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Abstract

Wavelet transforms, a powerful mathematical
tool, have been widely used in different do-
mains, including Signal and Image processing,
to unravel intricate patterns, enhance data repre-
sentation, and extract meaningful features from
data. Tangible results from their application
suggest that Wavelet transforms can be applied
to NLP capturing a variety of linguistic and se-
mantic properties. In this paper, we empirically
leverage the application of Discrete Wavelet
Transforms (DWT) to word and sentence em-
beddings. We aim to showcase the capabilities
of DWT in analyzing embedding representa-
tions at different levels of resolution and com-
pressing them while maintaining their overall
quality. We assess the effectiveness of DWT
embeddings on semantic similarity tasks to
show how DWT can be used to consolidate im-
portant semantic information in an embedding
vector. We show the efficacy of the proposed
paradigm using different embedding models, in-
cluding large language models, on downstream
tasks. Our results show that DWT can reduce
the dimensionality of embeddings by 50-93%
with almost no change in performance for se-
mantic similarity tasks, while achieving supe-
rior accuracy in most downstream tasks. Our
findings pave the way for applying DWT to
improve NLP applications.

1 Introduction
Embedding models have evolved as a crucial part
of any NLP application. Typically, they transform
text, using different numerical analysis methods,
into high-dimensional dense vectors that capture
semantic and contextual aspects of the text for sub-
sequent use by various tasks. As these models
evolved, their complexity, dimensionality, and qual-
ity have all increased simultaneously, with a partic-
ular emphasis on quality and minimal attention to
dimensionality. Typically generated embeddings
are fixed in size for all tasks and are proportional to
the model size, rendering their use in low resource

Figure 1: Applying DWT to an image. Level-1 DWT trans-
forms the image into approximation coefficients (that resemble
the original image) and vertical, horizontal and diagonal detail
coefficients. Level-2 DWT can be obtained recursively from
Level-1 coefficients(multi-scale analysis).

settings a challenge. Accordingly, in this paper,
we investigate the adaptation of DWT from Signal
and Image processing to the field of NLP for the
analysis and compression of word and sentence
embeddings. DWT analyzes and reduces the size
of the data by identifying redundant and important
information in data. We posit that DWT has the po-
tential to generate compressed embeddings capable
of retaining contextual information and semantic
relationships between words as well as among sen-
tences. Our key contributions: 1) Introduce DWT
as an effective compression method for compress-
ing embeddings with respect to an underlying task;
2) Propose a novel approach leveraging DWT for
analyzing semantics in word and sentence embed-
dings; 3) Study the efficacy of DWT embeddings
in capturing and retaining semantics by applying
them to similarity and downstream tasks using var-
ious embeddings.

2 Motivation
The use of spectral analysis methods in Image and
Signal processing is driven by their ability to an-
alyze data in the frequency domain, providing in-
sights and revealing hidden patterns and dynam-
ics not detectable in the spatial domain. Meth-
ods such as the Discrete Cosine Transform (DCT)
and Fourier Transform (FT) have been commonly
used. However, these methods offer global fre-
quency representations that ignore the location of
frequencies in the original domain and lack the abil-
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Figure 2: Graph of FastText embedding for the word
’work’(dim=300). Some features are similar in value (high-
lighted in red) and others exhibit significant spikes (high-
lighted in green).

ity to perform multi-resolution analysis. DWT ef-
fectively addresses these limitations by examining
data change over time or position, i.e. frequency
and time localization, and consequently captures
varied information across different scales (multi-
resolution analysis). As a result, DWT achieved
superior results in other fields. DWT analyzes
data based on their variation, filtering low-varying
or highly correlated (low-frequency) and high-
varying (high-frequency) components while pre-
serving their spatial domain information. Figure1
visualizes the result of applying DWT to an image
resulting in low-frequency coefficients (approxima-
tions) that capture the overall structure of the data,
hence used for compression (Lewis and Knowles,
1992; Grgic et al., 2001), while high-frequency
coefficients (details) capture abrupt changes and
motifs, which provide information about edges and
contours, making them useful for edge detection
(Xizhi, 2008; Zhang et al., 2009) and noise filter-
ing (Dautov and Özerdem, 2018). DWT can be
further applied, recursively, to any coefficients of
the first level to achieve a second level of the trans-
form that contains more approximation and details
coefficients. In the realm of NLP, visualizing a
word embedding vector, as shown in Figure2, we
observe a signal-like structure with a few spikes
indicating high variation in feature values, along-
side features with minimal variation. This pattern
suggests that applying spectral analysis to these
vectors and numerical representations can reveal
additional patterns or insights that may not be im-
mediately apparent. Few attempts for applying
spectral methods to NLP including DCT (Almar-
wani et al., 2019) and Higher-order Dynamic Mode
Decomposition (HODMD) (Kayal and Tsatsaronis,
2019) were found successful. However, we are un-
aware of any application of applying DWT to word
and sentence embedding other than our preliminary
application of DWT to enhance DCT sentence em-
bedding in (Salama et al., 2024). In this work, we
posit that DWT can effectively compress embed-

ding representations, and analyze them at different
scales to understand and capture different linguistic
patterns encoded in these embeddings. This analy-
sis allows DWT to concentrate embedding energy
with high compression ratios without significant
loss of information. DWT allows for more effi-
cient representation, less storage requirements and
reduced computational complexity. Additionally,
DWTs are scalable and can be applied to any em-
bedding model and for any task. Accordingly, we
believe that DWT, as a spectral transform, holds
promise for NLP tasks.

3 Related Work
3.1 Embedding Compression
Several studies have tackled embedding com-
pression methods including code-book (Shu and
Nakayama, 2017)(Kim et al., 2020), quantiza-
tion (Ling et al., 2016)(Shi and Yu, 2018)(Tao
et al., 2022) and factorization(Acharya et al., 2018).
Other methods applied compression methods based
on knowledge distillation (Gao et al., 2023). Some
other models consider compressing model param-
eters (Mao et al., 2020), token embedding matrix
(Bałazy et al., 2021), or prune model weights (Li
et al., 2017). Yet all these techniques compress
only word representations, regardless of the seman-
tics they convey. Additionally, in the era of large
language models (LLM), recent research (Wang
et al., 2023) argues that the dimensionality of the
embedding representations, specifically in sentence
embeddings, are sub-optimal and the same encoded
information may be represented in smaller dimen-
sions while achieving comparable performance.

3.2 Spectral Methods
The success of spectral methods in studying and
analyzing embeddings has recently become evident
in NLP. The application of DCT in sentence em-
bedding has shown promising results(Almarwani
et al., 2019), yet it has only been applied to non-
contextualized embeddings to generate sentence
embeddings, not for compression. These DCT
embeddings resulted in long sentence represen-
tations, corresponding to the number of coeffi-
cients considered from the transformation. We pro-
posed using DWT to address this issue in (Salama
et al., 2024), and results were promising. Simi-
larly with HODMD (Kayal and Tsatsaronis, 2019),
a sentence is represented as a signal with tran-
sitional properties captured in the frequency do-
main using uncorrelated coefficients to encode a
sentence. Such models capture structural varia-
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tion without losing on efficiency (comparable to
averaging) (Zhu and de Melo, 2020) and yet out-
perform more complex sentence embedding mod-
els (Mikolov et al., 2018). However, these models
tend to analyze frequencies along similar word em-
bedding dimensions, on a vertical level (inter-word
embedding, aka across all words), accumulating
a limited number of base frequency coefficients
and dropping the rest, in addition to ignoring their
spatial domain position, i.e., ignoring intra-word
frequencies within individual word embeddings.

4 Discrete Wavelet Transforms
DWTs are mathematical functions that analyze
data, f(t), using a window (a function) known as the
Mother Wavelet (MW) ψ(t), also called wavelets.
This window moves over the data sequentially to ex-
amine the variations in the data with respect to this
window (localized in time). Within a given anal-
ysis window if surrounding data features exhibit
minimal variation, they can be grouped together
and represented using Approximation coefficients
(cA). Conversely, if certain features vary signifi-
cantly, they are represented using Detail coefficient
(cD). To shift over the data, a MW translates and
dilates ψa,b(t) (as in equation (1)) using a shifting
factor, b, and scales with a scaling factor, a, to cap-
ture different frequency variations at different data
segments in time t.

ψa,b(t) =
1√
a
ψ(
t− b

a
) (1)

The resulting coefficients are equivalent to a pair of
sub-band linear (convolutional) filters (Vetterli and
Kovacevic, 1996): one low-pass and one high-pass.
The output of a filter pair is usually down-sampled
by 2 so the combined output is of the same size
(dimensionality) as the original input. This filter-
ing + downsampling can be cascaded on multiple
levels recursively to analyze data at multiple levels
of resolution. Note that DWT can be compared to
Convolutional Neural Networks (CNNs) (Gu et al.,
2015) in that they both use sliding-window filters
and downsampling. The difference is that in CNNs,
the filters are learned from the training data, while
in DWT the filters are designed, not learned.
There are many families of MWs: Haar, Symmlets,
Coiflets, and Daubechies, to name a few (Madha-
van, 2003). As a proof of concept in this paper, and
in the interest of space, we will only be using and
reporting on a subset of the MWs that yield the best
results in our experiments. 1

1For a more detailed explanation of Wavelet Transform
theory, refer to (Daubechies, 1992; Madhavan, 2003; Brunton

5 Method
DWT filters features in embeddings by capturing
how consecutive features in an embedding vec-
tor change, where small numerical difference or
variation are converted into approximation coef-
ficients. While features with large variations are
converted into detail coefficients, and hence reflect-
ing the structure and behavior of the underlying
information encoded in the vector. As shown in
Figure3, given a word or a sentence embedding
Ed of a d-dimensional vector, we transform Ed by
applying DWT, DWT (E), which decomposes the
embedding vector into two vectors of low-varying
coefficients, cA, and high varying coefficients, cD,
for one level of transformation. The dimension
for each set of coefficients, d′, is reduced by 2,
d′ = d/2. The generated coefficients, cA and cD,
can be further transformed for a second level, gen-
erating new vectors of approximation and detail
coefficients, and downsampled by 2 again. In fact,
this recursive process can be repeated many times,
say L times. L represents the number of DWT
levels, and is determined based on the required
compression ratio and performance. For the se-
lection of the MW used in the transformation, we
primarily use Symlets, Daubechies, and Coiflets
wavelets across all experiments and the best perfor-
mance per task is recorded. 2

Coefficients Selection: In image processing, dif-
ferent sets of coefficients capture different aspects
of an image. Similarly, we use different sets of
coefficients as compact representations of the base
embedding. We analyze the amount of information
each set of coefficient encodes by studying their
effectiveness in similarity and downstream tasks.
We consider the following possible selection mech-
anisms: (a) Level-1 Coefficients: Employ Level-1
coefficients, either the approximation (cA) or detail
(cD) coefficients as the compressed representation
with a size downsampled by 2. (b) Higher-Level
Coefficients: Employ coefficients from higher lev-
els of the DWT (i.e., Levels 2, 3 or later). Specif-
ically, we examine Level-2 approximation coef-
ficients derived from Level-1 approximation and
detail coefficients, namely cAA (approximation
of approximation) and cDA (approximation of de-
tails) which are a quarter the size of the original

and Kutz, 2019).
2In the interest of simplicity and clarity, we will omit the

details of the specific MW used in each experiment, as this
paper is intended as a proof of concept,

and not for comparing different MWs.
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Figure 3: Transforming the embedding vector in Figure 2 using a 2-level DWT yielding cA and cD coefficients (dim=150) at
Level-1. At Level-2, we get cAA and cAD from Level-1 approximations, and cDA and cDD from Level-1 details (dim=80).

embedding vector. Additionally, for a higher com-
pression ratio, we explore approximation coeffi-
cients from subsequent Level-3 (cAAA) and Level-
4 (cAAAA), Which are 1/8 and 1/16 the size of the
original embedding vector, respectively. Our em-
phasis lies on approximation for deeper compres-
sion, as they encapsulate an abstracted representa-
tion of the original embedding. (c) Combined Coef-
ficients: In experiments where Level-1 coefficients
do not achieve comparable performance, we incor-
porate coefficients from higher levels. Specifically,
if Level-1 approximation doesn’t sufficiently en-
code all relevant semantics, we further combine it
with Level-2 approximation (derived from Level-1
detail), referred to as cDA. Similarly, for detail, we
combine it with Level-2 detail (derived from Level-
1 approximation), referred to as cAD. As illustrated
in Figure 3, we enrich the red-colored coefficients
from Level-1 (approximation) with the red-colored
coefficients from Level-2 (obtained from Level-1
green coefficients). Thus, the combined embed-
dings are cA+cDA and similarly cD+cAD. Note
that combining Level-2 red-colored coefficients,
cAA, with cA (Level-1 red-colored) is irrelevant
since they contain redundant information.

6 Evaluation
To evaluate the proposed approach, we first inves-
tigate its efficacy in capturing and compressing
semantics in semantic similarity tasks. We further
evaluate their effectiveness in a number of down-
stream tasks to evaluate their efficacy extrinsically.
We consider different embeddings, baselines, ex-
perimental setup and tasks as follows.
Embeddings: We experiment with different
embeddings; Pre-trained Language Models as
BERT (Devlin et al., 2018), GPT (Radford and
Narasimhan, 2018), SBERT (Wang and Kuo, 2020)
and RoBERTa (Liu et al., 2019) sentence embed-

Word Embedding Dim SimLex WS353 MEN
GloVe100 100 12.22 46.96 57.73
GloVe50 50 9.82 42.17 53.05
GloVe+DWTcD 50 11.50 50.19 58.96
GloVe+DWTcA 50 13.48 44.08 57.21

GloVe200 200 13.03 48.00 59.42
GloVe100 100 12.22 46.96 57.73
GloVe+DWTcD 100 11.50 50.19 58.96
Glove+DWTcA 100 20.79 50.19 62.00

FastText 300 50.30 79.13 83.36
PCA 150 27.01 52.22 63.31
FastText+DWTcD 150 50.32 74.18 79.91
FastTex+DWTcA 150 49.03 75.44 80.96
FastText+DWTcD+cAD 225 50.32 78.34 82.59
FastText+DWTcA+cDA 225 49.05 75.56 82.96

Table 1: Spearman Rank Order Correlation (SPC) results
on SimLex-999, WS353 and MEN datasets; using GloVe-
Twitter27B embeddings compared to Level-1 DWT coeffi-
cients. Baseline includes base GloVe embeddings of similar
size in addition to GloVe with 50% less dimensions. DWTcD
and DWTcA correspond to the embeddings yielded at Level-1
DWT transform. Level-2 DWTcD+cAD and DWTcA+cDA coeffi-
cients from Level-1 coefficients(dim=150) concatenated with
Level-2 (dim=75) Best results are in bold and best results per
experimental condition are in red.

dings. We also include non-contextualized embed-
dings from our previous work (Salama et al., 2024)
for completeness. We use GloVe (Pennington et al.,
2014) and FastText (Mikolov et al., 2018) with var-
ious dimensions (50, 100, 200, 300).
Baselines: For every experiment, we use different
baselines, in addition to the base embeddings, to
explore the capabilities of DWT. Our baselines in-
clude: (1) Base embeddings (in all experiments);
(2) Other dimensionality reduction methods to as-
sess their effectiveness in comparison to DWT:
PCA for dimensionality reduction(Shlens, 2014)
and DCT for compression(Gupta and Garg, 2012)
in some of our experiments.
Experimental Setup: For all sentence embeddings
experiments, we use the SentEval toolkit (Conneau
and Kiela, 2018) for evaluation. For all down-
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Dim SimLex WS353 MEN
BERTbase 768 60.75 28.00 59.55
BERT+DWTcD 383 60.31 28.41 59.19
BERT+DWTcA 383 60.90 28.25 59.31
BERTLarge 1024 69.72 44.00 62.18
BERT+DWTcD 512 69.65 45.05 62.68
BERT+DWTcA 512 69.95 43.31 61.09

GPTBase 1536 50.00 64.89 73.00
GPT+DWTcD 768 49.95 63.88 73.34
GPT+DWTcA 768 49.37 64.58 71.82
GPTLarge 3072 56.60 72.31 78.35
GPT+DWTcD 1535 56.23 72.03 77.57
GPT+DWTcA 1535 56.93 71.93 77.29

Table 2: Similar experiment as Table 1 using BERT and GPT
base and large word embeddings with base embeddings as the
baseline.

stream tasks, we leverage multi-layer perceptron
(MLP) classifiers based on the default setup out-
lined in SentEval.3

6.1 Semantic Similarity Evaluation
Word and sentence similarity tasks have become
the de-facto method for semantic evaluation (Wang
et al., 2022). Semantic Similarity involves measur-
ing the degree of relatedness and similarity between
pairs of words or sentences compared against hu-
man judgments or similarity scores assigned by
human annotators.
6.1.1 Word Similarity Evaluation
We start by evaluating DWT embeddings for word
similarity, using the following datasets: SimLex-
999 (Hill et al., 2014), MEN (Bruni et al., 2014)
and WS353 (Finkelstein et al., 2001).
In our initial experiment, we utilize DWT Level-1
approximation (cA) and detail (cD) coefficients as
DWT embeddings for the word semantic similar-
ity task. In this experiment we assess: (1) GloVe
embeddings with dimensions 100 and 200. Base-
lines are: the base GloVe embeddings of the same
size, alongside the base GloVe embeddings orig-
inally reduced in dimensions by 50%. (2) Fast-
Text embeddings with dimension 300. Baselines
are: the base FastText embeddings, and PCA re-
duced embedding with size 150 dimensions. (3)
BERT and GPT models, where for each model we
consider two variants, base and large models, in
order to conduct a thorough evaluation with orig-
inal embeddings as baselines. We found DWT
embeddings to consistently outperform the base-
lines for GloVe embeddings, with dimensions 100
and 200, as depicted in Table 1. DWT embed-
dings efficiently compress the semantics encoded

3The source code is publicly available on GitHub at
https://github.com/engranas/DWT-Semantic-Compression

in the original embeddings, surpassing both base-
lines with a 50% reduction in dimensionality and in
some cases surpassing the performance of embed-
dings that are four times larger as in SimLex and
WS353, where DWT embeddings of size 50 outper-
forms GloVe embeddings of size 200. This empiri-
cally shows that DWT embeddings not only serve
as a dimensionality reduction technique but also
adeptly capture the semantics encoded in an embed-
ding vector and effectively compress them in DWT
coefficients. Additionally, DWT embeddings sig-
nificantly outperform PCA-reduced embeddings,
demonstrating superior performance with >20%
improvement. Additionally, in the case of contextu-
alized embeddings, DWT embeddings exhibit com-
parable performance to all baselines for all models.
This suggests that the large dimensionality used for
these models may not be significant for encoding
words. It can also be noted that the DWT BERT em-
beddings are more comparable to the baseline than
DWT GPT embeddings; this suggests that GPT
models are packing more information and seman-
tics than the BERT model for these datasets. This
empirically shows that DWT reveals new aspects
of embeddings that were not evident in the original
domain. Nevertheless, for FastText, while DWT
yields similar performance to the original embed-
dings for the SimLex dataset, yet for WS353 and
MEN datasets Level-1 DWT embeddings failed to
fully capture the encoded semantics present in the
original embeddings. This discrepancy suggests
that FastText embeddings contain richer semantics
compared to GloVe embeddings, a conclusion sup-
ported by the similarity results achieved with the
original embeddings.
We further use the combined coefficients; cA+cDA
and cA+cDA. As shown in Table 1, the combined
DWT embeddings at a compression of 25% dimen-
sionality augmenting the embeddings with addi-
tional semantics, resulting in a performance compa-
rable to the baseline with a slight reduction approx.
1% in performance for WS353 and MEN datasets.
Conversely, for SimLex datasets, the addition of
coefficients from subsequent layers (cD+cAD) did
not improve the performance and cD coefficients
seems to have effectively encoded the semantics for
all word embeddings. Nevertheless, it is crucial to
emphasize that the selection of DWT coefficients
depends not only on the type of embeddings but
also on the particular task in consideration. As a
result, we utilize DWT embeddings generated from
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Word BERT(dim=768) BERT+DWTcA(dim=383) BERT+DWTcD(dim=383)
happy happy, sad, pleased, smiling, thrilled happy, smiling, excited, pleased, glad happy, sad, joy, pleased, thrilled
sea sea, gulf, marine, desert, underwater sea, marine, desert, gulf, island sea, gulf, underwater, beach, fish
playing playing, riding, practicing, throwing, creating playing, creating, riding, writing, coloring playing, riding, fighting, throwing, plays

Table 3: 5-nearest cosine similar words using BERT embeddings.

Dim AP BM BLESS
FastText 300 0.70 0.47 0.86
FastText+DWTcD 150 0.70 0.46 0.87
FastText+DWTcA 150 0.70 0.49 0.82

Table 4: Results for Concept Categorization task for 3 stan-
dard datasets: AP, BM and BLESS using using Level-1 cA
and cD coefficients.

FastText for another semantic task, Concept Cate-
gorization, to further elaborate on the adaptability
of DWT for different tasks. Concept Categorization
groups words in different categories based on se-
mantic clusters (Baroni et al., 2014). For this eval-
uation we use the datasets: AP (Almuhareb, 2006),
BM (Murphy et al., 2012) and BLESS datasets (Ba-
roni and Lenci, 2011). We use the base embeddings
as the baseline. As illustrated in Table 4, cA and
cD embeddings demonstrate comparable or even
superior results compared to the baseline, despite
50% dimensionality reduction. This illustrates the
effectiveness of DWT embeddings in encapsulating
essential semantics from the original embedding
for the given task. To conduct a qualitative analy-
sis of DWT embeddings, Table 3 displays the five
nearest neighbors (determined by cosine similar-
ity) for randomly chosen words utilizing BERT
word embeddings. As shown, approximation coef-
ficients capture more relevant words like ’excited’
and ’glad’ for the word ’happy’. Also, ’island’
for ’sea’, and ’writing’ and ’coloring’ for the word
’playing’. Detail coefficients capture more appro-
priate words such as ’joy’ for ’happy’, ’beach’ and
’fish’ for ’sea’, and ’fighting’ for ’playing’. Addi-
tionally, it’s apparent that certain relevant words,
which share similar meanings or contexts, have
closer similarity, such as "creating" for "playing"
and "smiling" for "happy".

6.1.2 Sentence Semantic Similarity
The Semantic Textual Similarity (STS) Task is
a common benchmark used for evaluating the
performance of semantic models. In this set-
ting, we examine the application of DWT to con-
textualized sentence embeddings on STS tasks
2012 and 2016 (Agirre et al., 2012, 2016), STS
benchmark (STSB) (Cer et al., 2017) and SICK-
Relatedness (Marelli et al., 2014). (See Appendix
for more STS tasks results.) We evaluate DWT
embeddings on contextualized models as they are

becoming dominant for sentence embedding (Wang
et al., 2024). We consider SBERT base and large
models (Wang and Kuo, 2020), RoBERTa base and
large models (Liu et al., 2019).4 In this experiment,
we will further explore the effectiveness of DWT
in capturing relevant features and semantics within
pretrained language models, illustrating that the ex-
tended size of dimensionality of these embeddings
is not optimal for semantic representation, which
we found consistent with the recent results and
findings in (Wang et al., 2023) without the need for
any further training or fine-tuning of the model. We
consider Level-1 coefficients, cA and cD, with 50%
reduction in dimensions. We also consider Level-2
coefficients, cAA and cDA, with 75% reduction in
dimension. For the baselines we consider: (1) The
base embeddings, (2) DCT (Gupta and Garg, 2012)
as another spectral model used for lossy compres-
sion. We use DCT to compress the original SBERT
and RoBERTa embeddings by applying the DCT
transform to these vectors and selecting the first
n coefficients, where n is equivalent to 50% or
25% of the original embedding size.5 As shown in
Table 5, DWT consistently surpasses DCT across
all tasks, particularly in STSB and SICKR, where
the efficacy of DCT embeddings reflects signif-
icantly lower performance. Although DCT was
capable of compressing embeddings and maintain-
ing comparable performance in STS12 and STS16,
DCT compresses by discarding residual frequency
coefficients leading to the loss of important de-
tails and a subsequent decline in performance in
STSB and SICKR. DWT performs similarly to the
base embeddings, with at most a 0.5% decrease
in performance on a few tasks for all models us-
ing Level-1 coefficients in SBERT and RoBERTa.
This indicates that Level-1 coefficients effectively
capture relevant semantics, condensing them into
fewer dimensions. Notably, for SBERT, the ap-
proximation coefficients yield better performance,
while for RoBERTa, the detail coefficients perform

4Models available in https://huggingface.co/sentence-
transformers; SBERT-base-nli-v2, SBERT-Large-nli-v2, nli-
roberta-base and nli-roberta-large.

5In this context, DCT is not applied in the same way as
proposed by (Almarwani et al., 2019), where the transform is
applied across all words in a sentence to encode the sentence.
In our context we apply it within a word vector.

15968



Model Dim STS12 STS16 STSB SICKR Model Dim STS12 STS16 STSB SICKR
SBERTBase 768 74.09 84.08 85.35 80.69 RoBERTaBase 768 69.02 83.39 81.89 80.57
SBERT+DCT 384 74.14 84.2 75.57 53.05 RoBERTa+DCT 384 68.64 82.87 65.01 39.14
SBERT+DCT 192 72.69 83.40 74.99 51.55 RoBERTa+DCT 192 67.97 82.53 67.14 36.30
SBERT+DWTcD 384 73.57 83.83 85.83 80.07 RoBERTa+DWTcD 384 69.32 83.57 82.40 80.79
SBERT+DWTcA 384 74.26 84.27 85.98 80.55 RoBERTa+DWTcA 384 68.88 82.93 82.48 80.71
SBERT+DWTcAA 192 73.72 83.9 85.77 80.02 RoBERTa+DWTcAA 192 68.17 82.63 82.63 80.71
SBERT+DWTcDA 192 73.21 83.90 85.70 79.56 RoBERTa+DWTcDA 192 68.63 82.91 83.60 80.31

SBERTLarge 1024 67.97 81.69 78.26 80.24 RoBERTaLarge 1024 65.07 75.70 74.68 79.86
SBERT+DCT 512 67.83 75.66 62.99 41.92 RoBERTa+DCT 512 64.79 75.07 44.00 37.23
SBERT+DCT 256 65.41 73.65 61.55 40.25 RoBERTa+DCT 256 63.05 74.12 30.52 28.23
SBERT+DWTcD 512 67.83 81.49 80.97 80.95 RoBERTa+DWTcD 512 65.07 75.70 76.76 79.65
SBERT+DWTcA 512 67.97 81.69 80.15 80.44 RoBERTa+DWTcA 512 64.97 75.67 75.72 79.68
SBERT+DWTcAA 256 67.96 81.34 82.42 79.69 RoBERTa+DWTcAA 256 64.94 75.5 77.14 78.71
SBERT+DWTcDA 256 67.57 81.15 82.33 79.94 RoBERTa+DWTcDA 256 64.87 75.14 77.14 79.03

Table 5: Results on the STS benchmark, Spearman’s correlation is reported. Baseline represents the original and DCT reduced
embeddings for SBERT and RoBERTa models. The best overall results are shown in bold. Best results per condition are shown
in red.

better. This empirically demonstrates that SBERT
and RoBERTa capture different types of features:
SBERT captures more relational semantic features,
whereas RoBERTa focuses on distinct semantic
features. Additionally, DWT reveals some charac-
teristics of these embeddings: large models tend to
contain more redundant features. As a result, DWT
can effectively compress them to 75% less dimen-
sions while maintaining comparable performance
across all tasks. More interestingly, for the STSB
task using SBERT and RoBERTa, DWT outper-
forms the baseline in a manner proportional to the
model size. Specifically, in the large models, cAA
coefficients improve performance by 4% in SBERT
and by 2.5% in RoBERTa. This shows that the cAA
coefficients contain more dense semantic informa-
tion suggesting that the original embeddings had
highly correlated dimensions with redundant fea-
tures that proved to be irrelevant when filtered out
using DWT. Generally, DWT embeddings prove
to have comparable performance or better in most
tasks, at 50% reduction in embedding size. At a
75% reduction in size, the performance is still com-
parable and never drops more than 2%, and for
some tasks the performance is significantly better.
In most cases cA represents a good approximation
for the original representation.

6.2 Downstream Tasks
To further evaluate our model extrinsically, we ex-
plore applying DWT embeddings to the follow-
ing downstream tasks: sentiment classification on
Movie Reviews (MR), Stanford Sentiment Tree-
bank (SST2, SST5) (Pang and Lee, 2004a), product
review (CR) (Hu and Liu, 2004), subjectivity clas-
sification (SUBJ) (Pang and Lee, 2004b), opinion
polarity classification (MPQA), question type clas-
sification (TREC) (Voorhees and Tice, 2000), para-
phrase identification (MRPC) (Dolan et al., 2004),

and entailment classification on the SICK dataset
(SICK-E) (Bouden and Nibouche, 2012). Due
space limitation, we will only consider RoBERTa
base and large embeddings for these experiments as
a proof of concept, to show the efficacy of DWT. Ta-
ble 6 shows the results with base embeddings as the
baseline. As shown, DWT effectively compresses
the base embeddings, outperforming the baselines
in all tasks. Level-1 coefficients, cD, achieve better
performance by 4.5% in SST5 task, 2% in TREC
task, while cA outperforms in MR and SICK-E.
Using Level-2 coefficients, cAA, further improves
over the baseline in MPQA and MRPC, while cDA
outperforms in SST2. Generally, DWT embedding
surpassed the baselines with all coefficients for all
tasks except for CR and TREC where the Level-2
coefficients is comparable. This demonstrates the
efficacy of DWT embeddings for downstream tasks.
In conclusion, we find that DWT presents an effec-
tive balance between efficiency (compactness) and
accuracy, serving as an efficient data-size reduction
method that condenses embeddings with relevant
features, leading to enhanced performance.
Multiple Levels of DWT We further investigate
the effectiveness of applying multiple levels of
DWT transformation to RoBERTa large embed-
dings. We extend our analysis up to 4 levels of
transformation, thereby achieving compression of
up to 93%. We apply DWT recursively to the ap-
proximation coefficients from each level, resulting
in coefficients of sizes 512, 256, 128, and 64 re-
spectively. The results6in Figure 4 show that for
dimensions of size 128 and 64, corresponding to
Level-3 and Level-4 coefficients, with a reduction
in dimensionality of 87%-94%, respectively. DWT
embeddings outperform the baseline for all tasks by

6Detailed results for this experiment can be found in the
Appendix.
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Sentiment Analysis Inference Paraphrase SUBJ TREC
Embedding Dim MR CR SST2 SST5 MPQA SICK-E MRPC
RoBERTaBase 768 85.32 90.46 92.31 52.17 89.17 80.01 70.72 94.71 92.40
DWTcA 384 85.28 91.20 91.82 53.57 89.70 79.16 73.62 94.21 90.60
DWTcD 384 85.34 90.97 92.53 53.71 89.38 79.58 72.23 94.38 90.41
DWTcAA 192 84.59 91.36 90.94 53.03 89.18 80.31 73.97 93.23 84.82
DWTcDA 192 84.78 91.13 91.43 52.94 89.27 79.93 73.57 93.32 82.60

RoBERTaLarge 1024 85.01 91.18 91.38 50.95 90.13 80.68 76.17 92.00 85.84
DWTcA 512 85.97 91.26 91.60 52.22 90.62 82.04 77.22 92.21 87.20
DWTcD 512 85.57 91.44 91.71 55.34 90.48 81.63 77.16 92.43 87.60
DWTcAA 256 85.39 91.29 91.65 53.85 90.72 81.33 77.39 91.80 85.20
DWTcDA 256 85.40 91.07 91.93 53.39 90.51 80.96 76.93 92.08 85.80

Table 6: Best Classification accuracy results on various classification tasks for Level-1 approxmation and details coefficients;
cA and cD, and Level-2 DWT coefficients; cAA and cDA. The Baseline is the original RoBERTa for Base and Large models.
The best overall results are shown in bold. Best results per condition are shown in red.

Figure 4: Accuracy results for 4-Levels of DWT for approx-
imation coefficients for downstream tasks using RoBERTa
Large embeddings

0.09-1.5% except for SICK-E, SUBJ, and TREC,
which experience degradation by 1.3%, 1%, and
7.4%, respectively, although still outperforming the
baseline in higher levels. This decline in perfor-
mance tends to correlate with an increased compres-
sion ratio indicating that the minimized dimension
size is not sufficient to fully encode the necessary
semantic information, resulting in a tolerable per-
formance decline. On the other hand, other tasks
like MRPC outperform the baseline by 1.5% with
just 64 dimensions, indicating that DWT effectively
consolidates relevant features into much fewer di-
mensions, while the extended dimension size con-
tains redundant features. These findings align with
those of (Wang et al., 2023), where their model,
despite being trained using a two-step method, con-
sistently degrades performance for all tasks by 2%-
9% in dimension sizes of 64. In contrast, our model
exhibits comparability to the baseline in most tasks
and experiences degradation by 2%-3.5% in MR,
SICK-E, and SUBJ, and by 7.4% in TREC.

7 Conclusion and Discussion
In this paper, we explored the effectiveness of ap-
plying DWT to word and sentence embeddings to
selectively reduce embeddings. Our experiments

illustrate the potential of DWT to enhance space
and computational efficiency without decline in
performance, reducing embedding size by 50-75%.
DWT reveals new insights about embeddings, and
exposes hidden patterns and semantic information
that were not apparent in the base embedding space.
Additionally, the generated DWT embeddings pos-
tulate that different sets of coefficients capture dif-
ferent semantic aspects of an embedding. We con-
clude our study outcomes in the following points:
Correlation and Redundancy: While it has not
been proven that features within the same embed-
ding are correlated, the comparable performance
achieved by DWT suggests a correlation between
the dimensions of an embedding. This challenges
the previous assumption that these dimensions are
uncorrelated. If no correlation existed, DWT would
hardly achieve comparable results to the perfor-
mance of base embeddings. Our results also prove
that embeddings from complex models, such as
Pre-trained Language Models, contain redundant
features and hence compressing them with 75%
reduction in dimensionality achieves a comparable
performance to the base embeddings with no more
than 2% degradation.
Dimensionality Reduction Techniques: Al-
though the general idea of DWT appears to be
similar to other dimensionality reduction methods
in the context of decomposition and compression,
its overall properties and methodology are differ-
ent (Raunak et al., 2019). DWT outperforms other
compression techniques such as PCA and DCT.
DWT compresses the data using localized sub-band
frequency components capturing both low and high
features-variation. DWT stands out as a method
that can be applied universally to diverse datasets
and models. PCA reduces data to a low dimen-
sion space, and de-correlates the data, but is much
slower because it needs to compute the eigenvec-
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tors of the original data (Priya, 2014). As for DCT,
despite being a frequency analysis method, it tend
to capture important frequencies indiscriminately,
lacking localization and discarding other frequen-
cies and accordingly degrading performance.
Mother Wavelets: MW is a component of DWT
that controls feature filtering, with each MW cor-
responding to a unique pair of filters. We did not
explore specific MW applications for each task due
to space constraints, but limited ourselves to a pre-
determined number of MW families such that we
maintain experimental consistency while empiri-
cally investigating the effectiveness of DWT. Our
experiments indicate that Coiflets wavelets gener-
ally perform well across tasks. It is important to
note that MW filtering is controlled by a scaling fac-
tor, which adjusts the level of variation considered
in an embedding. For example, a Coiflet MW with
scale 4 focuses on nearby features and their fine
variations, whereas scale 17 emphasizes broader
approximations, omitting fine details. Since the
choice of the best MW varies from base embedding
to base embedding, the selection and optimization
of MW requires further study beyond this paper’s
scope. As a result, we leave further exploration of
MW details and selection for future research.
Coefficients Selection: Much as in image process-
ing, different coefficients tend to capture distinct
aspects of the data. Therefore, it is essential to
select the set of coefficients that are most suitable
for the base embedding being used in a given task.
Some tasks may benefit more from approximations
over details, while others may see improved perfor-
mance with nuanced information, and yet others
may use both equally. However, it can be con-
cluded that if minimizing the embedding size is
a significant consideration, utilizing only Level-
1 coefficients (cA or cD) with a 50% reduction
in size results in comparable performance to the
baselines across nearly all tasks. Moreover, approx-
imation coefficients consistently maintain compa-
rable performance across multiple levels of DWT,
as demonstrated in the 4-level analysis, with the
exception of TREC. This consistency suggests that
these coefficients retain relevant information about
the original embeddings. Nevertheless, a detailed
study and analysis of coefficient selection fall be-
yond the scope of this paper and are planned for
future work.
DWT for Compression: DWT offers a powerful
method for compressing embeddings by exploit-

ing correlations and reducing redundancy. The
performance of DWT in compressing embeddings
strongly suggests that approximation coefficients
can be effectively utilized for compression, akin to
their role in image compression, where they typi-
cally capture essential features of the data. In the
compression process, approximation coefficients
not only reduce the embedding dimensionality but
also reduce noise while retaining relevant features.
By reducing noise, the performance of the model
improves as it casts down on the error rate thus
improving the accuracy of these results. Selecting
the appropriate compression level for a given task
is a hyperparameter that depends on various factors,
including space complexity, resources allocated for
a particular task and the trade-off between effec-
tiveness and compression ratio.
Computational Complexity: The DWT transfor-
mation is implemented through convolution and
down-sampling (filtering) operations, which are
typically linear with respect to the size of the in-
put data. The overall computational complexity is
often expressed in terms of the dimension of the em-
bedding, d, so for a single level of transformation,
the complexity is O(d). However, the recursive
nature of multi-level transformations can lead to
increased computations, depending on the number
of levels, L, resulting in an overall complexity of
O(Ld). Yet, DWT facilitates efficient dimensional-
ity reduction, significantly reducing memory usage
and increasing throughput by shrinking the size of
embeddings while preserving essential features.
DWT Efficacy: Based on our evaluations, the ap-
plication of DWT in the context of NLP exhibits
significant potential for efficiently modeling word
and sentence embeddings. Our findings demon-
strate that DWT coefficients have the ability to
capture various aspects of the data, with the approx-
imation coefficients serving as a general approx-
imation of an embedding, akin to their behavior
in image analysis. Furthermore, the details coeffi-
cients excel at capturing semantic nuances within
the embeddings. Notably, DWT embeddings reveal
new aspects and characteristics that were previ-
ously unexplored, such as establishing correlations
between dimensions of a word embedding. Addi-
tionally, DWT can adapt to any embedding: words,
sentences or documents of any length in the same
manner as mentioned in this paper. Overall, the ap-
plication of DWT holds promise, and we anticipate
its effectiveness in other NLP applications.
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8 Limitations

In this paper, our focus is to thoroughly and em-
pirically investigate the effectiveness of applying
Discrete Wavelet Transform (DWT) to word and
sentence embeddings, with a primary emphasis on
analysis and compression. However, DWT trans-
formations are mainly based on the selection of
Mother Wavelets (MWs), which we did not specify
for every experiment due to space constraints. We
employed Coiflets, Symlets, Haar, and Daubechies
as MWs, with the recorded best overall results.
Choosing the optimal MW for DWT is a common
research question in Image and Signal processing,
and we defer the investigation into the selection of
the best MW to future work. The results presented
in this paper serve as a proof of concept, indicat-
ing the potential for other MWs to further enhance
performance. Additionally, our results were gener-
ated using publicly available models that undergo
regular updates; thus, discrepancies may exist be-
tween our results and those published by the model
owners.

9 Ethical Considerations

As we propose a novel method for applying DWT
to NLP embedding, this section is divided into the
following two parts.

9.1 Dataset
Intellectual Properties and Privacy Rights We
make use of publicly-available data for all experi-
ments with no modification or update for fair com-
parison.

9.2 NLP Application
Code Availability When used as intended, ap-
plying the models described in this paper can save
people much time. Our code will be publically
available to ensure reproduciblity of results

Code Reusability To run our experiments, we
sometimes used public Github repositories as in-
tended by their authors, without any modification.
All such code was appropriately referenced.

Environmental Cost The experiments described
in the paper makes no use of GPUs. We used CPU
for our experiments. The experiments run in sev-
eral hours. Several dozen experiments were run due
to parameter search, and future work should exper-
iment with distilled models for more light-weight
training. We note that while our work required

extensive experiments to draw sound conclusions,
future work will be able to draw on these insights
and need not run as many large-scale comparisons.
Models in production may be trained once for use
using the most promising settings.
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A Appendix

A.1 Sentence Semantic Similarity

Visualizing Embeddings of Words in a Sentence
By sketching out all the words in a sentence like
"it’s a hot and sunny day," as shown in Figure 5,
we observe that the energy of all word embeddings
overlaps within an average sub-band. This provides
a compelling explanation for why word averaging
effectively represents a sentence, offering empiri-
cal support for averaging as a method for sentence
embedding. This suggests that further spectral anal-
ysis of these embedding representations is promis-
ing and likely to achieve effective results, similar
to those in image and signal processing.

Figure 5: Similarity Matrix between 2 sentences using
BERT embeddings of dimension 768, and Level-1 cA
and cD of the transformed BERT embedding with di-
mension of 384.

Qualitative Analysis To further explore the effi-
cacy of DWT through Sentence Similarity Tasks,
we initially demonstrates the word similarity ma-
trix between two randomly selected sentences from
the STSB dataset using BERT(Devlin et al., 2018)
embeddings with a dimension size of 768 as op-
posed to their Level-1 DWT cA and cD coefficients,
with a dimension size down-sampled by 2, i.e. di-
mension size is 384. By comparing the overall
distribution of similarity shown in Figure 6, we
observe that it remains largely coherent between
the original embeddings and the DWT embeddings
with 50% reduction in dimensions.

Extended Intrinsic Evaluation:

1- InferSent Embeddings We addition-
ally consider InferSent sentence embedding
model(Conneau et al., 2017) for this experiment
as an example for a parameterized sentence
embedding model. We set the original embeddings
as the baseline. As shown in Table7, Level-1 cD
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Figure 6: Similarity Matrix between 2 sentences using BERT embeddings of dimension 768, and Level-1 cA and
cD of the transformed BERT embedding with dimension of 384.

Model Dim STS12 STS13 STS14 STS15 STS16 STSB SICKR
InferSent Baseline 4096 50.05 45.64 57.40 62.21 59.44 67.19 81.95

DWTcD 2053 52.93 48.05 58.23 63.90 61.63 66.27 81.06
DWTcA 2053 48.16 44.32 56.13 60.78 58.04 64.91 80.57
DWTcAA 1030 46.09 42.64 54.36 59.06 56.83 61.55 78.76
DWTcDA 1030 53.10 47.87 58.13 63.94 61.80 65.73 79.31

Table 7: Results on the STS benchmark, Spearman’s correlation is reported. Baseline represents the original
embedding and corresponding performance for InferSent model. The best overall results are shown in bold. Best
results per condition are shown in red.

Model Dim STS13 STS14 STS15
SBERTBase Baseline 768 83.56 90.73 88.03

SBERT+DWTcD 384 83.06 90.55 87.56
SBERT+DWTcA 384 83.60 90.44 87.77
SBERT+DWTcAA 192 82.05 90.11 86.99
SBERT+DWTcDA 192 81.58 90.11 86.40

SBERTLarge Baseline 1024 78.79 79.41 82.20
SBERT+DWTcD 512 78.86 79.36 82.00
SBERT+DWTcA 512 78.16 79.30 82.02
SBERT+DWTcAA 256 76.68 78.93 81.59
SBERT+DWTcDA 256 78.26 78.95 81.22

RoBERTaBase Baseline 768 80.17 80.47 84.04
RoBERTa+DWTcD 384 80.34 80.38 84.64
RoBERTa+DWTcA 384 79.38 80.35 83.68
RoBERTa+DWTcAA 192 78.76 79.81 82.16
RoBERTa+DWTcDA 192 79.58 79.95 82.95

RoBERTaLarge Baseline 1024 70.34 72.41 77.60
RoBERTa+DWTcD 512 70.00 72.30 77.51
RoBERTa+DWTcA 512 70.34 72.58 77.58
RoBERTa+DWTcAA 192 69.68 72.72 77.61
RoBERTa+DWTcDA 192 69.52 72.44 76.73

Table 8: Results on the STS13-STS15 benchmark, Spear-
man’s correlation is reported. Baseline represents the original
embedding and corresponding performance for SBERT and
RoBERTa models. The best overall results are shown in bold.
Best results per condition are shown in red.

coefficients outperform the baselines for all tasks
by 1.5-3% better performance except for STSB ad
SICKR which have comparable results. Level-2
cDA coefficients exceed the performance in
STS12,STS15 and STS16 at a dimension reduction
by 75% showing (1) that DWT condensed more
relevant semantics for these task in subsequent
levels of transformation and (2) that the nuance in
the features represented in the original embeddings
were more relevant for these tasks in the InferSent
representation context, having cD outperforms cA
coefficients. Still, cA coefficients also beat the
baseline.

2- Semantic Similarity Tasks (2013-2015) Sub-
sequently, we present the results for applying DWT
on STS tasks 2013-2015 (Agirre et al., 2013, 2014,
2015) using Pre-trained Language Model embed-
dings, SBERT and RoBERTa, for a detailed study
for the performance of DWT on more semantic
similarity tasks. Table 8 shows the result of apply-
ing DWT embeddings using SBERT and RoBERTa
models. As shown, DWT outperforms the base-
lines for STS13 and is very comparable to STS14
and STS15.

A.2 4-Level DWT Embedding Results
In this section we represent the detailed results
for Figure4 for 4-Levels of DWT tasks applied
to downstream tasks included in Section6.2 using
RoBERTa Large embeddings. Table9 shows the
results for Level-1 approximation coefficients, cA,
Level-2 approximation coefficients cAA, Level-3
approximation coefficients, cAAA and Level-4 co-
efficients, cAAAA. The results show the efficacy
of DWT approximation coefficients to maintain rel-
evant information despite decreasing the size of the
embedding by more than 90%.
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Model Dim MR CR SST2 SST5 MPQA SICK-E MRPC SUBJ TREC
RoBERTaLarge 1024 85.01 91.18 91.38 50.95 90.13 80.68 76.17 92.00 85.80
DWTcA 512 85.97 91.21 90.99 51.04 90.62 80.64 77.23 92.21 87.20
DWTcAA 256 85.49 91.29 90.99 53.85 90.72 81.33 77.39 91.80 84.00
DWTcAAA 128 85.22 91.34 91.54 52.35 90.22 79.03 77.62 91.02 82.40
DWTcAAAA 64 84.26 90.62 90.44 50.05 90.34 76.74 77.51 88.97 78.40

Table 9: Best Classification accuracy results on various classification tasks for Level-1 approxmation; cA, Level-2
DWT coefficients; cAA, Level-3 DWT coefficients; cAAA and Level-4 DWT coefficients; cAAAA. The Baseline is
the original RoBERTa Large model. The best overall results are shown in bold. Best results per condition are shown
in red
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