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Abstract
Handling drafty partial code remains a no-
table challenge in real-time code suggestion
applications. Previous work has demonstrated
shortcomings of large language models of
code (CodeLLMs) in completing partial code
with potential bugs. In this study, we view
partial code as implementation hints and fine-
tune CodeLLMs to jointly rewrite and com-
plete partial code into functional full programs.
We explore two strategies: one-pass genera-
tion and multi-pass iterative refinement. We
construct new training and testing datasets us-
ing semantic-altering code transformations and
iterative self-generations. We conduct compre-
hensive experiments over three representative
open-sourced CodeLLMs – InCoder, CodeGen,
and StarCoder. Results show that CodeLLMs
fine-tuned using our approach achieve superior
pass rates compared to the previous baselines
across existing and newly-created benchmarks,
effectively handle both potentially buggy and
clean code, and largely preserve the integrity
of the original partial implementations. We
further present findings on the properties of
the potential bugs we tested and on the design
choices of our methods.

1 Introduction

Large language models of code (CodeLLMs),
i.e. large language models trained on vast repos-
itories of code, have demonstrated remarkable
progress in program synthesis and other code-
related tasks (Chen et al., 2021; Nijkamp et al.,
2022; Li et al., 2022, 2023). Such models are com-
monly trained on finished and reviewed code, e.g.
GitHub crawls of open-source projects. However,
one common application of such code intelligence
is suggesting implementations for in-progress code,
which tends to be less refined and more error-prone.
Previous work (Dinh et al., 2023) framed this in-
ference challenge as “buggy-code completion” –
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completing code with potential bugs, where a po-
tential bug is a piece of undesirable code in a code
prefix with respect to some reference completion
(see Section 2). They showed that CodeLLMs,
albeit achieving a high pass rate over code genera-
tion benchmarks, fail to generate functional code
in the presence of potential bugs. Figure 1 illus-
trates such an example. The marked potential bug
in the partial code makes producing a functional
completion a more challenging task. In this case,
the completion model (CodeGen-2B) attempted
to accommodate the potential bug by deviating
from the reference completion, but the resulting
completion is still functionally incorrect (panel a).
Besides, we also show the output of the comple-
tion model (CodeGen-2B) using only the prob-
lem description (panel b). We can observe that
the generated completion code segment accurately
addresses the problem, but it deviates from the
given partial code in terms of function names and
certain variables, which may disalign with user
expectations. Typically, users prefer suggestions
that closely match their existing code structure and
naming conventions. In this paper, we propose to
fine-tune CodeLLMs to jointly rewrite and com-
plete partial code. As shown in Figure 1, the fine-
tuned CodeGen-2B gives a correct and full program
(panel c). From the resulting completion, we can
observe that the program aligns well with the given
partial code while fixing the potential bugs.

We hypothesize that a user’s partial code offers
valuable information about their intent. It first helps
clarify the problem, providing a richer specification
than mere descriptions. It at the same time helps
narrow down which solution idea, among a possi-
bly vastly diverse solution space, the user wants to
use to address the problem. Thirdly, it provides an
implementation sketch for the solution idea, pre-
sumably making the task of finishing a functional
program easier. It thus becomes more surprising to
see that completing with the presence of potential
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"""
You are given a list of deposit and withdrawal operationson a bank account
that starts with zero balance. Your task is to detect if at any point the
balance of account falls below zeros, and at that point function should
return True. Otherwise, it should return False.
"""
def below_zero(operations):

balance = 0
for op in operations:

balance -= op
if balance < 0:

potential bug

Problem description (h) + code prefix with a potential bug (s)

Reference completion

return True
return False

Completion (h + s)
[CodeGen-2B]

return False
if balance >= 0:

return True
return False

a

Completion (h)
[CodeGen-2B]

def neg_balance(ops):
balance = 0
for op in ops:

balance += op
if balance < 0:

return True
return False

b

Joint rewriting and completion (h+s)
[finetuned CodeGen-2B]

def below_zero(operations):
balance = 0
for op in operations:
balance += op
if balance < 0:

return True
return False

c

Figure 1: Illustrations for buggy-code completion with three different paradigms: completion with
both the problem description (h), completion with only the problem description (h), and the code
prefix (s) and joint rewriting with both the problem description (h) and the code prefix (s). The
generated code a is incorrect, b is correct but disaligns with the given partial prefix (the function
name and the variable names are different), and c is correct and align with the given partial prefix.

finetuned CodeGen-2B gives a correct and full program (panel c). From the resulting completion, we
can observe that the program aligns well with the given partial code while fixing the potential bugs.

We hypothesize that a user’s partial code offers valuable information about their intent. It first helps
clarify the problem, providing a richer specification than mere descriptions. It at the same time
helps narrow down which solution idea, among a possibly vastly diverse solution space, the user
wants to use to address the problem. Thirdly, it provides an implementation sketch for the solution
idea, presumably making the task of finishing a functional program easier. It thus becomes more
surprising to see that completing with the presence of potential bugs gives an even worse pass rate
than generating code from only specifications Dinh et al. [2023].

In this paper, we focus on tuning existing CodeLLMs with the task of generating a full functional
programs given a problem specification and a code prefix, in which potential bugs may present. The
intuition is to treat code prefixes as implementation hints and allow deviation from it. We explore
two strategies of joint rewriting and completion of partial code: one-pass generation where a model
directly attempt to generate a functional full program from a code prefix, and iterative refinement
where a model iteratively refines its previous outputs. Regarding the construction of the required
training datasets, we design an automatic way to injecting multiple types of semantic-altering code
transformations to code prefixes and use the original reference code as generation targets. We evaluate
our models in terms of pass rates against b-HumanEval and b-FixEval benchmarks from Dinh et al.
[2023], as well as two newly constructed evaluation datasets b-MBPP and b2-MBPP. Extensive
results using CodeGen-(2B, 16B) Nijkamp et al. [2022], InCoder-(1B, 6B) Fried et al. [2022], and
StarCoder (15.5B) Li et al. [2023] suggest that the iterative inference strategy outperforms the one-
pass generation strategy, which in turn surpasses previous post-hoc baseline mitigations [Dinh et al.,
2023] in terms of pass rates on both buggy and reference code prefixes, and perseverance of the given

2

Figure 1: Buggy-code completion with three different paradigms: completion with both the problem description (h),
completion with only the problem description (h), and the code prefix (s) and joint rewriting with both the problem
description (h) and the code prefix (s). a is incorrect, b is correct but disaligns with the given partial prefix (the
function name and the variable names are different), and c is correct and align with the given partial prefix.

bugs gives an even worse pass rate than generating
code from only specifications (Dinh et al., 2023).

In this paper, we focus on tuning existing
CodeLLMs with the task of generating a full func-
tional programs given a problem specification and
a code prefix, in which potential bugs may present
(Section 2). The intuition is to treat code prefixes
as implementation hints and allow deviations from
it. We explore two strategies of joint rewriting
and completion of partial code (Section 3): one-
pass generation where a model directly attempts
to generate a functional full program from a code
prefix, and multi-pass iterative refinement where a
model iteratively refines its previous outputs. Re-
garding the construction of the required training
datasets, we design an automatic way to inject-
ing multiple types of semantic-altering code trans-
formations to code prefixes and use the original
reference code as generation targets (Section 4).
We evaluate our models in terms of pass rates
against b-HumanEval and b-FixEval bench-
marks from Dinh et al. (2023), as well as two
newly constructed evaluation datasets b-MBPP
and b2-MBPP (Section 4.4). Extensive results

(Section 5) using CodeGen-(2B, 16B) (Nijkamp
et al., 2022), InCoder-(1B, 6B) (Fried et al., 2022),
and StarCoder (15.5B) (Li et al., 2023) suggest
that the multi-pass iterative inference strategy out-
performs the one-pass generation strategy, which
in turn surpasses previous post-hoc baseline miti-
gations (Dinh et al., 2023) in terms of pass rates
on both buggy and reference code prefixes and in
terms of preserving the given partial code. As illus-
trated in Figure 1, our approach not only provides
a correct solution that aligns with the given par-
tial code but also rectifies the potential bug, thus
resulting in a more desirable outcome.

Contributions We (i) first attempt the joint
rewriting and completion of code with potential
bugs using two inference strategies facilitated by
fine-tuning, (ii) construct 2 training datasets and
2 new benchmark datasets via code transforma-
tion, (iii) improve the performance of all tested
CodeLLMs in terms of pass rates, preservation of
partial code and performance on reference code,
and (iv) provide various findings on the property of
potential bugs and design choices of our methods.
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2 Task

In this section, we look into the task of transform-
ing a code prefix s into a functional full program t,
conditioning on a task specification h. Motivated
by the scenario of real-time code suggestion, where
a user’s in-progress code can be less refined and
more error-prone than the final revised code, the
code prefix here may contain potential bugs.

A potential bug is a span u in a code prefix
s, such that, compared to the reference program
t̂ := ŝ :: ĉ that implements h, s and ŝ only dif-
fers in u and that program t := s :: ĉ fails h. ::
denotes code concatenation. In other words, u is
a bug in program t. We call ŝ a reference prefix,
ĉ a reference completion, and s a (code) prefix
with potential bugs, or a (potentially) buggy pre-
fix. Note that, although we refer to s as “buggy
prefix” for brevity, s is not buggy per se without a
reference completion, because “bugginess” is only
defined over a full program. The task was previ-
ously studied as “buggy-code completion” by Dinh
et al. (2023, Section 2). In particular, since the code
prefix s manifests a user’s implementation intent, a
desideratum is to minimize deviations from s. We
quantify this by the similarity between generated
solution t and the reference solution t̂ (see Sec-
tion 5.2), because the prefix-completion boundary
is not always well-defined in the generated program
t after the joint rewriting and completion.

3 Method

We describe two inference strategies for joint
rewriting and completion of code, one-pass genera-
tion and multi-pass iterative refinement, as well as
how we fine-tune a CodeLLM with such strategies.

3.1 One-Pass Generation
Given a problem specification h and a code prefix
s as input, the code completion model decodes a
full program t autoregressively in one pass.

On a dataset D1 that consists of triplets (h, s, t̂),
where t̂ is a reference (full) solution, we fine-tune a
base CodeLLM using the auto-regressive language
modelling loss (supervised fine-tuning, SFT). That
is, we maximize

Pr(t̂ | h, s) =
|t̂|∏

i=1

p(t̂i | h, s, t̂<i). (1)

The resulting model is denoted as M1. The
construction of D1 is detailed in Section 4.

3.2 Multi-pass Iterative Refinement

CodeLLMs might not generate a good solution on
their first try, especially when the potential bugs
are difficult to identify. Motivated by how humans
proofread and refine their written texts, we propose
to improve the generated solution using the itera-
tive refinement strategy, a fundamental characteris-
tic of human problem-solving (Flower and Hayes,
1981). Iterative refinement has demonstrated ef-
ficacy across many code-related tasks (Madaan
et al., 2023; Reid and Neubig, 2022; Welleck et al.,
2022). In our setting, the primary objective is to
allow the model multiple opportunities to detect
potential bugs and to generate suitable corrections
(rewritings). Once the potential bugs are fixed, cor-
rected partial code will enable the model to produce
accurate and relevant completions.

Inference For this strategy, we let a model refine
its solution iteratively by generating a new solution
based on its previous generated output together
with the original specification. Specifically, given
a specification h and a code prefix s, model M
generates a solution t = t(J) following

t(j) = M(h, truncates(t(j−1))) (2)

for j = 1, . . . , J , where t(0) = s, J is the number
of iterations and truncates(·) modifies the gener-
ated solution t(j−1) by truncating it to a partial
prefix, which retains the same number of lines of
code as specified by s.

Training We use a two-phase fine-tuning ap-
proach to facilitate a model’s ability to refine its out-
put. The training process is illustrated in Figure 2.
In the first phase, we obtain fine-tuned CodeLLM
M1 following Section 3.1. Then, we use M1 to
generate dataset D2 for the second phase. Specif-
ically, for every sample (h, s, t̂) ∈ D1, we create
new training samples by collecting model outputs
during iterative refinement as input code prefixes.

D2 =
⋃

(h,s,t̂)∈D1

{(h, truncates(t(j)), t̂)}Jj=1 (3)

where t(j) is obtained following Equation (2) using
M1, and J and truncates(·) carry the same mean-
ing as before. After that, we start the second-phase
fine-tuning over M1 using the newly constructed
D2, resulting in a new model M2.
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D1 D2 b-HumanEval b-FixEval b-MBPP b>1-MBPP
# of total instances 100,000 207,272 1,896 292 976 500
# of buggy instances 53,636 128,774 1,896 292 650 500
# of clean instances 46,364 78,498 0 0 326 0
# of potential bug(s) 0/1 0/1 1 - 1 2

Table 1: Statistics of our training and testing datasets. b-FixEval is constructed from the real
submission, so the number of potential bugs could not be quantified.

D1 D2

SFT SFT

CodeLLM M1

M1 M2

DX
1 Frozen M1

Frozen M1

. . .

Frozen M1

I1

. . .

IJ�1

I1

I2

. . .

IJ

I1 +DY
1

I2 +DY
1

. . .

IJ +DY
1

truncate

truncate

truncate

Phase 1 Phase 2Generate datasets for Phase 2

Figure 4: Overview of the two-phase training framework.

5.1 Experimental Setting200

Base completion models We select several latest public CodeLLMs as base completion models,201

including CodeGen-(2B, 16B) Nijkamp et al. [2022], autoregressive language models released for202

program synthesis; InCoder-(1B, 6B) Fried et al. [2022], decoder-only Transformer models trained203

on code using a causal-masked objective; and StarCoder (15.5B) Li et al. [2023], a recently released204

decoder-only transformer model achieved by fine-tuned StartCoderBase for 35B Python tokens.205

Setting for our method We fine-tune the aforementioned base completion models on our con-206

structed training datasets. We use the AdamW optimizer Loshchilov and Hutter [2017] with �1 = 0.9,207

�2 = 0.999 and ✏ = 10�8, a per-GPU batch size ranging from 2 to 32, and gradient accumulation step208

4. We fine-tune for 5 epochs. We use DeepSpeed2 and its implementation of the ZeRO optimizer to209

reduce memory consumption while training large models Rasley et al. [2020]. Models are fined-tuned210

on Amazon p4de.24xlarge with 8 A100 GPUs.211

Baseline methods Besides directly using a model to complete code prefixes, i.e. naive completion,212

we adopt three post-hoc mitigation methods from Dinh et al. [2023] as competitive baselines. removal213

! completion mitigates the negative effect of potential bugs by directly removing the partial code214

from input. While it guarantees that the input contains no bug, it sacrifices useful code context215

information. completion ! rewriting uses RealiT [Richter and Wehrheim, 2022], a program repair216

model, to fix the generated solution from the base completion model. rewriting ! completion uses217

InCoder-6B [Fried et al., 2022] and a likelihood-based heuristic to identify and rewrite potential bugs218

before the code prefix was sent for completion.219

2https://github.com/microsoft/DeepSpeed

7

Figure 2: Overview of the two-phase training framework. D1 consists of triplets consists of triplets (h, s, t̂), and
DX

1 represents the input part of D1, each of which is of the form (h, s), and DY
1 represents the output part of D1,

each of which is of the form (t̂). Ii + DY
1 represents the concatenating the generated input part with the target

output to form the triplet (h, s, t̂) for the fine-tuning.

Choice of J We fix the number of iterations J to
be 3, which is determined by our preliminary exper-
imental results. An adaptive choice of J based on
the input may offer better trade-offs between qual-
ity and efficiency. We leave further explorations of
the choice of J to future work.

4 Construction of Datasets

We create labeled instances for joint rewriting and
completion of partial code using truncation and
semantic-altering code transformations. Section 4.1
– 4.3 describe the construction of D1. Section 4.4
describes testing datasets.

4.1 Buggy Code Prefixes
An overview of the construction process is depicted
in Figure 3. Starting with a reference program t̂
comprising |t̂| lines of code, we first parse1 it into
an abstract syntax tree (AST). Next, we apply a
semantic-altering AST transformation F that yields
a valid AST. We then unparse it to get a buggy
program t, where the bug is marked by the span
corresponding to transformed AST nodes. This
ensures that t remains syntactical because it still
corresponds to a valid AST. We locate the smallest
L such that line 1 to L contains the bug span. Fi-
nally, we take the first S lines of t as a potentially
buggy prefix s, where S is randomly chosen from
{L,L+ 1, . . . , |t̂|}.

1docs.python.org/3/library/ast.html

Choice of transformations Given the diversity
of potential bugs, it is impractical to attempt cata-
loging every conceivable error. We identify com-
mon bug types by analyzing both successful and
failed submissions in CodeNet (Puri et al., 2021),
a large-scale code datasets consists of user sub-
missions to coding problems. We randomly se-
lected submissions from 1, 000 different users to
uncover some common potential bugs types. In
total, we have identified seven distinct types of po-
tential bugs. Correspondingly, we devised 7 AST-
based transformations for injecting bugs and obtain-
ing buggy partial code, namely Variable Renam-
ing ( v-Rename ), Keywords Removal ( k-Remove ),
Numerical Value Change ( nv-Change ), While
and If Swapping ( wi-Swap ), Condition Removal
( c-Remove ), Branch Removal ( b-Remove ) and
Operator Change ( o-Change ). Details can be
found in Appendix A.1.

Discussions Although we only applied the con-
struction procedure to Python code, however, the
operation of code transformation and truncation
is generic and can be easily adapted for other
programming languages. The spectrum of poten-
tial bugs that our proposed transformations can
simulate is not exhaustive, owing to the com-
plexities previously discussed. Despite this, our
dataset encompasses the majority of bug types doc-
umented in bug-fixing literature, such as the work
by Karampatsis and Sutton (2020). Furthermore,
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Figure 3: Obtaining buggy partial code via bug injection. The dotted red lines represent the last lines of bug spans.
The dotted green lines represent the splitting locations, which is randomly chosen after the bug spans. Given that our
focus is on code completion from partial code inputs, we have opted to discard solutions with only one-line code.

there is a significant overlap with types of bugs
found in established testing datasets like Buggy-
HumanEval (Dinh et al., 2023), which affirms the
relevance and utility of our approach.

4.2 Clean Code Prefixes

Dinh et al. (2023, Section 4.4) showed that improv-
ing the performance on buggy code prefixes can
degrade the performance on reference code pre-
fixes. To prevent such performance degradation,
we additionally include the prefixes from reference
program for training. For a specification h and a
reference program t̂, we take the first

⌈
r|t̂|

⌉
lines as

code prefix s and form a training sample (h, s, t̂),
where ratio r takes from {0.2, 0.4, 0.6, 0.8}, gener-
ating 4 distinct training samples.

4.3 Training Dataset

To align CodeLLMs with the capability to han-
dle common formats of coding solutions, we take
problems and reference solutions from CodeCon-
tests (Li et al., 2022) for the Standard Input For-
mat where a solution is a standalone program
that interacts with standard input-output, and from
MBPP (Austin et al., 2021) for the Function-Call
based format where a solution is a function imple-
mentation. See examples in Appendix A.3. Both
datasets contains coding problems and test cases
for each problem. CodeContests contains user sub-
mitted solutions to each problem; while MBPP
comes with a reference solution to each problem.
From CodeContests, we randomly sample 3,000
problems; and for each of problem, we randomly
sample one accepted solution as the reference so-
lution. From MBPP, we use 875 problems for con-

structing training instances and reserve the remain-
ing 100 problems for constructing testing instances
(see below). Then, we apply the aforementioned
procedures to obtain training dataset D1, which
contains 100k samples including both buggy and
clean training samples.

4.4 Testing Dataset

To facilitate direct comparisons, we test our meth-
ods on benchmarks from Dinh et al. (2023): b-
HumanEval constructed by injecting operator flips
to HumanEval reference solutions and b-FixEval
constructed by contrasting rejected and accepted
human solutions from FixEval (Haque et al., 2023).
In addition, we construct two new testing datasets
for evaluating joint rewriting and completion of
code with potential bugs using the procedure de-
scribed in Section 4.1. b-MBPP and b2-MBPP
are both constructed from 100 MBPP (Austin et al.,
2021) samples held out from the training set con-
struction. b-MBPP contains only instances with
only one potential bugs while b2-MBPP contain
instances with two potential bugs.

Details of training and testing dataset statistics
used in our experiments are listed in Table 1. Note
that the size of D2 is not three times the size D1.
This is because, for the clean instances, we con-
struct only one pair per instance.

5 Experiments

5.1 Experimental Setting

Base completion models We select several pub-
lic CodeLLMs as base code completion models, in-
cluding CodeGen-(2B, 16B) (Nijkamp et al., 2022),
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D1 D2 b-HumanEval b-FixEval b-MBPP b2-MBPP

# of total instances 100,000 207,272 1,896 292 976 500
# of buggy instances 53,636 128,774 1,896 292 650 500
# of clean instances 46,364 78,498 0 0 326 0
# of potential bug(s) 0/1 0/1 1 - 1 2

Table 1: Statistics of our training and testing datasets. b-FixEval is constructed from the real submission, so the
number of potential bugs could not be quantified.

autoregressive language models released for pro-
gram synthesis; InCoder-(1B, 6B) (Fried et al.,
2022), decoder-only Transformer models trained
on code using a causal-masked objective; and Star-
Coder (15.5B) (Li et al., 2023), a recently released
decoder-only transformer model achieved by fine-
tuned StartCoderBase for 35B Python tokens.

Experimental settings We fine-tune base
CodeLLMs on our constructed datasets. We
use the AdamW optimizer (Loshchilov and
Hutter, 2017) with β1 = 0.9, β2 = 0.999 and
ϵ = 10−8, a per-GPU batch size ranging from
2 to 32. We fine-tune for 5 epochs. We use
DeepSpeed (Rasley et al., 2020) together with
the ZeRO optimizer (Rajbhandari et al., 2020)
to reduce memory consumption while training
large models. Models are fine-tuned on Amazon
p4de.24xlarge with 8 A100 GPUs.

Baseline methods Beyond the naiv̈e generation
from code context, we adopt three post-hoc mitiga-
tion methods from Dinh et al. (2023) as baselines:
removal → completion mitigates the negative effect
of potential bugs by directly removing the partial
code from input. While it guarantees that the input
contains no bug, it sacrifices useful context informa-
tion; completion → rewriting uses RealiT (Richter
and Wehrheim, 2022), a program repair model, to
fix the generated solution from a CodeLLM; rewrit-
ing → completion uses InCoder-6B (Fried et al.,
2022) and a likelihood-based heuristic to identify
and rewrite potential bugs before the code prefix
was sent for completion.

Evaluation metrics We measure the functional-
ity of a completed program by executing it against
the provided test cases on the testing problems. Fol-
lowing the common protocol for evaluating code
generation (e.g. Chen et al., 2021; Li et al., 2022;
Nijkamp et al., 2022; Fried et al., 2022), we mea-

sure the pass@k (↑) for each instance as follows:

pass@k := 1−
(
n− c

k

)/(n
k

)

where n generated solutions are sampled from a
model and c of them pass all the tests. We use
n = 100 and k = 1, 10, 100. Unless otherwise
specified, we use the default HuggingFace genera-
tion parameters for all the methods. As a reference
solution to a problem can derive multiple input
cases, to avoid the dominance of certain problems,
we average the pass@k numbers within each prob-
lem and then average across all problems.

5.2 Experimental Results

Performance on buggy code prefixes. Table 2
shows the pass@1 results on completing buggy
code prefixes on the five testing datasets. Our fine-
tuned models consistently outperform the other
baseline models across different model sizes. It
indicates that task-specific fine-tuning can help the
models better leverage the useful information from
the buggy partial codes and improve the quality of
the generated code solutions. By contrast, rewrit-
ing → completion and completion → rewriting
cannot effectively leverage the useful information
from buggy prefixes. When the model is large, e.g.
CodeGen-16B and StarCoder, removal → comple-
tion, which disregards code prefixes, can even sig-
nificantly outperform rewriting → completion and
completion → rewriting. Meanwhile, the iterative
refinement model M2 consistently outperforms the
one-pass generation model M1, which proves the
effectiveness of the iterative refinement strategy.

Moreover, our methods are less affected by the
number of potential bugs in the partial codes. On
the b2-MBPP dataset where the partial code con-
tains two bugs, the rewriting → completion and
completion → rewriting methods significantly per-
form worse than they do on the b-MBPP dataset.
For example, when the base model is InCoder-6B,
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Methods b-FixEval b-HumanEval b-MBPP b2-MBPP

C
od

eG
en

-2
B removal → completion 8.6 9.3 6.7 6.7

naive completion 4.3 3.1 4.9 4.4
rewriting → completion 7.2 24.9 8.9 5.4
completion → rewriting 4.7 23.6 12.8 3.8
One-pass Generation (M1) 8.1 19.2 17.4 10.4
Iterative Refinement (M2) 9.6 20.4 19.3 14.2

In
C

od
er

-6
B

removal → completion 6.4 6.9 9.1 9.1
naive completion 1.8 1.0 2.4 1.5
rewriting → completion 5.1 16.4 11.2 6.2
completion → rewriting 3.0 25.2 19.2 4.9
One-pass Generation (M1) 7.3 25.5 21.6 18.7
Iterative Refinement (M2) 8.8 26.8 23.3 21.3

C
od

eG
en

-1
6B

removal → completion 28.2 30.4 35.6 35.6
naive completion 16.4 17.5 13.1 12.6
rewriting → completion 21.6 24.5 27.9 24.9
completion → rewriting 18.3 27.1 26.6 23.6
One-pass Generation (M1) 29.1 31.3 37.2 34.9
Iterative Refinement (M2) 31.2 33.2 39.1 37.1

St
ar

C
od

er

removal → completion 29.9 35.4 40.5 40.5
naive completion 17.1 18.2 14.2 13.8
rewriting → completion 22.1 26.4 30.1 22.2
completion → rewriting 21.0 25.2 28.2 18.6
One-pass Generation (M1) 30.1 36.1 41.8 41.0
Iterative Refinement (M2) 31.8 37.8 43.9 42.6

Table 2: Pass@1 (%) on five benchmarks with buggy partial codes. The best result on each benchmark are in bold
and the second best result are underlined under the same baseline model.

b-FixEval

b-HumanEval
b-MBPP

b2 -MBPP
40

50

60

B
L

E
U

Sc
or

e
(%

)

removal → completion Iterative Refinement

Figure 4: BLEU scores for removal → completion and
our fine-tuned model (CodeGen-16B) over four bench-
marks. The solutions used for the calculation are all
correct , namely, passing the test cases.

rewriting → completion and completion → rewrit-
ing become worse than removal → completion on
the b2-MBPP dataset. However, our methods still
perform the best on the b2-MBPP dataset.

We note from Table 2 that when the model size
is large, the removal → completion method shows
comparable performance to our fine-tuned models.
However, we find that the solutions generated by

Methods r-FixEval r-HumanEval

C
od

eG
en

-2
B naive completion 37.8 54.9

rewriting → completion 31.0 49.6
completion → rewriting 19.4 22.7
Iterative Refinement (M2) 37.2 52.1

C
od

eG
en

-1
6B naive completion 50.2 63.4

rewriting → completion 32.7 51.5
completion → rewriting 20.9 24.2
Iterative Refinement (M2) 45.9 59.7

Table 3: Pass@1 (%) on benchmarks with clean partial
code settings. The best result on each benchmark are in
bold and the second best result are underlined.

the removal → completion method often exhibit
significant deviations from the given code prefixes.

We quantify this misalignment using the BLEU
score. Figure 4 shows that when using CodeGen-
16B as the base model, iterative refinement consis-
tently produces the solutions with higher BLEU
scores than those generated by removal → com-
pletion on all test sets. This further proves our
method’s ability to generate solutions better aligned
with the provided partial code, which we consider
a desired property in practice to cause less surprise
and interruption when a user gets code suggestions.
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Figure 5: Pass@100 (%) on three benchmarks with
naive completion using CodeGen-16B.

Performance on reference code prefixes We
recognize that partial code may not always contain
potential bugs, and expect that whatever methods
for this task should still perform well when po-
tential bugs are not present. Table 3 presents the
pass@1 results of various methods on r-FixEval
and r-HumanEval benchmarks where the methods
are provided with the reference code prefixes. We
observe that for both CodeGen-2B and CodeGen-
16B, completion → rewriting and rewriting → com-
pletion perform significantly worse than the naive
completion in this setting. rewriting → completion
may do wrong localization when the code prefix
does not contain a bug and may introduce new er-
rors during its infilling-based line replacement. As
for completion → rewriting, we find that the code
repairer may inadvertently transform an already
correct solution to an incorrect one. Our method
shows desirable behavior that its performance is
much closer to that of the naive completion.

6 Analysis

Are buggy code prefixes recoverable? A partial
code snippet, in itself, is not inherently buggy, as
the notion of bugginess is ill-defined without the
context of a complete program. To quantify the ex-
tent to which a partial code can be considered truly
"buggy", we measure the pass@100 scores for the
code completion results from a substantial large
CodeLLM (CodeGen-16B). If none of 100 gener-
ated solutions is able to pass all the test cases, it in-
dicates that the partial code is impossible, or at least
very difficult, to reach a correct solution by merely
appending a suffix. In other words, these potential
bugs are considered as “not recoverable”. Modifica-
tions over the given partial code may be necessary
to reach a correct solution. Figure 5 shows that
even CodeGen-16B, a substantially large language
model for code with up to 16.1B parameters, has

lower pass@100 for the buggy partial code than
that for the clean partial code. This suggests that
obtaining a fully functional program merely by ap-
pending a suffix to the given buggy partial code is
extremely challenging. To some extent, it indicates
that rewriting the partial code with potential bugs
fixed before the completion operation is necessary
as to achieve a functional program.

Impact of different types of potential bugs Fig-
ure 6 shows the results for different bug types ob-
tained through three distinct methods. Notably,
completion → rewriting exhibits an exception-
ally low pass@1 rate for the three bug types:
k-Remove , c-Remove , and b-Remove . These par-
ticular bug types are attributed to code removal
operations. The bug fixer, RealiT (Richter and
Wehrheim, 2022), employs a localization and re-
pair module, which first identifies the bug’s loca-
tion and then seeks a suitable replacement token
for repair. Consequently, for the bugs arising from
the removal of code segments or entire lines, the
localization module struggles to pinpoint the bug.
In cases where the code removal operation occurs
at the last line of the partial code, there is no bug
to fix, which explains why completion → rewrit-
ing still manages to generate solutions satisfying
the specification in some instances. Similar chal-
lenges are observed for rewriting → completion,
as it also needs to identify lines of code containing
bugs before utilizing the infilling operation. There-
fore, both of these post-hoc baseline methods have
limitations in addressing specific bug types.

By contrast, our fine-tuned model generates so-
lutions from scratch while adhering to the given
specification. It treats the provided partial code as
a soft constraint to guide the generation process.
This approach offers greater flexibility and wider
applicability across various bug types.

7 Related Works

7.1 LLMs for code completion

Large Language Models (LLMs) (Touvron et al.,
2023; Team et al., 2023; Achiam et al., 2023)
have recently received tremendous attention and
shown impressive success. By leveraging exten-
sive pre-training on vast amounts of internet data
and further fine-tuning with human-annotated in-
struction data (Ouyang et al., 2022), these mod-
els achieved state-of-the-art (SOTA) zero-shot per-
formance across diverse tasks. This trend is also
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Figure 6: Pass@1 for different type of bugs under three different methods (completion → rewriting, rewriting →
completion, Iterative Refinement (M2)). The baseline model is CodeGen-2B.

observed in the code domain, where numerous
large language models for code (CodeLLMs) have
been trained to tackle the challenges associated
with code-related tasks. These CodeLLMs lever-
age billions of trainable parameters and access
to vast repositories of publicly available source
code. For example, AlphaCode (Li et al., 2022)
claimed to outperform half of the human partic-
ipants in real-world programming competitions,
while CodeX (Chen et al., 2021) empowers Copi-
lot, a widely used AI programming assistant, to
offer real-time coding suggestions. Other note-
worthy open-source CodeLLMs include Wizard-
Coder (Luo et al., 2023), StarCoder (Li et al., 2023),
CodeT (Wang et al., 2021), CodeGEN (Nijkamp
et al., 2022), and InCoder (Fried et al., 2022). In
this paper, we harness the capabilities of these open-
source pre-trained code language models and fine-
tune them using a collection of code datasets auto-
matically constructed to enhance code generation,
particularly in scenarios involving potential bugs.

7.2 Automatic program repair
Repairing for complete code The research on
automatic bug detection and fixing (Vasic et al.,
2018; Chen et al., 2019; He et al., 2022; Karam-
patsis and Sutton, 2020; Richter and Wehrheim,
2022) aims at relieving the programmers from the
enormous effort of finding and fixing programming
bugs. Fine-tuning pretrained code language models
has proven to be an effective strategy. For example,
Mashhadi and Hemmati (2021) fine-tuned Code-
BERT (Feng et al., 2020) to automatically generate
the fix codes, and He et al. (2022) fine-tuned Cu-
BERT (Kanade et al., 2020) in a two-phase strategy
in order to reduce the distribution shift existing
in learning-based bug detectors. Allamanis et al.
(2021) proposed BUGLAB, an approach to co-train

bug detection and repair models in a supervised
way. Despite the similarity, these previous studies
mainly focus on code repairing, targeted at fixing
bugs from complete programs, while we study po-
tential bugs from partial code.

Repairing for in-progress code Unlike program
repair for complete code, addressing issues in
works-in-progress poses a relatively ambiguous
challenge and remains largely unexplored in the
field. In a pioneering study, Li et al. (2021) con-
sidered the tasks of localizing and repairing vari-
able misuse for work-in-process code. More re-
cently, Dinh et al. (2023) experimented several post-
hoc methods to mitigate the adverse effects when
CodeLLMs try to complete partial code with poten-
tial bugs. However, those methods either lack the
ability to rewrite the partial code, or lack the adap-
tations needed to better accustom to the presence
of potential bugs in partial code. Our proposed fine-
tuning for joint rewriting and completion addresses
these two limitations and shows improvements in
pass rate and preservation of the original code.

8 Conclusion

In this paper, we study the task of generating a com-
plete functional program given a specification and
an in-progress code prefix with potential bugs. To
align CodeLLMs with the task of jointly rewriting
and completing such code prefixes, we construct a
new training dataset by injecting various potential
bugs. Beyond the standard fine-tuning and gener-
ation workflow, we apply an multi-pass iterative
refinement strategy to enhance code generation per-
formance. Our experiments demonstrate that our
methods outperform previous baseline methods on
both existing evaluation benchmarks and the new
testing datasets we have constructed.
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9 Limitations

In this study, we evaluate methods on benchmarks
constructed from synthetic bugs or user submission
to coding problems, which does not reflect the full
complexity of practical applications. For example,
actual software development can work with mul-
tiple files within a complex project environment.
We only conduct experiments in Python. While
our methods do not rely on any language-specific
features, experiments on other programming lan-
guages would provide evidence for cross-language
generalizability of our findings.

We measure the similarity between a generated
solution and its reference solution as a proxy for
preservation of implementation intent. The text
level similarity may not reflect high-level alignment
in semantics or pragmatics. Current users gener-
ally do not expect a coding assistant to overwrite
their code when making completion suggestions.
What behavior should we target to increase users’
productivity and satisfaction remains not only a
science but also a design problem.

In real-life coding scenarios, the occurrence of
bugs in an in-progress code can differ among pro-
grammers. As a preliminary exploration, this paper
focuses on a relatively straightforward scenario
wherein only one or two potential bugs are consid-
ered. Besides, the seven transformations are our
concerted effort to cover and replicate realist bugs.
They are proposed based on our heuristic analy-
sis and insights from surveys, with some of them
already identified in prior related studies (Karam-
patsis and Sutton, 2020; He et al., 2022).
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A Details of Data Construction

A.1 AST Transformations

Variable Renaming ( v-Rename ) In coding, it is common for us to inadvertently introduce errors
when reusing a previously defined variable. These errors can arise from a lack of attention, leading
to typographical mistakes like ‘friend’ becoming ‘friends’, or they may occur due to incorrect auto-
completion suggestions from coding assistant tools. In our method, we implement a process where
we randomly select a variable and intentionally introduce a potential bug. This is achieved either by
substituting it with another variable defined before it 2 or by creating a new variable with the addition or
the deletion of the character ‘s’ at the end of the variable.

Keywords Removal ( k-Remove ) Keywords such as ‘continue’, ‘break’, and ‘return’ are frequently
used and serve a crucial role in ensuring the correctness of functions or programs. The absence of these
keywords can lead to programs or functions failing to terminate properly. Identifying such bugs can be
challenging and may consume a significant amount of a programmer’s time for the debugging.

Numerical Value Change ( nv-Change ) Numeric values, real and integer numbers such as 3.68 or 52,
are commonplace elements in our code that require meticulous attention to prevent challenging-to-detect
programming errors. For instance, on a keyboard, adjacent numbers are closely positioned, making it easy
to unintentionally input incorrect values by pressing the wrong key. These errors can go unnoticed until
we begin running our code. Specifically, when dealing with single-digit numeric values, we replace them
with their neighboring digits (for 1, we use 2 as the replacement, and for 0, we use 9); for multi-digit
numeric values, we randomly select a digit to replace, following the same principle, e.g., we replace 3.45
with 3.35, in which the second digit 4 in 3.45 is replaced with 3.

While and If Swapping ( wi-Swap ) A ‘while’ block is employed to repeatedly execute a loop operation
until the specified condition is no longer met, whereas an ‘if’ block is executed only once when the
specified condition is satisfied. In this method, we replace ‘while’ with ‘if’ while preserving the existing
code within the block. Such a programming bug could easily go unnoticed without proper debugging.

Condition Removal ( c-Remove ) An ‘if’ or ‘while’ block might have multiple conditions, such as ‘if
left == len(nums) or nums[left] != target:’. Eliminating any one of these conditions might lead to the
occurrence of loose conditions, potentially resulting in incorrect outcomes. We inject bugs by picking ‘if’
or ‘while’ blocks with more than one condition and then randomly removing one of conditions.

Branch Removal ( b-Remove ) In the programming, we often use different branches to cope with
different situations, making the ‘if-elif-. . . -else’ structure a frequent choice. However, in cases where
possible conditions are complex, it’s easy to overlook some conditions. Recognizing this issue, we propose
to inject potential bugs by randomly removing an ‘elif’ or ‘else’ branch from the original code containing
the ‘if-elif-. . . -else’ structure.

Operator Change ( o-Change ) We extend the operator swapping operation in (Dinh et al., 2023) with
more operators, e.g., membership operators (in and not in), bitwise operators (&, |,, , <<,>>), logical
operators (and, or, not) and identity operators (is and is not). We introduce artificial bugs by changing
the operator to another operator with the same type.

A.2 Examples of Each Bug Injection Method

Here, for each method, we show an example of the clean partial and its converted buggy partial code.

2We do not differentiate the relative positions or frequencies of variables, deferring their exploration to future research.
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Reference Partial Code
def has_close_elements(numbers: List[float],

threshold: float) -> bool:
""" Check if in given list of numbers,
are any two numbers closer to each other
than given threshold.
"""
for idx, elem in enumerate(numbers):

for idx2, elem2 in enumerate(numbers):
if idx != idx2:

distance = abs(elem - elem2)

v-Rename

def has_close_elements(numbers: List[float],
threshold: float) -> bool:

""" Check if in given list of numbers,
are any two numbers closer to each other
than given threshold.
"""
for idx, elem in enumerate(numbers):

for idx2, elem2 in enumerate(number):
if idx != idx2:

distance = abs(elem - elem2)

Reference Partial Code
"""Problem Statement:Karen is getting ready
for a new school day! It is currently hh:mm,
given in a 24-hour format. As you know,
Karen loves palindromes, and she believes
that it is good luck to wake up when the
time is a palindrome.

What is the minimum number of minutes
she should sleep, such that, when she wakes
up, the time is a palindrome?
......
"""
h, m = map(int, input().split(':'))
for i in range(999):

if h == 10 * (m % 10) + m // 10:
print(i)
break

if m < 59:
h, m = (h, m + 1)

k-Remove

"""Problem Statement:Karen is getting ready
for a new school day! It is currently hh:mm,
given in a 24-hour format. As you know,
Karen loves palindromes, and she believes
that it is good luck to wake up when the
time is a palindrome.

What is the minimum number of minutes
she should sleep, such that, when she wakes
up, the time is a palindrome?
......
"""
h, m = map(int, input().split(':'))
for i in range(999):

if h == 10 * (m % 10) + m // 10:
print(i)

if m < 59:
h, m = (h, m + 1)

Reference Partial Code
"""Problem Statement:Karen is getting ready
for a new school day! It is currently hh:mm,
given in a 24-hour format. As you know,
Karen loves palindromes, and she believes
that it is good luck to wake up when the
time is a palindrome.

What is the minimum number of minutes
she should sleep, such that, when she wakes
up, the time is a palindrome?
......
"""
h, m = map(int, input().split(':'))
for i in range(999):

if h == 10 * (m % 10) + m // 10:
print(i)
break

if m < 59:
h, m = (h, m + 1)

nv-Change

"""Problem Statement:Karen is getting ready
for a new school day! It is currently hh:mm,
given in a 24-hour format. As you know,
Karen loves palindromes, and she believes
that it is good luck to wake up when the
time is a palindrome.

What is the minimum number of minutes
she should sleep, such that, when she wakes
up, the time is a palindrome?
......
"""
h, m = map(int, input().split(':'))
for i in range(999):

if h == 10 * (m % 10) + m // 10:
print(i)
break

if m < 60:
h, m = (h, m + 1)

Reference Partial Code
def prime_fib(n: int):

"""
prime_fib returns n-th number that is a
Fibonacci number and it's also prime.
"""
import math
def is_prime(p):

if p < 2:
return False

for k in range(2, min(int(math.sqrt(p))
+ 1, p - 1)):

if p % k == 0:
return False

return True
f = [0, 1]
while True:

f.append(f[-1] + f[-2])
if is_prime(f[-1]):

n -= 1

wi-Swap

def prime_fib(n: int):
"""
prime_fib returns n-th number that is a
Fibonacci number and it's also prime.
"""
import math
def is_prime(p):

if p < 2:
return False

for k in range(2, min(int(math.sqrt(p))
+ 1, p - 1)):

if p % k == 0:
return False

return True
f = [0, 1]
if True:

f.append(f[-1] + f[-2])
if is_prime(f[-1]):

n -= 1
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Reference Partial Code
def find_Min(arr,low,high):

"""
Write a python function to find the
minimum element in a sorted and rotated array.
>>> find_Min([1,2,3,4,5],0,4)
1
>>> find_Min([4,6,8],0,2)
4
>>> find_Min([2,3,5,7,9],0,4)
2
"""
while (low < high):

mid = low + (high - low) // 2;
if (arr[mid] == arr[high]):

high -= 1
elif (arr[mid] > arr[high]):

low = mid + 1
else:

high = mid

b-Remove

def find_Min(arr,low,high):
"""
Write a python function to find the
minimum element in a sorted and rotated array.
>>> find_Min([1,2,3,4,5],0,4)
1
>>> find_Min([4,6,8],0,2)
4
>>> find_Min([2,3,5,7,9],0,4)
2
"""
while (low < high):

mid = low + (high - low) // 2;
if (arr[mid] == arr[high]):

high -= 1

else:
high = mid

Reference Partial Code
def sum(a,b):

"""
Write a python function to find the sum of
common divisors of two given numbers.
>>> sum(10,15)
6
>>> sum(100,150)
93
"""
sum = 0
for i in range (1,min(a,b)):

if (a % i == 0 and b % i == 0):
sum += i

c-Remove

def sum(a,b):
"""
Write a python function to find the sum of
common divisors of two given numbers.
>>> sum(10,15)
6
>>> sum(100,150)
93
"""
sum = 0
for i in range (1,min(a,b)):

if (a % i == 0 ):
sum += i

Reference Partial Code
def has_close_elements(numbers: List[float],

threshold: float) -> bool:
""" Check if in given list of numbers,
are any two numbers closer to each other
than given threshold.
"""
for idx, elem in enumerate(numbers):

for idx2, elem2 in enumerate(numbers):
if idx != idx2:

distance = abs(elem - elem2)
if distance < threshold:

o-Change

def has_close_elements(numbers: List[float],
threshold: float) -> bool:

""" Check if in given list of numbers,
are any two numbers closer to each other
than given threshold.
"""
for idx, elem in enumerate(numbers):

for idx2, elem2 in enumerate(numbers):
if idx != idx2:

distance = abs(elem + elem2)
if distance < threshold:

A.3 Example of Two Input Formats
There are mainly two types of formats: Function-Call based format and Standard Input Format:

Table 4 shows an example in Function-Call based format: The input contains a function header and a
docstring, and the model is expected to generate a solution to be provided as the function’s return value.
The test cases used for checking accuracy of the generate codes are provided as Assertion Statements.

Table 5 shows an example in Standard Input Format: The input contains a problem description without
a starter code (e.g., a header function). The model is expected to generate a complete solution. When
provided an input in the location of input-required function (e.g., input()), the model is expected to output
is answers to the STDOUT stream, such as by using print statements. The test cases used for checking
the accuracy of the generated codes are provided as In/Out files, namely, given an input file, the model is
expected to output the content shown in the Out file.
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Prompt: (A function header + a docstring):

def has_close_elements(numbers: List[float],
threshold: float) -> bool:
""" Check if in given list of numbers,
are any two numbers closer to each
other than given threshold.
>>> has_close_elements([1.0, 2.0, 3.0],

0.5)
False
>>> has_close_elements([1.0, 2.8, 3.0,

4.0,5.0, 2.0], 0.3)
True
"""

Test Format:
def check(candidate):

assert candidate([1.0, 2.0, 3.9, 4.0,
5.0, 2.2], 0.3) == True

assert candidate([1.0, 2.0, 3.9, 4.0,
5.0, 2.2], 0.05) == False

assert candidate([1.0, 2.0, 5.9,
4.0, 5.0], 0.95) == True

assert candidate([1.0, 2.0, 5.9,
4.0, 5.0], 0.8) == False

assert candidate([1.0, 2.0, 3.0, 4.0,
5.0, 2.0], 0.1) == True

Canonical Solution:
for idx, elem in enumerate(numbers):
for idx2, elem2 in enumerate(numbers):

if idx != idx2:
distance = abs(elem - elem2)
if distance < threshold:

return True
return False

Notes: We can call the function by assign the candidate with

the corresponding function name (e.g., has_close_elements in

this example). Then, we can use the exec to execute the full

code. If no errors are present, it indicates that the generated

code has successfully passed the tests; otherwise, it has not.

Table 4: A Function-Call based Example from HumanEval.

Prompt: (A problem description):

"""Problem Statement: We have two distinct
integers A and B. Print the integer K
such that |A - K| = |B - K|. If such an
integer does not exist, print IMPOSSIBLE.
Constraints:

All values in input are integers.
0 \leq A,\ B \leq 10^9
A and B are distinct.

Input: Input is given from Standard Input
in the following format: A B

Output: Print the integer K satisfying the
condition. If such an integer does not exist,
print IMPOSSIBLE instead. """

Test Format:
Input: 2 16
Output: 9
-----------------------------
Input: 999999999 1000000000
Output: IMPOSSIBLE
-----------------------------
Input: 3833907 617067938
Output: IMPOSSIBLE
-----------------------------
Input: 232334010 962483782
Output: 597408896
-----------------------------

Canonical Solution:
a,b = map(int, input().split())
diff = b - a
if diff % 2 == 0:
print(b - diff // 2)

else:
print('IMPOSSIBLE')

Notes: The test cases of the form “Input -Output ” need to
run the generated code as a script. For example, we can save
the generated code in a.py and an Input in input1.txt, then we
can run

python a.py < input1. txt > out1.txt

If the out1.txt has the same content as the gold output, we say

that the generated code pass the test case.

Table 5: A Standard Input Example from FixEval.
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