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Abstract

Evaluating the theory of mind (ToM) capabil-
ities of language models (LMs) has recently
received a great deal of attention. However,
many existing benchmarks rely on synthetic
data, which risks misaligning the resulting ex-
periments with human behavior. We introduce
the first ToM dataset based on naturally oc-
curring spoken dialogs, COMMON-TOM, and
show that LMs struggle to demonstrate ToM.
We then show that integrating a simple, explicit
representation of beliefs improves LM perfor-
mance on COMMON-TOM.

1 Introduction

In cognitive science, theory of mind (ToM) refers
broadly to the capacity to understand the mental
states of others (e.g. beliefs, desires, emotions)
even, crucially, when they differ from your own
(Premack and Woodruff, 1978). Successful human
conversation is possible only because participants
model each others’ cognitive states (i.e., ToM) and
plan utterances based on their intended audience
(Clark, 1996; Brennan and Clark, 1996; Bender
et al., 2021). As a result, ToM has received increas-
ing attention from the NLP community seeking to
evaluate the capabilities of language models (LMs)
on tasks inspired by the psychological literature
(Sileo and Lernould, 2023; Ullman, 2023).

In this paper, we introduce COMMON-TOM–
a question answering benchmark based on
naturally-occurring, spoken dialogs in English.1

COMMON-TOM uses the notion of common
ground (CG) for evaluating ToM. The CG (Wilkes-
Gibbs and Clark, 1992; Stalnaker, 2002) is a set
of beliefs mutually shared by all participants in a
conversation. Other benchmarks have developed
ToM questions based on the Sally-Anne test (Wim-
mer and Perner, 1983; Baron-Cohen et al., 1985),
which checks an understanding of information

1https://github.com/cogstates/common-tom

accessibility to determine beliefs. We observe that
when the CG is mismatched between the discourse
participants, such as at the time of a question or
during the repair of a miscommunication, similarly
complex problems for ToM arise.

Our main contributions are: (1) arguing that us-
ing synthesized data in evaluating the ToM ability
of LMs is not conclusive; (2) releasing a corpus
for benchmarking ToM based on naturally occur-
ring spoken conversations; (3) showing that LLMs
struggle with our benchmark and a simple explicit
architecture performs better.

The paper is organized as follows. First, we
review some of the relevant literature (§ 2). We
then describe the framework and methods used in
creating COMMON-TOM (§ 3). This is followed
by experiments and results in Section 4: human
performance, using zero-shot and fine-tuned LMs,
and using our approach for building a system that
explicitly represents beliefs (§ 4.4). Finally, we
discuss our key takeaways and conclusions (§ 5).

2 Related Work

While quite a few corpora annotate author be-
lief (de Marneffe et al., 2019; Saurí and Puste-
jovsky, 2009), there are relatively few corpora
annotated explicitly for CG. Horton and Gerrig
(2016); Soubki et al. (2022) focus on limited as-
pects of CG. In this paper, we use the comprehen-
sive CG corpus we presented in (Markowska et al.,
2023), which we discuss in Section 3.

Many ToM benchmarks have been created re-
cently. Nematzadeh et al. (2018) produce a ques-
tion answering corpus (ToM-bAbi) derived from
template-generated stories inspired by the Sally-
Anne test (an agent’s cognitive state depends on
whether they witness a specific action). Le et al.
(2019) note that such formulaic data results in a
flawed evaluation, especially when using super-
vised methods, and produce their own templatic
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corpus (ToMi) which introduces more noise such as
distractor sentences and reorderings. Despite these
improvements, ToMi has been shown to be prone
to the same issues as ToM-bAbi (Sclar et al., 2023).
Kim et al. (2023) take this even further and prompt
LMs to produce dialogs following a similar form.
The stories all follow the general structure of the
Sally-Ann stories. Corresponding questions then
probe various character’s beliefs (true and false) of
both first and second order.

Though useful, these benchmarks are prone to
surface-level cues and spurious correlations which
have been exploited by LMs to display illusory
ToM (Kosinski, 2023). Some work has been
done to produce tools based on human-generated
text. Bara et al. (2021), like us, exploit the
relationship between CG and ToM. They design
an experimental setup that records written dialogs
of players exchanging information in MineCraft.
More recently, Ma et al. (2023) combine the
aforementioned datasets (and more) to create a
composite benchmark. We build on this work
conceptually by producing a new dataset which,
in contrast with the work of Bara et al. (2021), is
based on dialogs which are collected independently
of our interest in ToM; the dialogs are spontaneous
and not guided by any experimental setting; and
they are spoken dialogs. We note that co-presence
(including telepresence) has been identified as an
important (though not required) part of human
ToM (Galati and Brennan, 2021), and our corpus
allows the study of ToM under this common
condition using naturalistic data.

3 COMMON-TOM

Framework In philosophy, CG is sometimes
treated as the mutual beliefs between two agents
(Stalnaker, 2002), separate from their cognitive
states, while in cognitive science it is common to
model CG as the belief of an agent about what
they and another agent mutually believe (Brown-
Schmidt and Duff, 2016). We adopt the latter defi-
nition as it is allows CG to represent scenarios like
false belief, which would be impossible under the
former. This also makes the relationship between
CG and ToM explicit: If I believe a proposition is
in the CG with you, it means by definition that I
believe that you also believe it is in CG – thus, it
entails a ToM assumption.

We also follow cognitive literature in assum-
ing that humans do not have a full representation

of their interlocutor’s cognitive state at all times,
but instead can make necessary inferences when
needed (Horton and Brennan, 2016). Specifically,
CG does not mean that all consequences of CG
are present at all times, and performing the infer-
ences from CG (high-degree knowledge questions,
for example) takes time and may be errorful. Our
experiments with human annotators (§ 4) confirm
this assumption, but also show that humans are
much better than zero-shot LMs because they are
in fact modeling CG, and can answer the higher-
order belief questions as needed from their models
of CG. Farkas and Bruce (2010); Eckardt (2016)
propose deterministic heuristic algorithms for in-
ferring CG from text. All this prior work motivates
our neuro-symbolic approach (§ 4.4).

Base Corpus In our previous annotation work
(Markowska et al., 2023), we use a corpus of 1,710
turns of dyadic dialog across four conversations
from CALLHOME, and annotate them for CG.
We extract events (i.e., propositions) evoked by
each turn and label the beliefs of each discourse
participant (DP) towards those events as certainly
true (CT+), possibly true (PS), certainly not
true (CT-), or we label the DP as not having a
belief (NB). Then we determine for each DP if
the speaker has just added the event to their view
of the CG (JA), already has the event in the CG
(IN), or rejects it from the CG (RT). As we do not
annotate CG for events before they are introduced
in (Markowska et al., 2023), we use NA to indicate
this in this study. Note that the annotation assumes
that the CG is not actually shared, but rather
independently hypothesized by each DP. 2

Query Creation To motivate the query creation
process, consider the examples in Table 1. The
proposition under question is “B is now not smok-
ing”. The annotations from the CG corpus for this
proposition throughout discourse time (which we
simply measure in turns) are shown above, and
resulting first order (A/B believes) and second or-
der (A/B believes that B/A believes) questions are
shown below.

Queries are created in three steps. For each
proposition extracted from the dialog we (1) iden-
tify where the proposition is introduced and every
point where one of the agent’s belief or CG about
the proposition changes (“utterance of interest”).

2We refer the reader to Appendix A and (Markowska et al.,
2023) for additional details regarding the corpus.
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Transcript [Event: B is now not smoking] BelA BelB CGA CGB
114 | B: Small world %huh? NB CT- NA NA
115 | A: You’re NB CT- NA NA
116 | A: yeah. And now are you not smoking? NB CT- NA NA
117 | B: No. I am smoking. CT- CT- RT RT
118 | A: yeah. Well I did a few when I’ve been back too. CT- CT- RT RT
119 | B: yeah. I’ve been smoking big time. It’s been a rough couple months. CT- CT- RT RT
Question Before After
1st Order Question: Does A believe it is certainly not true that B is now not smoking? No Yes
2nd Order Question: Does B believe that A believes it is certainly not true that B is now not smoking? No Yes

Table 1: Example dialog extract with belief and common ground annotations from the corpus for the event “B is
now not smoking”. Some of our derived ToM questions are below.

In this case that is at times 116 (introduction) and
117 (change). We then (2) generate queries, up to
third order, for those points in time.

At the time indicated, is it the case that (((A/B
believes that)1 B/A believes that)2 A/B believes
that)3 it is {certainty} true that {proposition}?

For each proposition and for each point in the con-
versation selected for it, we vary certainty (op-
tions: certainly, possibly, certainly not). We then
generate the first, second, and third-order belief
questions as shown in the template above by the
superscripts. We omit queries which ask about
self-belief (e.g. A believes A believes).

Therefore there are two query templates per or-
der and we have three orders, making six templates.
Each of these templates is instantiated with three
possible certainty values, resulting in 18 total
queries per proposition and selected point in the
conversation. By asking multiple questions regard-
ing a single proposition throughout time we can
evaluate the consistency of model responses. As
the majority of propositions are, uninterestingly,
labeled CT+ and JA for both speakers, the final
corpus samples just 10% of these instances.

Finally, (3) we determine the answers to the gen-
erated queries using a set of rules. For first order
questions this is straightforward and we simply
check that the belief annotation matches the ques-
tion, with one caveat. If A believes proposition p is
certainly true and the query asks if A believes p is
possibly true, we consider the answer to be yes. For
higher order queries we must use the CG annota-
tions. To illustrate, consider the 2nd order question
whether A believes that B believes some proposi-
tion p. (1) If the certainty is positive polarity (i.e.,
certainly or possibly) and A believes the proposi-
tion to be CG (i.e., JA or IN), then resolve the an-
swer just as in the first order case described above.
(2) Otherwise, if the certainty is negative polar-
ity (i.e. certainly not) and A is aware it was rejected
from CG (i.e., RT) and the certainty of the query
matches the certainty of B, then label the ques-

Split Answer Count

Train No 2899
Yes 2371

Test No 1139
Yes 965

Table 2: Number of questions in COMMON-TOM with
yes and no answers broken down by split.

tion yes. (3) For all other cases, label the answer
no. The whole set of heuristics is in Appendix E.

Corpus Statistics This results in 7,374 queries
to probe for yes/no answers regarding the beliefs of
speakers from CALLHOME. There are a roughly
equal number of first, second, and third order
queries. The corpus is partitioned using the same
splits as was done in (Markowska et al., 2023) –
three conversations for training, and a held out
fourth conversation for testing. The counts by
query answer are shown in Table 2. Additional
information regarding the data and splits is in
Appendix A.

4 Experiments

4.1 Setup
Data For fine-tuning experiments we use the
train and test splits for COMMON-TOM as de-
scribed in Section 3. When prompting, we evaluate
only on the test conversation to maintain compa-
rability. For all experiments we do not do any
hyperparameter search or hyperparameter tuning.

Random Performance We perform a random
baseline by randomly selecting “Yes” or “No” an-
swers with their probabilities proportional to their
respective frequencies in the training set.

Human Performance We randomly sample sixty
queries from our test set with twenty questions
from each order. Annotators are two graduate stu-
dents instructed to answer the queries as best they
can. We report accuracy for these sixty questions.
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Model Total First Order Second Order Third Order
Random Baseline 50.4 50.3 50.5 50.4
gpt-3.5-turbo-0613 (Zero-Shot) 57.0 60.7 57.7 53.0
gpt-4-0613 (Zero-Shot) 63.4 65.5 62.5 62.1
Mistral-7B-Instruct (Zero-Shot) 60.6 63.3 60.5 58.0
Mistral-7B (Fine-Tune) 64.0 64.8 63.9 63.2
ReCoG 71.0 70.4 71.3 71.2
Human Performance 80.0 85.0 80.0 75.0

Table 3: Experimental results of COMMON-TOM on different models. We report total accuracy (Total) and
per-order accuracy. We bold our best results. We compare all results to the random baseline and to our Human
Performance baseline.

4.2 Zero-Shot

We perform zero-shot experiments using gpt-3.5-
turbo-0613 (GPT-3.5) (OpenAI, 2022), gpt-4-0613
(GPT-4) (OpenAI, 2023), and Mistral-7B-Instruct
(Jiang et al., 2023).

We format our prompt by starting with an in-
struction (which we keep the same for all prompts),
a dialog containing the utterance of interest with
five previous and future utterances, and the ques-
tion. For our GPT-3.5 and GPT-4 experiments, we
use the default API hyperparameters. We provide
further experimental details, prompts, and hyperpa-
rameters, as well as details on unsuccessful chain-
of-thought experiments, in Appendix C.

4.3 Fine-Tuning

We fine-tune Mistral-7B using LoRA (Hu et al.,
2021) on the train split of COMMON-TOM. We fol-
low a similar format to our zero-shot experiments
where we use a prompt, a dialog containing the
utterance of interest with five previous and future
utterances, and the question with its respective yes
or no answer. At test time, we present our model
with a dialog-question pair, and generate the yes or
no answer. We provide further experimental details
and hyperparameters in Appendix C.

4.4 Our System: ReCoG

Our Full-Representation approach (ReCoG) creates
an explicit representation of the cognitive states
of the discourse participants, and then uses rules
to answer the questions. We closely follow our
previous work in (Markowska et al., 2023) in fine-
tuning FLAN-T5 and we similarly use a speaker-
based window. Specifically, our model receives as
input all utterances preceding and/or following the
target event as input until it encounters an utterance
from the other speaker.

Our system has three parts: belief prediction, CG
prediction, and yes/no question answering.

Belief Prediction We first predict the beliefs of
the discourse participants towards a target event
at each utterance in the dialog. Our input is as
follows:

"Preceding Context": {Preceding Utterances}
"Target Event": {Target Event}
"Following Context": {Following Utterances}

We treat the belief prediction task as a text gener-
ation task where given the above input of context
and a target event, we generate the belief label.

CG Prediction To predict CG, we use the
heuristics-based approach we used in our previous
work (Markowska et al., 2023). This rule-based
approach maps a label for speaker and hearer belief
to a CG label.3

Yes/No Question Answering Now that we have
the belief and CG for both discourse participants,
we apply the same heuristics we used to determine
the query answers for the gold-annotated case, as
described in Section 3.

4.5 Results
All results are evaluated using accuracy. Specifi-
cally, we report results on total accuracy and per-
order accuracy. All of these metrics help us quan-
tify to what extent LMs capture the full mental
states of others, up to third-order mental states. Re-
sults for our experiments are shown in Table 3. All
of our models perform worse than human perfor-
mance, but better than the random baseline. Hu-
mans perform best on first order beliefs, but per-
formance decreases on higher orders as has been
observed in similar studies (Valle et al., 2015).

3See Appendix B for details on this algorithm.
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Zero-Shot GPT-4 performs the best on all met-
rics. Mistral-7B-Instruct, despite being only 7B pa-
rameters, performs better than the 175B parameter
GPT-3.5 in a zero-shot setting. We notice a distinct
trend: all models capture first order beliefs the best,
and decrease in performance as the order increases.

Fine-tuning Compared to the best zero-shot per-
formance from GPT-4, our results show an increase
in total accuracy, second order beliefs, and third
order beliefs. However, we perform slightly worse
in modeling first order beliefs.

ReCoG ReCoG, which explicitly models beliefs
and CG among agents in dialog, outperforms every
other system. We see a clear boost in performance
in all metrics, and more notably similar results
among all orders of belief.

Discussion There are some interesting trends in
these results. All the LM-only models see a de-
crease in performance as the order of the query
increases, just as humans do, though this decrease
is not as large as is observed for humans. This
might suggest that the models are in some ways
“human-like” in their mistakes. However, upon
closer inspection we see further differences.

Since the same proposition is asked about for
multiple orders of belief, we can look at how of-
ten the model gets all answers for a proposition
correct. Even though fine-tuning Mistral only pro-
vides a roughly 3 point boost to overall accuracy,
this consistency in answers changes dramatically
with Mistral, going from getting all questions for a
proposition correct 20% of the time in the zero-shot
setting to 61% of the time when fine-tuned. Our
human sample is too small to perform a similar
comparison but Kim et al. (2023) observed human
consistency to be in the high 80s for a similar task
on their synthetic benchmark.

We can also look at how correctness for first
order belief correlates with correctness of higher
order beliefs. Again we see fine-tuning makes a
larger difference than accuracy suggests. The cor-
relation between per-proposition 1st and 2nd order
accuracy goes from r = 0.43 for the zero-shot
model to r = 0.90 for the fine-tuned model. An
even larger difference is observed between 1st and
3rd order (r = 0.20 to r = 0.93).

This all suggests that the zero-shot LM behavior
is markedly different from the fine-tuned model,
and from humans. Even when making correct pre-
dictions, they do so using a very different pattern.

5 Conclusion

We present a new corpus for testing theory of mind
(ToM) capabilities, COMMON-TOM. Unlike previ-
ous ToM corpora, COMMON-TOM uses naturally
occurring linguistic data and is not based on agents
perceiving certain information or not. We explic-
itly model belief and CG to capture ToM in a man-
ner directly inspired by cognitive science literature.
While LMs are rapidly evolving and scaling in size
and capabilities, they still lack a conceptual under-
standing of beliefs and CG in dialog. Therefore,
for an LM to interact naturally it is necessary to
explicitly model belief, CG, and cognitive states.

Limitations

While we present preliminary results on COMMON-
TOM, the first ToM corpus to use natural spoken
conversation, the original CG corpus is relatively
small, containing only four dialogs. Furthermore,
as these dialogs only contain conversations in En-
glish, our benchmark does not involve tracking
ToM in other languages. While the benchmark
tests ToM reasoning in a variety of ways, it is by no
means comprehensive. In cognitive science, ToM
is divided into cognitive (e.g. beliefs, thoughts)
and affective (e.g. emotions, desires) with some
evidence for fairly independent processes which op-
erate over these two domains (Kalbe et al., 2010).
We evaluate the cognitive aspect of belief and plan
to tackle additional areas, particularly affective, in
future work.

Ethical Considerations

As with other work on ToM, we risk the misinter-
pretation that AI models may be anthromorphized
as having near-human level cognition. We stress
that our work instead shows that as of now, exist-
ing models in fact do poorly at demonstrating ToM
when presented with natural conversations. We did
not require annotators for the creation of COMMON-
TOM as our corpus was derived heuristically from
the common ground (CG) corpus. However, our
human baseline was done in-house by trained grad-
uate students who were paid.

Acknowledgements

This material is based upon work supported in
part by the National Science Foundation (NSF)
under No. 2125295 (NRT-HDR: Detecting
and Addressing Bias in Data, Humans, and In-

14819



stitutions); by funding from the Defense Ad-
vanced Research Projects Agency (DARPA) un-
der the CCU (No. HR001120C0037, PR No.
HR0011154158, No. HR001122C0034) and IN-
CAS (HR01121C0186, No. HR001120C0037, and
PR No. HR0011154158) programs; as well as by
the Intelligence Advanced Research Projects Activ-
ity (IARPA) under the HIATUS program (contract
2022-22072200005). Any opinions, findings and
conclusions or recommendations expressed in this
material are those of the author(s) and do not nec-
essarily reflect the views of the NSF, DARPA, or
IARPA.

We thank both the Institute for Advanced Com-
putational Science and the Institute for AI-Driven
Discovery and Innovation at Stony Brook for ac-
cess to the computing resources needed for this
work. These resources were made possible by
NSF grant No. 1531492 (SeaWulf HPC cluster
maintained by Research Computing and Cyberin-
frastructure) and NSF grant No. 1919752 (Major
Research Infrastructure program), respectively.

We thank our ARR reviewers, whose comments
have contributed to improving the paper.

References
Cristian-Paul Bara, Sky CH-Wang, and Joyce Chai.

2021. MindCraft: Theory of mind modeling for situ-
ated dialogue in collaborative tasks. In Proceedings
of the 2021 Conference on Empirical Methods in Nat-
ural Language Processing, pages 1112–1125, Online
and Punta Cana, Dominican Republic. Association
for Computational Linguistics.

Simon Baron-Cohen, Alan M. Leslie, and Uta Frith.
1985. Does the autistic child have a “theory of
mind”? Cognition, 21(1):37–46.

Emily M. Bender, Timnit Gebru, Angelina McMillan-
Major, and Shmargaret Shmitchell. 2021. On the
dangers of stochastic parrots: Can language mod-
els be too big? In Proceedings of the 2021 ACM
Conference on Fairness, Accountability, and Trans-
parency, FAccT ’21, page 610–623, New York, NY,
USA. Association for Computing Machinery.

Susan Brennan and Herbert H. Clark. 1996. Conceptual
pacts and lexical choice in conversation. Journal
of experimental psychology. Learning, memory, and
cognition, 22 6:1482–93.

Sarah Brown-Schmidt and Melissa C Duff. 2016. Mem-
ory and common ground processes in language use.
Topics in Cognitive Science, 8(4):722–736.

Herbert H. Clark. 1996. Using Language. ’Using’
Linguistic Books. Cambridge University Press.

Marie-Catherine de Marneffe, Mandy Simons, and Ju-
dith Tonhauser. 2019. The CommitmentBank: Inves-
tigating projection in naturally occurring discourse.
In Proceedings of Sinn Und Bedeutung, volume 23,
pages 107–124.

Regine Eckardt. 2016. Questions on the
table. Unpublished manuscript. https:
//www.researchgate.net/publication/
304304651_Questions_on_the_Table.

Donka F Farkas and Kim B Bruce. 2010. On reacting to
assertions and polar questions. Journal of semantics,
27(1):81–118.

Alexia Galati and Susan E. Brennan. 2021. What is
retained about common ground? distinct effects
of linguistic and visual co-presence. Cognition,
215:104809.

William S Horton and Susan E Brennan. 2016. The role
of metarepresentation in the production and resolu-
tion of referring expressions. Frontiers in psychology,
7:1111.

William S. Horton and Richard J. Gerrig. 2016. Revisit-
ing the memory-based processing approach to com-
mon ground. Topics in Cognitive Science, 8(4):780–
795.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan
Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. 2021. Lora: Low-rank adap-
tation of large language models. arXiv preprint
arXiv:2106.09685.

Albert Q Jiang, Alexandre Sablayrolles, Arthur Men-
sch, Chris Bamford, Devendra Singh Chaplot, Diego
de las Casas, Florian Bressand, Gianna Lengyel, Guil-
laume Lample, Lucile Saulnier, et al. 2023. Mistral
7b. arXiv preprint arXiv:2310.06825.

Elke Kalbe, Marius Schlegel, Alexander Thomas
Sack, Dennis A. Nowak, Manuel Dafotakis, Christo-
pher Bangard, Matthias Brand, Simone G. Shamay-
Tsoory, Oezguer A Onur, and Josef Kessler. 2010.
Dissociating cognitive from affective theory of mind:
A tms study. Cortex, 46:769–780.

Hyunwoo Kim, Melanie Sclar, Xuhui Zhou, Ronan Bras,
Gunhee Kim, Yejin Choi, and Maarten Sap. 2023.
FANToM: A benchmark for stress-testing machine
theory of mind in interactions. In Proceedings of the
2023 Conference on Empirical Methods in Natural
Language Processing, pages 14397–14413, Singa-
pore. Association for Computational Linguistics.

Michal Kosinski. 2023. Theory of mind might have
spontaneously emerged in large language models.
arXiv preprint arXiv:2302.02083.

Matthew Le, Y-Lan Boureau, and Maximilian Nickel.
2019. Revisiting the evaluation of theory of mind
through question answering. In Proceedings of the
2019 Conference on Empirical Methods in Natu-
ral Language Processing and the 9th International

14820

https://doi.org/10.18653/v1/2021.emnlp-main.85
https://doi.org/10.18653/v1/2021.emnlp-main.85
https://doi.org/https://doi.org/10.1016/0010-0277(85)90022-8
https://doi.org/https://doi.org/10.1016/0010-0277(85)90022-8
https://doi.org/10.1145/3442188.3445922
https://doi.org/10.1145/3442188.3445922
https://doi.org/10.1145/3442188.3445922
https://doi.org/10.1037/0278-7393.22.6.1482
https://doi.org/10.1037/0278-7393.22.6.1482
https://doi.org/10.1017/CBO9780511620539
https://doi.org/https://doi.org/10.18148/sub/2019.v23i2.601
https://doi.org/https://doi.org/10.18148/sub/2019.v23i2.601
https://www. researchgate. net/publication/304304651_Questions_on_the_Table
https://www. researchgate. net/publication/304304651_Questions_on_the_Table
https://www. researchgate. net/publication/304304651_Questions_on_the_Table
https://doi.org/https://doi.org/10.1016/j.cognition.2021.104809
https://doi.org/https://doi.org/10.1016/j.cognition.2021.104809
https://doi.org/https://doi.org/10.1016/j.cognition.2021.104809
https://api.semanticscholar.org/CorpusID:16815856
https://api.semanticscholar.org/CorpusID:16815856
https://aclanthology.org/2023.emnlp-main.890
https://aclanthology.org/2023.emnlp-main.890
http://arxiv.org/abs/2302.02083
http://arxiv.org/abs/2302.02083
https://doi.org/10.18653/v1/D19-1598
https://doi.org/10.18653/v1/D19-1598


Joint Conference on Natural Language Processing
(EMNLP-IJCNLP), pages 5872–5877, Hong Kong,
China. Association for Computational Linguistics.

Ziqiao Ma, Jacob Sansom, Run Peng, and Joyce Chai.
2023. Towards a holistic landscape of situated theory
of mind in large language models.

Magdalena Markowska, Mohammad Taghizadeh, Adil
Soubki, Seyed Mirroshandel, and Owen Rambow.
2023. Finding common ground: Annotating and pre-
dicting common ground in spoken conversations. In
Findings of the Association for Computational Lin-
guistics: EMNLP 2023, pages 8221–8233, Singapore.
Association for Computational Linguistics.

Aida Nematzadeh, Kaylee Burns, Erin Grant, Alison
Gopnik, and Tom Griffiths. 2018. Evaluating theory
of mind in question answering. In Proceedings of the
2018 Conference on Empirical Methods in Natural
Language Processing, pages 2392–2400, Brussels,
Belgium. Association for Computational Linguistics.

OpenAI. 2022. ChatGPT: Optimizing language mod-
els for dialogue. https://openai.com/blog/
chatgpt.

R OpenAI. 2023. Gpt-4 technical report. arXiv, pages
2303–08774.

The pandas development team. 2020. pandas-
dev/pandas: Pandas.

David Premack and Guy Woodruff. 1978. Does the
chimpanzee have a theory of mind? Behavioral and
Brain Sciences, 1(4):515–526.

Roser Saurí and James Pustejovsky. 2009. FactBank:
a corpus annotated with event factuality. Language
Resources and Evaluation, 43:227–268.

Melanie Sclar, Sachin Kumar, Peter West, Alane Suhr,
Yejin Choi, and Yulia Tsvetkov. 2023. Minding lan-
guage models’ (lack of) theory of mind: A plug-and-
play multi-character belief tracker. In Proceedings
of the 61st Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers),
pages 13960–13980, Toronto, Canada. Association
for Computational Linguistics.

Damien Sileo and Antoine Lernould. 2023.
MindGames: Targeting theory of mind in large lan-
guage models with dynamic epistemic modal logic.
In Findings of the Association for Computational Lin-
guistics: EMNLP 2023, pages 4570–4577, Singapore.
Association for Computational Linguistics.

Adil Soubki, Owen Rambow, and Chong Kang. 2022.
KOJAK: A new corpus for studying German dis-
course particle ja. In Proceedings of the 3rd Work-
shop on Computational Approaches to Discourse,
pages 1–6, Gyeongju, Republic of Korea and Online.
International Conference on Computational Linguis-
tics.

Robert C. Stalnaker. 2002. Common ground. Linguis-
tics and Philosophy, 25(5-6):701–721.

Tomer Ullman. 2023. Large language models fail on
trivial alterations to theory-of-mind tasks. arXiv
preprint arXiv:2302.08399.

Annalisa Valle, Davide Massaro, Ilaria Castelli, and
Antonella Marchetti. 2015. Theory of mind devel-
opment in adolescence and early adulthood: The
growing complexity of recursive thinking ability. Eu-
rope’s Journal of Psychology, 11(1):112–124.

Deanna Wilkes-Gibbs and Herbert H Clark. 1992. Coor-
dinating beliefs in conversation. Journal of Memory
and Language, 31(2):183–194.

Heinz Wimmer and Josef Perner. 1983. Beliefs about
beliefs: Representation and constraining function of
wrong beliefs in young children’s understanding of
deception. Cognition, 13(1):103–128.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Remi Louf, Morgan Funtow-
icz, Joe Davison, Sam Shleifer, Patrick von Platen,
Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu,
Teven Le Scao, Sylvain Gugger, Mariama Drame,
Quentin Lhoest, and Alexander Rush. 2020. Trans-
formers: State-of-the-art natural language processing.
In Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing: System
Demonstrations, pages 38–45, Online. Association
for Computational Linguistics.

A Corpus Details

COMMON-TOM builds on (Markowska et al.,
2023), which uses the English-only LDC CALL-
HOME corpus as a base. We show counts for our
train/test split in Table 2. The training split con-
tains dialogs 4245, 4248, and 4310 while the test
split contains dialog 4431.

For convenience, we summarize the label mean-
ings in Table 4 and the distribution of labels for
COMMON-TOM in Table 5.

Label Description
CT+ A speaker certainly believes that e.
PS A speaker possibly believes that e.
CT- A speaker certainly believes that not e.
NB A speaker expresses no belief about e.
JA An event e is mutually believed by both interlocutors

and is added to CG in the moment e was uttered.
IN An event e has already been a part of the interlocutors’

CGs before the time of the event.
RT An event e that has been presented by a speaker

has been entertained but rejected by the addressee
NA An event e that has no annotation for CG

because it has not yet been introduced.

Table 4: Summary of annotation label meanings as de-
scribed in (Markowska et al., 2023).
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BELA BELB CGA CGB Count

CT- CT- RT RT 1,746
CT+ CT+ JA JA 1,632
CT+ CT+ IN IN 1,494
PS PS JA JA 1,152
PS CT+ JA JA 180
PS CT+ NA NA 144
CT- NB NA NA 90
PS PS NA NA 90
NB CT- NA NA 72
PS CT- NA NA 72
CT+ NB NA NA 72
NB CT+ NA NA 54
PS NB NA NA 54
CT+ CT- RT RT 54
CT+ PS JA JA 54
CT- PS NA NA 54
CT- PS RT RT 36
CT+ PS NA NA 36
NB PS NA NA 36
PS CT- RT RT 36
PS PS IN IN 36
CT+ CT+ NA NA 36
CT+ CT+ JA IN 18
NB CT+ JA JA 18
CT- PS NA JA 18
CT+ NB RT RT 18
CT+ CT- IN RT 18
CT- CT+ RT RT 18
CT- CT+ NA NA 18
PS NB RT RT 18

Total 7,374

Table 5: Counts of belief labels included in the corpus.

B Heuristics for Common Ground
Prediction using Beliefs

Within this strategy, we’ve employed the fol-
lowing rules: consistently updating the common
ground for both speakers using these straightfor-
ward heuristics.

1) If Bel(A) = CT- or Bel(B) = CT-, then CG = RT.
2) If Bel(A) = CT+ and Bel(B) = CT+,

then CG = JA or CG = IN.
3) If Bel(A) = PS and Bel(B) = CT+,

then CG = JA(PS) or CG = IN.
4) If Bel(A) = CT+ and Bel(B) = PS,

then CG = JA(PS) or CG = IN.
5) If Bel(A) = NB or Bel(B) = NB, then CG = NULL.

Rules 2-4 under-determine whether the belief is al-
ready in the CG or newly added. In this context, the
crucial task is to determine whether the target event
had already been present in the common ground of
the speakers (i.e., CG = IN) or not (i.e, CG = JA).

C Experiment Details

All experiments besides our OpenAI experiments
used our employer’s GPU cluster. We performed
experiments on a Tesla V100-SXM2 GPU. Com-
pute jobs typically ranged from 20 minutes for zero-
shot experiments to 16 hours for fine-tuning. We
do not do any hyperparameter search or hyperpa-
rameter tuning.

Zero-Shot For our zero-shot experiments, we
use OpenAI models gpt-3.5-0613 and gpt-4-0613,
and the instruction tuned Mistral-7B-Instruct (Jiang
et al., 2023). Our OpenAI experiments use the Ope-
nAI API. We set temperature to 1.0. To perform
zero-shot experiments on Mistral-7B-Instruct, we
use HuggingFace transformers (Wolf et al., 2020)
and use the same temperature hyperparameter of
1.0. We keep all other hyperparameters as default.
Our prompt template is as follows:

You are a cautious assistant. You carefully
follow instructions. You are helpful and
harmless and you follow ethical guidelines
and promote positive behavior. Given a
conversation, answer a yes or no question
without providing any additional
information.

Conversation:
{context}

Question:
{question}

We perform experiments using both chain-of-
thought (CoT) following (Kim et al., 2023) and
without CoT. CoT experiments are performed by
adding “let’s think step by step” after the question.
Our CoT experiments performed 1.3% worse on
average than without CoT, so therefore we only
report results without CoT.

Fine-tuning We fine-tune the base Mistral-7B-
v0.1 model. We use LoRA (Hu et al., 2021) to
make our model memory efficient with r=32 and
alpha=64. We fine-tune for 3 epochs and use a
learning rate of 2e-5.

ReCoG We perform a standard fine-tuning ap-
proach of FLAN-T5-base model which has 250M
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parameters. We fine-tune for 12 epochs and use a
learning rate of 3e-4. Our system is implemented
using the PyTorch framework and Python program-
ming language. FLAN-T5 model is captured from
the HuggingFace transformers (Wolf et al., 2020).
We also used Pandas data analysis library (pan-
das development team, 2020).

D Human Evaluation Annotators

Our human evaluation annotation was done in-
house with two domain expert graduate students
who volunteered to annotate. The annotators were
given instructions to answer 30 randomly sampled
yes/no questions as best as they can. Annotators
received ten questions of each order. Reported ac-
curacy is computed over all 60 questions.

E Query Creation Heuristics

def resolve_1st_order_yn_answer(qbel, ←↩
sbel):
if qbel == sbel:

return True
elif qbel == "PS" and sbel == "CT+":

return True
else:

return False

def resolve_2nd_order_yn_answer(qbel, ←↩
sbel1, sbel2, cg1, cg2):
"""
This method resolves the truthiness of←↩

a second order belief question ←↩
with

the following form based on the ←↩
annotations provided.

Is it the case that {spkr1} ←↩
believes that

{spkr2} believes that it is {qbel}←↩
true that {event}?

Args:
qbel (str): question belief (CT-, ←↩

PS, CT+).
sbel1 (str): speaker 1 belief (CT←↩

-, PS, CT+, NB).
sbel2 (str): speaker 2 belief (CT←↩

-, PS, CT+, NB).
cg1 (str): speaker 1 common ground←↩

(JA, IN, RT, NA).
cg2 (str): speaker 2 common ground←↩

(JA, IN, RT, NA).

Returns:
bool: True if the question is ←↩

correct given the annotations.
"""
# Case 1: The question is positive ←↩

polarity.
if qbel in ("PS", "CT+") and cg1 in ("←↩

JA", "IN") and (

(qbel == sbel1) or ((qbel == "PS")←↩
and (sbel1 == "CT+"))

):
return True

# Case 2: The question is negative ←↩
polarity.

elif qbel == "CT-" and cg1 == "RT" and←↩
qbel == sbel2: # XXX: sbel2 here←↩
!!!
return True

return False

def resolve_3rd_order_yn_answer(qbel, ←↩
sbel1, sbel2, cg1, cg2):
"""
This method resolves the truthiness of←↩

a third order belief question ←↩
with

the following form based on the ←↩
annotations provided.

Is it the case that {spkr1} ←↩
believes that {spkr2} believes

that {spkr1} believes it is {qbel}←↩
true that {event}?

Args:
qbel (str): question belief (CT-, ←↩

PS, CT+).
sbel1 (str): speaker 1 belief (CT←↩

-, PS, CT+, NB).
sbel2 (str): speaker 2 belief (CT←↩

-, PS, CT+, NB).
cg1 (str): speaker 1 common ground←↩

(JA, IN, RT, NA).
cg2 (str): speaker 2 common ground←↩

(JA, IN, RT, NA).

Returns:
bool: True if the question is ←↩

correct given the annotations.
"""
if qbel in ("PS", "CT+") and cg1 in ("←↩

JA", "IN") and (
(qbel == sbel1) or ((qbel == "PS")←↩

and (sbel1 == "CT+"))
):

return True
elif qbel == "CT-" and cg1 in ("RT", "←↩

NA") and qbel == sbel1: # NOTE: ←↩
sbel1 here!!!
return True

return False
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