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Abstract

The present level of proliferation of fake, bi-
ased, and propagandistic content online has
made it impossible to fact-check every single
suspicious claim or article, either manually or
automatically. An increasing number of schol-
ars are focusing on a coarser granularity, aim-
ing to profile entire news outlets, which allows
fast identification of potential “fake news” by
checking the reliability of their source. Source
factuality is also an important element of sys-
tems for automatic fact-checking and “fake
news” detection, as they need to assess the reli-
ability of the evidence they retrieve online. Po-
litical bias detection, which in the Western po-
litical landscape is about predicting left-center-
right bias, is an equally important topic, which
has experienced a similar shift toward profiling
entire news outlets. Moreover, there is a clear
connection between the two, as highly biased
media are less likely to be factual; yet, the two
problems have been addressed separately. In
this survey, we review the state of the art on
media profiling for factuality and bias, argu-
ing for the need to model them jointly. We
also shed light on some of the major challenges
for modeling bias and factuality jointly. We
further discuss interesting recent advances in
using different information sources and modali-
ties, which go beyond the text of the articles the
target news outlet has published. Finally, we
discuss current challenges and outline future
research directions.

1 Introduction

The rise of the web has made it possible for any-
body to create a website and to become a news
medium. This was a hugely positive development
as it elevated freedom of expression to a whole new
level, allowing anybody to have their voice heard.
With the subsequent rise of social media, anybody
could potentially reach out to a vast audience, some-
thing that until recently was only possible for ma-
jor news outlets. One of the consequences was a

trust crisis: with traditional news media stripped of
their gatekeeping role, society was left unprotected
against potential manipulation.

In an attempt to solve the trust problem, sev-
eral initiatives, such as PolitiFact1, Snopes2,
FactCheck3, and Full Fact4, have been launched
to fact-check suspicious claims manually. How-
ever, given the scale of the proliferation of false
information online, it was unfeasible to fact-check
every single suspicious claim, even when this was
done automatically (Pérez-Rosas et al., 2017), not
only for computational reasons but also due to tim-
ing. In order to fact-check a claim manually or
automatically, it is required to verify the stance of
mainstream media concerning that claim and/or the
reaction of users on social media. Accumulating
this evidence takes time, and delay means more
potential sharing of the malicious content (Zhou,
2021; Liu et al., 2022).

Therefore, a much more promising alternative is
to profile the medium that initially published the
news article with the suspicious claim. Since media
that have published fake or biased content in the
past are more likely to do so in the future, profil-
ing media in advance makes it possible to detect
likely “fake news” the moment it is published by
simply checking the reliability of its source (Baly
et al., 2020b; Mehta et al., 2022; Panayotov et al.,
2022). Factuality labels at the media level can also
be used for distant supervision, labeling all their
articles with the medium’s label. This approach is
frequently used for “fake news” detection where
manually annotating large datasets can be challeng-
ing (Nørregaard et al., 2019; Spinde et al., 2022).

Estimating news source reliability is important
for claim fact-checking (Nguyen et al., 2018), and
it also gives an important prior when solving article-

1https://www.gdeltproject.org/
2https://www.snopes.com/
3https://www.factcheck.org/
4https://fullfact.org/
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level tasks such as “fake news” and click-bait de-
tection (Hardalov et al., 2016; Karadzhov et al.,
2017a; De Sarkar et al., 2018; Pérez-Rosas et al.,
2018; Brill, 2001; Finberg et al., 2002; Pan et al.,
2018; Nguyen et al., 2020). Moreover, the CLEF-
2023 CheckThat! lab had a recent shared task on
predicting the factuality and the bias of news media
(Barrón-Cedeño et al., 2023; Nakov et al., 2023;
Martino et al., 2023; Alam et al., 2023).

Recently, Vallejo et al. (2023) conducted a com-
prehensive examination of research methodolo-
gies, exploring the influence of media framing on
public opinions, political dynamics, and policies.
They stress the importance of understanding me-
dia bias and framing to enhance media literacy,
critical thinking, and informed decision-making.
Several surveys on fake news (Shu et al., 2017;
da Silva et al., 2019; Zhou, 2021; Mridha et al.,
2021; Mishra et al., 2022), mis/dis-information
(Islam et al., 2020; Alam et al., 2022; Hardalov
et al., 2022a), fact-checking (Thorne and Vlachos,
2018; Kotonya and Toni, 2020; Nakov et al., 2021;
Guo et al., 2022b), truth discovery (Li et al., 2016;
Xu et al., 2021; Ahmed et al., 2022), and propa-
ganda detection (Martino et al., 2020; Chaudhari
and Pawar, 2021) have been conducted. However,
they have focused on claims or articles, while here
we survey research on profiling entire news outlets.
We delve into the capacity of large language mod-
els (LLMs) to estimate the credibility and political
leaning of sources through carefully crafted ques-
tions. We also provide a holistic perspective on the
use of LLMs in the context of media profiling.

2 Factuality

Veracity of information has been studied at dif-
ferent levels: (i) claim-level (e.g., fact-checking),
(ii) article-level (e.g., “fake news” detection),
(iii) user-level (e.g., hunting for trolls), and
(iv) medium-level (e.g., source reliability estima-
tion). Our primary interest here is in the latter. At
the claim-level, significant effort has been paid to
fact-checking and rumor detection using informa-
tion from social media, i.e., how users reply to the
claim (Canini et al., 2011; Castillo et al., 2011;
Ma et al., 2015, 2016; Zubiaga et al., 2015; Ma
et al., 2017; Dungs et al., 2018; Kochkina et al.,
2018; Lim et al., 2020; Hardalov et al., 2022b;
Nguyen et al., 2020), yet, the need for more nu-
anced methodologies that concentrate on a multi-
tude of characteristics is paramount (Thorne and

Vlachos, 2018; Guo et al., 2022b). A set of web
pages and snippets from search engines have also
been used as a source of information (Mukher-
jee and Weikum, 2015; Popat et al., 2016, 2017;
Karadzhov et al., 2017b; Mihaylova et al., 2018;
Baly et al., 2018b). In either case, the most im-
portant information for the claim-level tasks are
stance (does a tweet or a news article agree or dis-
agree with the claim?) and source reliability (do we
trust the user who posted the tweet or the medium
that published the news article?). The problem of
source reliability remains largely under-explored.
In the case of social media and community fora,
it concerns modeling the user, e.g., there has been
research on finding opinion manipulation trolls (Mi-
haylov and Nakov, 2016), sockpuppets (Maity et al.,
2017), Internet water army (Chen et al., 2013), and
seminar users (Darwish et al.). In the case of the
Web, it is about source trustworthiness (the URL
domain, the medium).

In early work, the source reliability of news me-
dia has often been estimated automatically based
on the general stance of the target medium with
respect to known true/false claims without access
to gold labels about the overall medium-level fac-
tuality of reporting (Dong et al., 2015; Mukherjee
and Weikum, 2015; Popat et al., 2016, 2017; Popat
et al., 2018).

More recent work has addressed the task as one
on its own right. Baly et al. (2018a) used gold la-
bels from Media Bias/Fact Check (MBFC)5, and
rich information sources available before disinfor-
mation campaign begins: articles published by the
medium, what is said about it on Wikipedia, meta-
data from its Twitter profile, URL structure, and
traffic information to characterize the media. In
follow-up work, Baly et al. (2019) uncovered the
ordinal relationship between media bias and fac-
tuality using a multi-task ordinal regression setup,
as detailed in Section 4. Then, Baly et al. (2020b)
considered the social context, extended the infor-
mation sources to include Facebook followers and
speech signals from the news medium’s channel on
YouTube (if any). Hounsel et al. (2020) focused
on infrastructure features such as domain registra-
tions, TLS/SSL certificates, and web hosting con-
figurations. They posit that these features could
potentially reveal significant disparities between
disinformation and authentic news websites, prior
to content dissemination.

5http://mediabiasfactcheck.com
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Mehta et al. (2022) leveraged the concept of
communities to connect users, the content they pre-
fer, and with the source which provide that content.
They approached the task as a problem of reasoning
over relationships between sources, their published
articles, and the engagement patterns of users on
social media within a graph framework. Panayotov
et al. (2022) proposed a graph-based framework
to profile news media outlets, with nodes repre-
senting the outlets and the connecting edges indi-
cating audience overlap. Taking inspiration from
homophily considerations, they constructed a net-
work reflecting the hypothesis that similar users
consume similar types of media.

Large language models (LLMs) can also be used
to estimate source reliability as they can capture
knowledge (Qin et al., 2023). Yang and Menczer
(2023) showed that with well-crafted instructions,
ChatGPT showcases its capability to provide cred-
ibility ratings for an extensive spectrum of news
outlets. Their results showed that these ratings
correlate with those from human experts and that
LLMs could be an affordable reference for credibil-
ity ratings in media profiling applications. Mehta
and Goldwasser (2023) introduced an innovative
interactive framework for news media profiling,
combining the capabilities of graph-based models,
pre-trained LLMs, and human expertise to delve
into the social context of news on social media plat-
forms. Their findings highlighted the framework’s
ability to rapidly identify fake news media, even
in the challenging terrain of emerging news events,
with as few as five human interactions.

3 Bias

Compared to factuality, which can be objectively
determined by whether a piece of information is
true or not, media bias has more complex dimen-
sions. For the last few decades, many scholars have
conceptualized media bias in different ways. For
instance, a bias can be defined as “imbalance or
inequality of coverage rather than as a departure
from truth” (Stevenson et al., 1973). A departure
from truth, however, can be measured only when
an accurate record of the event is available (e.g.,
trial transcript and reporting).

A different definition, namely “any systematic
slant favoring one candidate or ideology over an-
other” (Waldman and Devitt, 1998), is proposed
to capture various dimensions rather than cover-
age imbalance, such as favorability conveyed in

visual representations (i.e., news photos). E.g.,
smiling, speaking at the podium, cheering crowd,
and eye-level shots are preferred over frowning,
sitting, being alone, and shots from above, respec-
tively. Guo et al. (2022a) utilized pre-trained BERT
(Devlin et al., 2019) models, fine-tuned on news
articles from various media outlets, to capture lin-
guistic biases through masked language modeling.
To validate their model’s ability to detect media
bias, they compare its results with established news
bias datasets from sources like Pew Research and
allsides.com

D’Alessio and Allen (2000) reviewed 59 studies
about partisan media bias in presidential elections.
They proposed to categorize media bias into the
following three types: (i) gatekeeping bias, where
editors and journalists “determine” which content
reaches the audience within various forms of me-
dia (Smith et al., 2001), (ii) coverage bias, where
the amount of news coverage (e.g., the length of
newspapers articles, or the time given on television)
each party receives is systematically biased to one
party at the expense of the other one (Hassell et al.,
2020), and (iii) statement bias, where news media
interject their attitudes or opinions in the news re-
porting. Groeling (2013) proposed a more relaxed
concept of media bias, which is “a portrayal of
reality that is significantly and systematically (not
randomly) distorted,” to take a variety of media bias
dimensions into account. In particular, he focused
on two main forms of media bias—selection bias
(i.e., what to cover) and presentation bias (i.e., how
to cover it)—driven by the choices of newsmakers.

Selection bias has been studied in various ways,
including qualitative interviews or surveys of jour-
nalists and editors about the decision-making pro-
cess they use to select the stories in their news-
room (Tandoc Jr, 2014). Here, news selection is
not necessarily confined to the political context.
News reporting about any news items can be con-
sidered as a unit of analysis.

Data-driven research on selection bias com-
monly follows three steps: (i) collect news articles
(for newspapers or online news) or transcripts (for
TV news) for a target period, (ii) conduct content
analysis to find the news coverage of politicians,
parties, or events. Optionally, study the tone of
the news articles (e.g., negative news are more fre-
quently reported) (Soroka, 2012), and (iii) identify
systematic biases by comparing news coverage. An
exhaustive database of news stories is thus essen-
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tial for selection bias research. While commercial
databases, such as Lexis Nexis, have been widely
used (Soroka, 2012; Padgett et al., 2019; Gilens and
Hertzman, 2000; Boykoff and Boykoff, 2004), pub-
licly available datasets, such as GDELT, start to get
attention (Boudemagh and Moise, 2017; Kwak and
An, 2014) and are getting validated by comparing
multiple sources (Kwak and An, 2016; Weaver and
Bimber, 2008). The availability of such datasets
also enables researchers to compare news cover-
age across countries (Guo and Vargo, 2017; Kwak
et al., 2018; Litterer et al., 2023).

Presentation bias has been characterized from
diverse perspectives, including framing (Entman,
2007), visuals (Barrett and Barrington, 2005),
sources (Baum and Groeling, 2008), tone (Soroka,
2012), and more. Particularly, framing bias has
been actively studied in many disciplines.

Framing Bias refers to a bias that highlights a
certain aspect of an event or an issue more than the
others (Entman, 1993). Emphasizing a particular
aspect can deliver a distorted view toward the issue
even without the use of biased expressions.

Framing biases have been typically studied at
issue level (Kim and Johnson, 2022). Researchers
collect news articles about an issue or an event, con-
duct manual content analysis, and build a frame de-
tection model (Baumer et al., 2015). Open-source
tools to help the analysis have been proposed (Bha-
tia et al., 2021; Morstatter et al., 2018). While this
approach can characterizes diverse frames, it is not
trivial to compare framing across issues.

The Media Frames Corpus (MFC) was proposed
to address this limitation (Card et al., 2015). It
contains articles annotated with 15 generic frames
(including others) across three policy issues. Sev-
eral studies have demonstrated reasonable predic-
tion performance of the general media frames with
different datasets (Field et al., 2018; Kwak et al.,
2020). These 15 general frames were also used for
analyzing political discourse on social media (John-
son et al., 2017). These frames are often cus-
tomized to a specific issue by adding issue-specific
frames (Liu et al., 2019), even though doing so
somewhat contradicts the original motivation of
general media frames, namely to be able to com-
pare frames across various issues.

News slant was proposed to characterize how
framing in news reports favors one side over the
other (Entman, 2007). The media-level slant thus

could differ across issues (Ganguly et al., 2020).
A variety of methods have been proposed to

quantify the extent of news slant in traditional news
media by (i) linking media outlets to politicians
with known political positions, (ii) directly analyz-
ing news content, and (iii) using shared audience
among media outlets. Groseclose and Milyo (2005)
assigned an ADA (Americans for Democratic Ac-
tion) score for each media outlet by investigating
co-citations of think-tanks by members of Congress
and media outlets. Gentzkow and Shapiro (2010)
proposed an ideological slant index of news media
in a seminal study. The news slant is measured
by the extent of phrases in news coverage that are
more frequently used by one political party (i.e.,
Democratic or Republican) congress members than
by another one in the 2005 Congress Record. Their
frequency-based approach successfully finds politi-
cally charged phrases such as death tax or war on
terror by Republicans and associated media and
estate tax or war in Iraq by Democrats and associ-
ated media, and they further computed media slant
index for 433 newspapers. The choice of words
by political party members and news media is con-
sidered framing because they purposely highlight
some aspects of the issue over others.

An et al. (2011, 2012) proposed a method to
compute media slant scores by measuring distances
between media sources by their mutual followers
on Twitter. Stefanov et al. (2020) identified the
political leanings of media outlets and influential
people on Twitter based on their stance on contro-
versial topics. They built clusters of users around
core vocal ones based on their behavior on Twitter,
such as retweeting, using a procedure proposed in
(Darwish et al., 2019).

Left-center-right bias (or left-right bias) was
studied based on media-level annotation from spe-
cialized online platforms, such as News Guard,
AllSides, and Media Bias/Fact Check, where jour-
nalists use carefully designed guidelines to make
judgments. Researchers have then trained systems
to predict this bias using a variety of informa-
tion sources such as analyzing the corresponding
YouTube channels (Dinkov et al., 2019), and using
information from the articles the target news outlet
has published, what is there about them in social
media and in Wikipedia (Baly et al., 2020b).

There has also been work on predicting the left-
center-right bias of articles, which is somewhat
relevant here as it can be an element of media-level
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analysis. Such systems are typically trained us-
ing distant supervision, projecting the label from a
medium to each article from that medium, which
is an easy way to obtain large datasets, needed to
train contemporary deep learning models. For ex-
ample, Kulkarni et al. (2018) used site-level anno-
tations from the AllSides website for political bias
detection. The same approach was used to study
hyperpartisanship, i.e., extremely one-sided report-
ing (Potthast et al., 2018), as part SemEval-2019
task 4 on Hyper-partisan News Detection (Kiesel
et al., 2019). Recent studies have underscored the
potential problems of inaccuracy and noise linked
to distant supervision. This has led to the devel-
opment of a left-center-right bias dataset, which
features careful manual annotations at the article
level (Baly et al., 2020a).

Figure 1: Correlation between bias and factuality for
the news outlets in the Media Bias/Fact Check website.

4 Joint Modeling

Figure 1 shows the correlation between the fac-
tuality and the bias of the news outlets analyzed
by MBFC. We can see that extreme-left and
extreme-right websites are not factual, and that
center media are most factual overall6. Moreover,
some of the datasets used for the two tasks have
media-level annotations for both factuality and bias.
Thus, it makes sense to model factuality and bias
jointly. Yet, joint modeling of the two tasks re-
mains severely underexplored. In fact, there has
been a single attempt at doing so to date: (Baly
et al., 2019) proposed a multi-task learning formu-
lation based on the copula ordinal regression frame-

6https://adfontesmedia.com/
interactive-media-bias-chart/

work (Walecki et al., 2016), which jointly predicts
factuality and bias on ordinal scales. They further
used several auxiliary tasks, modeling centrality,
hyper-partisanship, as well as left-vs.-right bias on
a coarse-grained scale. They further took into ac-
count the ordinal nature of the labels for both factu-
ality (high, mix, low) and bias (ext. left, left, center
left, center, center right, right, ext. right) tasks,
noting that classifying an extreme right medium as
extreme-left is a huge error, while classifying it as
a center is a smaller one, and predicting right is an
even smaller error. The chart7 where Reuters8 and
AirForceTimes9 are center-bias and exhibit high
factuality.

5 Basis of Prediction

5.1 Textual Content

Linguistic Features focus on language use, and
they have been shown to be useful for detecting
fake articles, as well as for predicting the political
bias and the factuality of reporting of news me-
dia (Horne et al., 2018; Baly et al., 2018a). For
example, Horne and Adali (2017) showed that
“fake news” pack a lot of information in the ti-
tle (as many people do not read beyond the ti-
tle, e.g., in social media), and use shorter, sim-
pler, and repetitive content in the body (as writ-
ing fake information takes a lot of effort). Such
features can be calculated based on the Linguis-
tic Inquiry and Word Count (LIWC) lexicon and
used to distinguish articles from trusted sources vs.
hoaxes vs. satire vs. propaganda (Pennebaker et
al., 2001). They can be also modeled using lin-
guistic markers (Mihaylova et al., 2018) such as
factives (Hooper, 1975), assertives (Hooper, 1975),
implicatives from (Karttunen, 1971), hedges (Hy-
land, 2005), Wiki-bias terms (Recasens et al., 2013),
subjectivity cues (Riloff and Wiebe, 2003), and sen-
timent cues (Liu et al., 2005). There are 141 such
features in the NELA toolkit (Horne et al., 2018).
Embedding representations: An alternative way to
represent an article is to use embedding representa-
tions, typically based on large pre-trained language
models, such as BERT (Devlin et al., 2019). This
can be done without fine-tuning, e.g., by encod-
ing an article (possibly truncated, e.g., BERT-base
can take up to 512 tokens as an input) and then

7https://adfontesmedia.com/
interactive-media-bias-chart/

8https://www.reuters.com/
9https://www.airforcetimes.com/
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averaging the word representations extracted from
the second-to-last layer. Alternatively, one can
use pre-trained sentence encoders such as Sentence
BERT (Reimers and Gurevych, 2019).

5.2 Multimedia Content
Nowadays, almost all news websites heavily rely
on multimedia content. This dependence, however,
also makes multimedia a very effective means for
dispensing intended and even manipulated mes-
sages. The increasing availability of automated
and AI-powered multimedia editing and synthesis
tools, combined with massive computational power,
makes such capabilities accessible to everyone.

Given that the multimedia editors of a news site
typically follow a defined workflow when creating,
acquiring, editing, and curating content for their
pages, this pattern adds a crucial dimension to pro-
filing the factuality and the bias of a news source.
In fact, questions around the origin and the veracity
of photographic images and videos have long been
the subject of multimedia forensics research (Sen-
car and Memon, 2013; Sencar et al., 2022). There
has been research on verifying metadata integrity
(Kee et al., 2011; Iuliani et al., 2019; Yang et al.,
2020), digital integrity (Korus, 2017; Cozzolino
and Verdoliva, 2018), physical integrity (O’Brien
et al., 2012; Iuliani et al., 2017; Matern et al., 2020;
Riess et al., 2017; Peng et al., 2017) identification
of processing traces (Hadwiger et al., 2019), and
discrimination of synthesized (i.e., GAN generated)
media (Agarwal et al., 2020; Li et al., 2018; Verdo-
liva, 2020). However, these capabilities have only
been sparsely explored in the context of predicting
factuality and bias.

Existing work mainly considered characteristics
of images appearing in trustworthy vs. unreliable
sources. It was proposed to use visual character-
istics (Jin et al., 2017), deep-learning representa-
tions (Qi et al., 2019; Khattar et al., 2019; Sing-
hal et al., 2019), image provenance information
from reverse image search (Zlatkova et al., 2019),
and self-consistency with respect to metadata (Huh
et al., 2018). Overall, multimedia characteristics
have a strong potential that is yet to be fully used
for news media profiling.

5.3 Audience Homophily
The well-known homophily principle, “birds of a
feather flock together,” crucially asserts that simi-
lar individuals interact with each other at a higher
rate. Therefore, audience representation could be

another approach to describe a news media out-
let whereby an overall descriptive characteristic
of followers of the outlet is obtained. Then, by
evaluating the similarity of audience-centric repre-
sentations with previously categorized news media,
its factuality and bias can be inferred.

Ribeiro et al. (2018) used Facebook’s targeted
advertising tool to infer the ideological leaning of
online media based on the political leaning of the
users who interacted with these media. An et al.
(2012) relied on follow relationships on Twitter to
ascertain the ideological leaning of news media and
users. Wong et al. (2013) studied retweet behavior
to infer the ideological leanings of online media
sources and of popular Twitter accounts. Barberá
(2015) proposed a model based on the follower
relationships to media sources and Twitter person-
alities to estimate their ideological leaning.

Stefanov et al. (2020) predicted the political lean-
ing of media with respect to a topic by observing
the users of which side of the debate on a polariz-
ing topic were sharing content from which media
in support of their position. They constructed a
user-media graph and then used label propagation
and graph neural networks to derive representations
for media, which they used for classification. They
further aggregated the leanings across several po-
larizing topics to come up with a left-center-right
polarization prediction.

In (Baly et al., 2020b), audience characterization
was conducted across three social media platforms.
Twitter profile descriptions, YouTube audience re-
actions, and Facebook advertising platform’s de-
mographic information were used to create repre-
sentative models of each medium. The aggregated
data was then categorized into five political bias
labels: very conservative, conservative, moderate,
liberal, and very liberal. Mehta et al. (2022) and
Yang et al. (2023) addressed this challenge using a
graph framework that maps relationships between
news sources, their articles, and user engagement.
In a similar vein, motivated by homophily consid-
erations, Panayotov et al. (2022) modeled audience
overlap to induce a graph and produce embeddings
that model the similarity between news outlets.

5.4 Infrastructure Characteristics

Beyond textual, visual, and audience features, news
sites also exhibit distinct characteristics that relate
to the underlying infrastructure and technological
components deployed to serve their content online.
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In this regard, the prediction problem is analogous
to a well-studied one in the cybersecurity domain,
where the goal has been to identify infrastructure
characteristics of malicious domains (Anderson
et al., 2007; Invernizzi et al., 2014) that are used for
malware distribution (Wang et al., 2013; Invernizzi
et al., 2014), phishing (James et al., 2013; Mo-
hammad et al., 2012, 2014; Purwanto et al., 2020),
online scams (Alrwais et al., 2017; Konte et al.,
2009; Hao et al., 2016), and spamming (Anderson
et al., 2007; Hao et al., 2009). Since establishing
the infrastructure of a news medium involves sev-
eral decisions with respect to technological aspects,
it is plausible to expect that news media with vary-
ing IT practices and different levels of access to IT
resources will differ in their characteristics.

There has been very little work on network, web
design, and data elements of a news website to char-
acterize new sites for factuality and bias. At the
network level, Hounsel et al. (2020) aimed to dis-
tinguish disinformation websites vs. authentic web-
sites vs. sites not related to news or politics, and
found that features related to a website’s domain
name, registration, and DNS configuration work
best. Concerning the web design aspect, Castelo
et al. (2019) introduced a web page classifier based
on several features that govern the structure and the
style of a page in addition to three categories of lin-
guistic features. Their binary classification results
(real vs. fake news) on several datasets showed that
the web-markup features consistently perform well
and are complementary to linguistic ones. Hanley
et al. (2023) used partial Granger-causality to re-
veal positive correlations between the frequency
of hyperlinks from misinformation websites and
the popularity of conspiracy theory websites. Sim-
ilar work suggested that news outlets known for
spreading misinformation may play a significant
role in popularizing conspiracy theories (Hanley
et al., 2021; Sehgal et al., 2021).

Finally, at the data level, Fairbanks et al. (2018)
examined the source of web pages to identify
shared data objects, such as mutually linked sites,
scripts, and images, across websites.

6 Major Challenges

Ordinal scales: While ideological bias (news
slant) is typically modeled as left-center-right, a
spectrum can exist within each bias based on bias
intensity. A hyperpartisan bias prediction task has
been tested to differentiate far-right from right and

far-left from left, but it does not model the political
bias using an ordinal scale. Difficulties in labeling
the bias (i.e., creating ground-truth datasets) by ex-
perts or through crowdsourcing presents a major
hurdle for modeling ideological bias as an ordinal
variable.

Multimodality: In news reporting, photos typi-
cally attract high attention, and readers can some-
times understand a news story from the photos
alone, even without reading the text. Indeed, news
text and photos are strongly coupled and deliver
relevant information about news stories to read-
ers. Thus, modeling news text and photos together
should benefit our understanding of their factual-
ity (Alam et al., 2022) and potential harmfulness
(Sharma et al., 2022).

Evaluation granularity: The label of a news
medium is inferred from a sample of observations.
This can introduce measurement bias if a news
medium does not exhibit the same reporting behav-
ior across all its publications. This is especially
true for media with a particular stance on specific
issues (Ganguly et al., 2020). Thus, reliable esti-
mation of factuality and bias labels requires analyz-
ing a relatively large amount of content covering a
range of issues.

Variability in factuality & bias ratings: These
ratings are inherently not static and may change
over time when a news medium takes corrective ac-
tion to address issues raised by fact-checkers. Thus,
the ground truth needed for building a learning ap-
proach varies, triggering the need for re-evaluating
the performance of the proposed approaches. Thus,
there is a need to take into account the sensitivity of
a learning approach to such small but nevertheless
inevitable variations.

Dataset size: The datasets for media-level fac-
tuality and bias are relatively small, typically of a
few hundred examples.They are derived from few
sites, such as Media Bias/Fact Check and AllSides,
where domain experts perform manual analysis.

Annotation vs. modeling: One problem is that
human annotators judge the factuality of reporting
and the bias of media based on criteria that are
not easy to automate or based on information that
may not be accessible to automatic systems. For
example, if a news outlet is judged to be of mixed
factuality based on it having failed just 2-3 fact-
checks, for an automatic system to arrive at the

15953



same conclusion using the same idea, it would have
to select for analysis the exact same articles where
the false claims were made.

Data availability: Primarily due to copyright
issues, there are only a few publicly available
datasets of the full text of news for research pur-
poses. Instead, indexed data (e.g., GDELT dataset)
by mentioned actors, events, locations, sources, or
tones are available and have been analyzed in many
studies. A set of news headlines collected from
news websites or aggregated websites (e.g., All-
Sides) are also shared more actively for research
purposes. Considering the importance of social
media channels in news dissemination, researchers
collect and analyze social media posts of official
accounts of news media. As social media posts are
relatively more informal than news articles to fit
for social media audience (Park et al., 2021), more
studies are required for understanding their biases
and factuality correctly.

Hallucinations in LLMs: While LLMs have
demonstrated remarkable capabilities in various
applications, including estimating source reliabil-
ity as discussed in Section 2, it is crucial to ac-
knowledge a major challenge associated with these
models. LLMs, such as ChatGPT, can occasion-
ally generate incorrect, false, or misleading content.
This raises concerns about the reliability of credi-
bility ratings and information provided in sensitive
domains, such as news media profiling. Combining
the strengths of LLMs with human expertise and
other models can offer a more robust approach to
mitigating the risks associated with hallucination
in sensitive domains.

7 Future Forecasting

Support for non-English corpora and different
political systems: Most studies we review are in
English, and we anticipate more research on bias
and factuality in other languages. Recently, vari-
ous approaches have been proposed to accelerate
NLP research for resource-scarce languages, such
as multilingual word embeddings or large language
models. We believe that those efforts help conduct
bias and factuality research for non-English cor-
pora. One non-technical issue here is that not all
the countries have US-like left-center-right politi-
cal biases. For example, in some countries with a
multiparty system, understanding political biases
is the initial step in media bias research.

Incorporation of video content: TV news ac-
counts for significant portions of the news indus-
try. Also, the presence of news media has become
strong in video-driven social media platforms (e.g.,
TikTok) over time. To get high user engagement,
news media outlets upload short video clips cu-
rated for social media use, particularly on existing
social media. Previous studies on video news bias
typically analyzed transcripts, not the video itself.
Commercial databases, such as Lexis Nexis, or
open-source libraries to create subtitles are used
to analyze news transcripts. We expect that more
studies on analyzing video contents in an end-to-
end manner will be presented to fully understand
the bias and factuality of video news.

Bringing practical implications: Since the fac-
tuality and the bias of news media largely influence
the public, it is crucial to implement working sys-
tems so that readers can benefit from a rich stream
of research. Several stand-alone websites, such
as Media Bias/Fact Check, AllSides, and Tanbih
(Zhang et al., 2019), aim to make media bias and
factuality transparent to end-users, thus promoting
media literacy. We expect new tools and services
to support more media and languages.

Foundation Models: In the future, researchers
can explore innovative ways to understand media
better using LLMs. By asking these models spe-
cific questions, e.g., whether a media outlet has a
history of sharing false information or if it leans
toward certain views. Also, combining this with
looking at pictures in news articles using vision-
language models could give a more complete un-
derstanding of media content.

8 Lessons Learned

Factuality and bias have some commonalities as
they exert negative influences on the public by de-
livering skewed information.
Political Landscape Positioning: News media of-
ten take a biased position in the political landscape
to appeal to partisan audiences, particularly as the
news industry becomes more competitive.
Reporting Perspective: Despite the bias, many
journalists and editors are concerned about the is-
sue and try to report diverse perspectives.
Multi-dimensionality: Media bias is multi-
dimensional and can be conveyed through different
means such as text, photos, and videos, with ideo-
logical bias being a significant conceptualization.
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Factuality Challenges: Accurate prediction of ide-
ological bias of a news medium is easier than as-
sessing factuality, as factuality relies on verification
from other sources and observations.
Sophisticated Analysis: More sophisticated anal-
ysis of text style and multimedia characteristics
could improve accuracy, but other elements of a
news medium need to be complemented.
Audience Homophily: Recent studies emphasize
audience homophily and infrastructure character-
istics in bridging performance gaps, valuable for
early discovery and categorization of news media
due to their content-agnostic nature.

9 Conclusion

We surveyed the emerging field of news media pro-
filing for factuality and bias, which can enable early
fake news detection. While this is a relatively un-
derstudied direction, there has been a lot of recent
interest in the problem, including a shared task at
the CLEF-2023 CheckThat! lab. We discussed that
the factuality and the bias of news outlets are a
matter of degree, and we advocated for their joint
modeling. Besides textual representations, we ex-
amined the contribution of contextual frameworks.
Finally, we discussed the major challenges and
made a forecast for the future.

10 Limitations

Characterizing an entire media outlet presents a
significant challenge. While this study reviews
a variety of features used in the literature to pro-
file outlets, dealing with the dynamic nature of
news outlets in terms of their bias and factuality
and handling the vast volume of digital content
they produce remains a daunting task. Moreover,
the research largely relies on Western definitions
of political bias (left-center-right), which may not
accurately capture the nuanced ideological biases
present in news outlets from different cultural or
political contexts.

11 Ethics Statement

Environmental Impact The energy efficiency of
model training and inference operations is a critical
aspect of mitigating their environmental impact. In-
stead of utilizing extensive computational resources
for training complex models, which significantly
contribute to carbon emissions, we advocate for
optimizing model architectures to achieve better
performance with less computational power. The

methodologies reviewed in this study typically do
not train large-scale models from scratch but fine-
tune them on comparatively smaller datasets. This
fine-tuning process is less resource-intensive. Ad-
ditionally, using Central Processing Units (CPUs)
for inference after the model has been fine-tuned
is a viable approach that contributes less to global
warming compared to more power-demanding al-
ternatives. We thus endorse these environmentally-
conscious practices in the continued development
and application of AI technologies.

Misuse potential While the research, datasets,
and models related to entire news outlets analysis
hold immense potential, they also carry the risk of
misuse. They can serve as valuable resources for
fact-checkers, journalists, social media platforms,
and policymakers, aiding in accurate reporting, fact
verification, and policy formulation. However, the
same tools can be exploited for spreading disin-
formation and manipulating public opinion if they
fall into the wrong hands. Hence, it’s crucial for
researchers and practitioners in the field to exercise
caution and ethical restraint. We encourage strin-
gent safeguards and responsible use of such tools to
prevent their exploitation for malicious purposes.
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