTA encoder and de-
coder structures. Throughout our experiments, all
Transformer-based models load pretrained check-
points from Huggingface 1, undergoing fine-tuning
exclusively on the respective datasets. Unlike
the approach in Optimus (Li et al., 2020a), no
secondary-stage pretraining is executed.

Our model utilizes a default configuration com-
prising 32 Gaussian latent variables, along with 4
uniform latent codes. For extractive answers, we
utilize 20 categorical latent variables and 5 cate-
gorical latent codes, all comprising 10 categories,
as shown in Table 5. Training is performed over
10 epochs with a learning rate set to 5× 10−5. To
address the KL vanishing issue (Bowman et al.,
2016), we employ a linear annealing schedule for
β (Li et al., 2020a). This includes an initial in-
creasing phase covering the first 25% of training,
ascending from 0 to a maximum value of 0.1 (Lee
et al., 2020). Additionally, we set λ = 1.0 in the
KL thresholding scheme (Li et al., 2019) for lan-
guage modeling. We conducted the experiments on
four TITAN V GPUs.

4.3 Metrics
While our focus lies in achieving diverse NLG,
maintaining generative quality is paramount, as
completely random sentences might achieve per-
fect diversity scores but lack meaningful content.

Generative quality. In dialog response genera-
tion, we evaluate generative quality using BLEU-

1https://huggingface.co/
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Configuration Quality Diversity
Row zg za Var. cg ca EM F1 Dist1 Dist2 Dist3 Dist4 S-BL ↓
DFLT 32 20 ✓ Rnd Rnd 65.56 77.31 8.32 40.84 68.05 82.64 28.34

A 16 20 ✓ Rnd Rnd 63.00 75.45 8.18 38.73 63.54 76.94 34.81

B 64 20 ✓ Rnd Rnd 64.82 76.21 8.11 38.28 63.38 76.98 34.63

C 32 10 ✓ Rnd Rnd 61.73 74.32 8.37 39.66 65.77 80.36 30.75

D 32 40 ✓ Rnd Rnd 62.70 75.11 8.37 39.80 66.08 80.65 30.50

E 32 20 ✗ Rnd Rnd 45.72 57.65 5.12 20.39 31.53 37.75 76.04

F 32 20 ✗ Fix Rnd 46.71 58.49 4.44 16.40 24.51 28.77 84.19

G 32 20 ✗ Rnd Fix 46.37 58.37 4.50 16.49 24.45 28.59 84.66

Table 5: The ablation study of VOLTA’s latent space on the QAG task. The orange text highlights the difference
from the default configuration in row DFLT. Abbreviations: “Var.”: variational(✓)/deterministic(✗) latent variables;
“Rnd/Fix”: random/fixed latent codes.

C
on

te
xt The university is the major seat of the Congregation of Holy Cross (albeit not its official

headquarters, which are in Rome). Its main seminary, Moreau Seminary, is located on the
campus across St. Joseph lake from the Main Building ······

Q1 What catholic denomination is the university of new haven located in?
Q2 What is the main campus of moreau seminary?
Q3 What religious institution is located on the campus of moreau seminary?
Q4 What former retreat center is located near the grotto?
Q5 What religious denomination does the moreau seminary belong to?
Q6 What is the oldest building on campus?
Q7 What is the main seminary in the university of kansas?
Q8 What is the main seminary of the college?
Q9 What retreat center is located near the grotto?

Table 6: An example of latent variable interpolation.

precision (Papineni et al., 2002). For language
modeling, we measure perplexity (PPL) and mu-
tual information (MI) to assess quality. In question-
answer generation, direct measurement against
SQuAD reference sentences is not feasible be-
cause higher diversity in its nature means shift-
ing the generated content away from these refer-
ences. Instead, Zhang and Bansal (2019) proposed
Question-Answering-based Evaluation (QAE), in-
cluding three main steps: (a) use the QAG model to
generate question-answer pairs for raw Wikipedia
entries; (b) train a separate question-answering
model on the generated QA pairs; (c) evaluate the
QA model’s performance on the SQuAD develop-
ment set, using exact match (EM) and F1 metrics
(Rajpurkar et al., 2016, 2018). Poor performance
in step (c) reflects low quality of the generated QA
pairs, indirectly assessing the QAG model’s qual-
ity. BERT (Devlin et al., 2019) serves as the QA
model in (b), and we utilize a QAMI loss to en-
hance QA pair relevance, akin to Info-HCVAE Lee
et al. (2020).

Generative diversity. In dialog response genera-
tion, we assess diversity using BLEU-recall (Pap-
ineni et al., 2002) as the diversity measurement. In
language modeling, we analyze the impact of VAE
latent variables by tracking the number of active
units (AU). Quantitatively measuring diversity in
generated questions involves two metrics: Distinct-
k (Li et al., 2016) and Self-BLEU (Zhu et al., 2018).
Distinct-k calculates the ratio of distinct k-grams to
the total number of generated words. Self-BLEU
computes the average BLEU score (Papineni et al.,
2002) for each sentence against all others, aiming
for dissimilarity among generated sentences. We
generate five QA pairs for each context.

4.4 Question-Answer Generation

We compare VOLTA with several state-of-the-art
baselines on the question-answer generation task,
as summarized in Table 2. We base it on GPT-2 to
aim for the minimal model size, showcasing the ef-
ficiency of the VOLTA framework. The VAE com-
ponents in VOLTA add a mere 0.46M parameters.
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C
on

te
xt Holy Cross Father John Francis O’Hara was elected vice-president in 1933 and president

of Notre Dame in 1934. During his tenure at Notre Dame, he brought numerous refugee
intellectuals to campus; ······

Q1 cq = −.8 What was O’Hara’s first name?
Q2 cq = −.6 Who was elected vice president in 1933?
Q3 cq = −.0 What was O’Hara’s title prior to becoming vice president?
Q4 cq = +.4 What was O’Hara’s first title?
A John Francis O’Hara

C
on

te
xt During his 13 years the Irish won three national championships, had five undefeated seasons,

won the Rose Bowl in 1925 , and produced players such as George Gipp and the "Four
Horsemen". ······

A1 ca = 0 five A2 ca = 3 1925 A3 ca = 7 three

Table 7: Continuous (cq)/Discrete (ca) latent code for varying question/answer generation.

The first four baseline models—GPT-2 (Radford
et al., 2019), BART (Lewis et al., 2020), T5 (Raf-
fel et al., 2020) and OPT (Zhang et al., 2022)—all
rely on regular Transformer architectures, lacking
the variational aspects found in VAE and thereby
demonstrating lower generative diversity. Although
Info-HCVAE (Lee et al., 2020) used VAE, it inher-
ited LSTM’s limitations. We therefore also adapt
the Transformer-based VAE, Optimus (Li et al.,
2020a), to question generation. Our VOLTA frame-
work harnesses Transformer models’ high capacity
alongside the variability inherent in VAE and Info-
GAN. It stands out by achieving superior diversity
over all baselines while maintaining a relatively
small model size.

4.5 Language Modeling

In language modeling, we employ T5-based
VOLTA, comparing it with prior VAE approaches:
M. A. (Bowman et al., 2016), C. A. (Fu et al., 2019),
SA-VAE (Kim et al., 2018), Aggreesive Training
(He et al., 2019), AE-BP (Li et al., 2019), and the
Transformer-based VAE model, Optimus (Li et al.,
2020a). Our findings revealed that when solely
fine-tuned on LM datasets without prior extensive
second-stage pretraining on large-scale datasets,
the latent variables of the Optimus model (Li et al.,
2020a) collapsed. The reason behind this could lie
in Optimus employing two separate latent-space
connection methods, which are challenging to op-
timize. On the contrary, VOLTA’s unified cross-
attention-based approach proves notably more sta-
ble.

4.6 Dialog Response Generation

We compare VOLTA with Optimus (Li et al.,
2020a), the current state-of-the-art model, and sev-
eral other baselines: Seq2Seq (Serban et al., 2016),
SeqGAN (Li et al., 2017a), CVAE (Zhao et al.,
2017), VHRED (Serban et al., 2017), VHCR (Sub-
ramanian et al., 2018), WAE (Gu et al., 2019),
iVAEMI (Fang et al., 2019). VOLTA is based on
T5 (Raffel et al., 2020) for dialog response gener-
ation, and we include T5 as a baseline to assess
the impact of the VOLTA framework. We maintain
VOLTA’s generation process without incorporating
a joint latent space and fusion regularization for
history and response (Gao et al., 2019), enabling a
more general approach compared to Optimus.

4.7 Ablation Study

To assess the impact of the cross-attention-based
latent-space connection, we compare VOLTA with
Optimus in language modeling and dialog response
generation. Given that QAG uniquely involves
both continuous and discrete latent variables/codes,
we focus on ablating the latent space information
specifically within this task. Hence, the impact of
VOLTA’s three primary components is as follows:

• Cross-attention-based latent-space connec-
tion (Table 3, 4): Optimus employs two
distinct and intricate channels—embedding
concatenation and summation—which pose
challenges in optimization. In contrast,
VOLTA’s unified cross-attention-based ap-
proach is more stable. In language model-
ing, Optimus’ latent variables even collapsed
without their second-stage pretraining.
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GPT-2 Continuous Latent Variable

Figure 2: T-SNE visualization comparing question embeddings from GPT-2 with latent variable embeddings
by VOLTA. Points of the same color depict embeddings from the identical context. VOLTA showcases diverse
embeddings for each context, contrasting the deterministic nature of a vanilla LM.

• Latent variables (Table 5): Rows A-D show
a general detriment when there is either an ex-
cess or a shortage of latent variables. Row
E illustrates that when the latent variables
become deterministic, the model essentially
transforms into a conventional Autoencoder.
Consequently, the performance experiences a
significant decline, underscoring the critical
role of the VAE framework.

• Latent codes (Table 5): Rows F, G depict a
further decline in performance when we fur-
ther fix the latent codes from Row E, underlin-
ing the latent codes’ role in enhancing genera-
tive diversity.

4.8 Qualitative Analysis

Table 1 exemplifies a diverse instance of QAG
achieved by the variational nature of VOLTA. Our
model architecture facilitates two more methods
to alter the generation process. One method in-
volves interpolating latent variables, detailed in
Table 6. The other method is centered on adjusting
the InfoGAN-style latent codes, demonstrated in
Table 7. In contrast to latent variables, latent codes
are decoupled from the input context, affording the
model more flexibility to explore the latent space.

To visualize the distribution of latent variables
within the latent space, we utilize t-SNE (Van der
Maaten and Hinton, 2008) to represent latent vari-
able embeddings in a 2D space, comparing them
with GPT-2 embeddings. Figure 2 illustrates that
GPT-2 produces identical embeddings for a given
context. Conversely, our model displays the abil-
ity to generate a cluster of diverse Gaussian latent
variable points of the same color, subsequently de-
coded into a spectrum of distinct questions.

5 Conclusion

We present VOLTA, a framework merging the
power of Transformers with the variability in-
herent in VAE and InfoGAN. Diverging from
prior approaches, VOLTA introduces a novel cross-
attention-based connection linking the latent space
to the decoder, enhancing stability in optimiza-
tion. This innovative architecture accommodates di-
verse Transformer types, including decoder-only or
encoder-decoder architectures, and supports vary-
ing input types, be it continuous or discrete. Ad-
ditionally, our framework incorporates InfoGAN-
style latent codes, enabling input-independent vari-
ability, thereby further enriching generative di-
versity. Comprehensive experiments across six
datasets spanning three distinct NLG tasks show-
case VOLTA’s significant enhancement in genera-
tive diversity while preserving quality.

6 Limitations

Given limited computational resources, we did not
integrate LLM into the VOLTA framework, leaving
this as a potential area for future exploration. As
our model architecture is not confined to GPT-2
or T5, larger and more robust Transformer models
could be employed to demonstrate its generalizabil-
ity. Additionally, incorporating more NLG tasks
and datasets could further reinforce our experimen-
tal results.
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A Appendix

A.1 Notations

Because we use VAE in this paper, our model is
the composition of its encoder and decoder: f =
fenc ◦ fdec.

Symbol Description

C
on

st
an

t

m/n The length of the context/question

k
The number of categories in a categori-
cal distribution

V
ar

ia
bl

e

x Text sequence
z/c Latent variable/code vector
z/c A single latent variable/code

c/ q/ a Context/question/answer subscript
□,i Element index of a vector

s/e Answer span start/end token index
′ Generated content

M
od

el

fenc(·), fdec(·) Encoder, decoder
FC(·) Single fully-connected layer
N (·) Gaussian distribution
Uni(·) Uniform distribution
Cat(·) Categorical distribution
[···] Concatenation operation
CE(·) Cross-entropy loss

Table 8: Notations used in this paper.

A.2 Basic Definitions

Information is defined as:

I(X) = − logP (X) = log
1

P (X)
.

Entropy is defined as:

H(X) =E[I(X)]

=E[− log(P (X))]

=−
∫

p(x) log p(x)dx

H(X|Y ) =EX,Y [− log P(X|Y )]

=−
∫

f(x, y) log f(x|y)dxdy,

where p(x, y) is the probability mass function
of a discrete distribution, whereas f(x, y) is
the probability density function of a continuous
distribution.

Then mutual information is:

I(X;Y )

=DKL(P (X,Y ) ∥ P (X)P (Y ))

=

∫
p(x, y) log

p(x, y)

p(x)p(y)
dxdy

=−
∫

p(x, y) log p(y)dxdy

+

∫
p(x, y) log

p(x, y)

p(x)
dxdy

=−
∫

p(y) log p(y)dy

+

∫
p(x, y) log p(y|x)dxdy

=H(Y )−H(Y |X)

=H(X)−H(X|Y ),

because Kullback–Leibler divergence is defined to
be:

DKL(Q ∥ P )

=H(Q,P )−H(Q)

=EQ[− log P(X)]− EQ[− logQ(X)]

=

∫
q(x) log

q(x)

p(x)
dx

≥0,

where H(Q,P ) is the cross entropy of Q and P .

A.3 Optimus (Beta-VAE)

In Optimus (Li et al., 2020a; Kingma and Welling,
2014), we assume a normal distribution for a con-
tinuous latent variable:

f(x) =
1

σ
√
2π

e−
1
2(

x−µ
σ )

2

log f(x)

=− log σ
√
2π − 1

2

(
x− µ

σ

)2

=− log σ − 1

2
log 2π − 1

2

(
x− µ

σ

)2

=− 1

2
log σ2 − 1

2
log 2π − 1

2

(
x− µ

σ

)2

.
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We want q(z|x) = N(µq, σ
2
q ) and the prior, p(z) =

N(µp, σ
2
p) = N(0, 1), to be close

DKL(Q ∥ P )

=−
∫

q(z) log p(z)dz +

∫
q(z) log q(z)dz

=

(
1

2
(log 2πσ2

p) +
σ2
q + (µq − µp)

2

2σ2
p

)

− 1

2
(1 + log 2πσ2

q )

=
1

2
(log

σ2
p

σ2
q

) +
σ2
q + (µq − µp)

2

2σ2
p

− 1

2

=
1

2
log

(
σp
σq

)2

+
σ2
q + (µq − µp)

2

2σ2
p

− 1

2

The mutual information between z and z|x is

I(z, x) =H(z)−H(z|x),
where the negative entropy for normal distribu-

tion is (nz is the dimension of latent variable z):

−H(z|x) =EQ(z|x)[log(Q(z|x))]

=−
∫

q(z) log q(z)dz

=− 1

2
(1 + log 2πσ2

q )

=− 1

2
(1 + log 2π + log σ2

q )

=− 1

2
log 2π − 1

2
(1 + log σ2

q )

H(z) = Eq(z)[− log q(z)]

=−
∫

q(z)

(
log σq

√
2π +

1

2

(
z − µq

σq

)2
)
dx

=−
∫

q(z) log σq
√
2πdx

−
∫

q(z)
1

2

(
z − µq

σq

)2

dx

=− Eq(z)[log σq
√
2π]− Eq(z)

[
1

2

(
z − µq

σq

)2
]

=− log σq
√
2π − Eq(z)

[
1

2

(
z − µq

σq

)2
]

=− log σq
√
2π − 1

2

(
Eq(z)

[
(z − µq)

2
]

σ2
q

)

=− 1

2
log σ2

q −
1

2
log 2π − 1

2

(z − µq)
2

σ2
q

,

where Eq(z)

[
(z − µq)

2
]

is simply the deviation of
a single sample z from the mean µq.

A.4 Info-HCVAE

According to Info-HCVAE (Lee et al., 2020), some
inputs are better suited to be encoded into discrete
latent variables. In this case, we can make use of
the categorical distribution:

f(x = i | p) = pi,

where the event probabilities p = (p1, . . . , pk) and∑k
i=1 pi = 1; k > 0 is the number of categories.
The Gumbel-Softmax distribution enables back-

propagation through discrete distributions. The
Gumbel distribution is:

Gumbel(µ, β) = f(x;µ, β) =
1

β
e−(z+e−z),

where z = x−µ
β .

To sample a category from the categorical distri-
bution using the Gumbel-Max re-parametrization
trick, one can follow:

argmax
i

(Gi + log pi),

where Gi ∼ Gumbel(0, 1). argmax can be made
differentiable by approximating it with the softmax
function:

yi =
exp((Gi + log pi)/τ)∑
j exp((Gj + log pj)/τ)

,

Given two categorical distributions P and Q,
parameterized by p and q, respectively, the KL
divergence between them is:

DKL(Q ∥ P ) =

k∑

i=1

qi log
qi
pi
.

A.5 InfoGAN

The input noise z is passed into the generator along
with the latent code c: G(z, c), where z is concate-
nated with c. Because the generator can simply ig-
nore the latent code c, InfoGAN (Chen et al., 2016)
adds Variational Mutual Information Maximization
(VMIM) to maintain the mutual information be-
tween generated sample x ∼ G(z, c) and latent
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code c:

I(c;G(z, c))

=H(c)−H(c|G(z, c))

=H(c) + Ex∼G(z,c)[Ec′∼P (c|x)[logP (c′|x)]]
=H(c) + Ex∼G(z,c)

[∑

c′
p(c′|x) log p(c′|x)

]

=H(c) + Ex∼G(z,c)

[∑

c′
p(c′|x)(log p(c′|x)

q(c′|x)

+ log q(c′|x))
]

=H(c) + Ex∼G(z,c)

[∑

c′
p(c′|x) log p(c′|x)

q(c′|x)

+
∑

c′
p(c′|x) log q(c′|x)

]

=H(c) + Ex∼G(z,c)

[
DKL(P (·|x) ∥ Q(·|x))
+ Ec′∼P (c|x)[logQ(c′|x)]

]

≥H(c) + Ex∼G(z,c)

[
Ec′∼P (c|x)[logQ(c′|x)]

]
,

Because the posterior P (c|x) is hard to obtain, an
auxiliary distribution Q(c|x) is added to approx-
imate P (c|x), where Q is a neural network. In
practice, the entropy of latent codes H(c) is treated
as a constant and omitted in the InfoGAN objective.

A.6 InfoVAE and InfoMax-VAE
The evidence lower bound (ELBO) of regular VAE
is

LELBO(x)

=LAE(x) + LREG(x)

=Eqϕ(z|x)[log pθ(x|z)]−DKL(qϕ(z|x) ∥ p(z))

≤ log pθ(x).

InfoVAE (Zhao et al., 2019) and InfoMax-VAE
(Lotfi-Rezaabad and Vishwanath, 2020) add mutual
information to the loss:

LELBO(x) =LAE(x) + βLREG(x) + αIq(x; z)

=EpD(x)[Eqϕ(z|x)[log pθ(x|z)]]
− βEpD(x)DKL(qϕ(z|x) ∥ p(z))

− αD(qϕ(x; z) ∥ q(x)qϕ(z)),

Because D(qϕ(x; z) ∥ q(x)qϕ(z)) is usually
intractable; thus, it can be approximated with any
one of the following:

• KL divergence

• f -divergence (InfoMax)

• Donsker-Varadhan dual representation (Info-
Max)

• Jensen Shannon divergence (AAE)

• Stein Variational Gradient

• Maximum-Mean Discrepancy

A.7 QA mutual information loss
We want to enforce the mutual information (QAMI)
between the generated QA pair. Following Info-
HCVAE (Lee et al., 2020), we base this QAMI
objective on Jensen-Shannon Divergence, which
uses a bilinear layer on top of the decoder to clas-
sify whether the question and answer is a true pair:

hq = hq,m+1:m+n ha = ha,1:m

g(q, a) = σ(hq
TWha)

I(q, a) ≥ E[log g(q, a)] + 1/2E[log(1− g(q̃, a))]

+ 1/2E[log(1− g(q, ã))]

= − LQAMI(x), (10)

where the question and answer embeddings, hq and
ha, are the average of their contextualized token
embeddings; W is the parameter matrix of the bi-
linear layer g(·); q̃/ã is a negative question/answer
sample; σ(·) is the activation function.

A.8 Examples
We provide a few more examples of latent code
control.

Knute Rockne became head coach in 1918. Under Rockne, the Irish would
post a record of 105 wins, 12 losses, and five ties ···

Q1 cq = −1 How many wins did Knute Rockne post?
Q2 cq = −.9 How many wins did Knute Rockne have?
Q3 cq = −.5 How many wins did the Irish post in 1918?
Q4 cq = +.9 How many wins did the Irish post a record of in 1918?

The Lobund Institute grew out of pioneering research in germ-free-life
which began in 1928 ···

Q1 cq = −1 When did the institute begin research on germ free-life?
Q2 cq = −.8 When did research in animal and plant life begin?
Q3 cq = −.5 When did Lobund begin research on germ?
Q4 cq = −.1 When did the Lobund Institute begin its research?
Q5 cq = +.5 When did research in germ free-life begin?

Table 9: Examples of latent codes. Answer in blue .
The latent code seems to control how specific the ques-
tion is.
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