
Findings of the Association for Computational Linguistics: ACL 2024, pages 14215–14231
August 11-16, 2024 ©2024 Association for Computational Linguistics

1

Abstract

Syntactically Controlled Paraphrase Gen-
eration (SCPG), which aims at generating
sentences having syntactic structures re-
sembling given exemplars, is attracting
more research efforts in recent years. We
took an empirical survey on previous SCPG
datasets and methods and found three tac-
itly approved while seldom mentioned in-
trinsic shortcomings/trade-offs in terms of
data obtaining, task formulation, and pre-
training strategies. As a mitigation to these
shortcomings, we proposed a novel Dual-
Stage Multi-Task (DSMT) pre-training
scheme, involving a series of structure-ori-
ented and syntax-oriented tasks, which, in
our opinion, gives sequential text models
the ability of comprehending intrinsically
non-sequential structures like Linearized
Constituency Trees (LCTs), understanding
the underlying syntactics, and even gener-
ating them by parsing sentences. We per-
formed further pre-training of the popular
T5 model on these novel tasks and fine-
tuned the trained model on every possible
variant of SCPG task in literature, finding
that our models significantly outperformed
(up to 10+ BLEU-4) previous state-of-the-
art methods. Finally, we carried out ablation
studies which demonstrated the effective-
ness of our DSMT methods and empha-
sized on the SCPG performance gains com-
pared to vanilla T5 models, especially on
hard samples or under few-shot settings.

1 Introduction

Given a source sentence 𝑋 , (e.g., ‘How exciting
that is.’), and a template sentence 𝑌 (e.g., ‘That's
exactly right’), the goal of Syntactically Controlled
Paraphrase Generation (SCPG) is to produce a par-
aphrase sentence 𝑍 whose syntactic structure stays

as close to the 𝑌 as possible, while retaining 𝑋 's
original semantics (e.g., ‘That's really exciting.’).

It is a simple yet crucial task, beneficial to a great
many NLP tasks, such as neural machine transla-
tion (Yang et al.. 2019), abstractive text summari-
zation (Cao et al., 2018), dialogue generation (Gao
et al., 2020), as well as data augmentation (Sun et
al., 2021) and improving model robustness (Iyyer
et al., 2018; Huang et al., 2021).

In principle, supervised learning for SCPG task
requires a set of (𝑋, 𝑌, 𝑍) triplets. Practically, it's
possible to obtain large-scale (𝑋, 𝑍) pairwise da-
tasets by means of neural machine translation in-
ference (Wieting et al., 2018), or various data-min-
ing & web-crawling techniques (Iyer et al., 2017;
Dolan et al., 2004; Potthast et al., 2010). However,
obtaining (𝑋, 𝑌, 𝑍) triplets constitutes a more deli-
cate situation, usually involving heavy human
workload or intolerable computational costs (Chen
et al., 2019; Kumar et al., 2020). As a compromise
to this problem, preliminary SCPG datasets (Chen
et al., 2019; Kumar et al., 2020) use a great quantity
of easy-to-gain (𝑋, 𝑍) pairs as training sets, to-
gether with a small portion of them delicately an-
notated and edited to form (𝑋, 𝑌, 𝑍) triplets, consti-
tuting the validation/test set.

Dual-Stage Multi-Task Syntax-Oriented Pre-Training for
 Syntactically Controlled Paraphrase Generation

Hongxu Liu1, Xiaojie Wang1, Jiashen Sun2, Ke Zeng2, Guanglu Wan2

1School of Artificial Intelligence, Beijing University of Posts and Telecommunications
2Meituan

{hxliu,xjwang}@bupt.edu.cn
{sunjiashen,zengke02,wanguanglu}@meituan.com

Figure 1: Differences between exemplar-based and
target-based SCPG. Blue bars and red bars stand
for model inputs/outputs while red bars stand for
the part with differences (syntactical guidance in-
puts). 𝑇(⋅) indicates the constituency tree of a sen-
tence, while 𝑍& stands for model’s predictions for
target sentence 𝑍.

Model

Training
Phase

Validation/Test
Phase

Model

Model

Model

Exemplar-
based

Method

Target-
based

Method

14215

2

Due to the absence of template sentence (𝑌) in
the training set, as shown in Figure 1, preliminary
methods are manifestly divided into two genres:
exemplar-based and target-based methods. The
former ones (Chen et al., 2019; Kumar et al., 2020;
Sun et al,. 2021) train models to predict 𝑍 given
𝑍’s constituency tree (𝑇(𝑍)) as syntactical inputs
together with sentence 𝑋 as sentential inputs on the
(𝑋, 𝑌) pairwise training set. During inference, they
replace 𝑇(𝑍) with 𝑌 ’s constituency tree 𝑇(𝑌) to
incorporate 𝑌 into model’s learned predicting pro-
cedure. The latter ones (Li et al., 2020; Yang et al.,
2022a) adopt the same training criteria as the for-
mer ones, while keep using 𝑇(𝑍) as syntactical in-
puts during evaluation. It’s obvious that there is a
trade-off between bringing a train-validation in-
consistency and deviating from the original SCPG
task formulation which requires 𝑌, if 𝑌 is not pre-
sent during training. What’s more, they both intro-
duce a reduction bias for a constituency tree (but
not sentential) template as syntactical guidance,
since 𝑍 itself cannot be provided to models during
training.

Since the aforementioned SCPG methods re-
quire constituency trees which are difficult to feed
to seq2seq models as syntactical inputs, another
trade-off, task vs. model structure trade-off occurs.
Some works (Kumar et al., 2020; Yang et al., 2022a)
design dedicated tree-encoding model structures to
assure fine-grained encoding of tree structures and
precise syntactical control, while others (Iyyer et al.,
2018; Sun et al., 2021; Yang et al., 2022b) convert
trees to linearized constituency trees (LCTs) in a
root-first-bracket-separated manner as shown in
Figure 2 and treat them as sequential inputs like
natural. The former ones add to model complexity
while the latter ones inevitably introduce losses of
topological information during linearizing.

Apart from supervised methods, there is also a
growing trend of unsupervised pre-training on a
large set of single sentences. Previous unsuper-
vised works (Huang et al., 2021; Huang et al., 2022)
mainly focus on training model to reconstruct sen-
tences from disentangled syntactic and semantic
embeddings learned by separate encoders. In spite
of their effectiveness, their models still lack syntac-
tical understanding abilities and can only adapt to a
small range of downstream tasks due to their dedi-
cated model structures. Thus, we firmly believe
that the extent and power of syntactical pre-training
is still underestimated, which is the third issue of
previous methods.

Drawing from the three issues of previous works,
we proposed a novel Dual-Stage Multi-Task
(DSMT) syntax-oriented pre-training scheme
based on a series of tasks which correspond to sub-
tasks of understanding, manipulating, compre-
hending and generating LCT sequences. Upon pre-
training, through analyzing the performance of our
models on these tasks, we found that our models
gain sufficient knowledge about the structure and
intrinsic syntactics of LCT sequences. Afterwards,
we fine-tuned our models on target-based and ex-
emplar-based SCPG tasks adding no external tree-
encoding structures or specifically designed in-
put/output schemes and found that 1. our models
significantly outperform previous SOTA methods
(up to 10+ BLEU-4) on target-based SCPG, 2.
training our models even on (X, 𝑌, 𝑍) triplet dataset
may diminish the train-validation inconsistency for
exemplar-based SCPG.

In our opinions, our contributions are as follows:

• We proposed a novel dual-stage multi-task
pre-training scheme, which is the first that
emphasize on understanding linearized tree
sequences which were previously widely
used but seldom considered. This also well
remits the third issue of previous SCPG
methods.

• We achieved SOTA performance without in-
troducing dedicated structures by fine-tuning
DSMT pre-trained models on all SCPG tasks,
which resolves the second tradeoff. We built
triplet training data and achieved SOTA per-
formance on exemplar-based SCPG by using
exemplar sentences as syntactical guidance
inputs, which resolves the first issue.

Figure 2: The Linearized Constituency Tree (LCT)
example for sentence I am a student., while a se-
quence wrapped in a pair of brackets stands for a
subtree. Nodes and their corresponding parts in
LCT are marked in the same color. For example,
(DT a) stands for the subtree with DT as root node
and a as child node.

ROOT

S

NP VP .

VBP NP

DT NN

.PRP

I am

a student

(ROOT (S (NP (PRP I)) (VP (VBP am) (NP (DT a) (NN student))) (. .)))

14216

3

We released our code and data on
https://github.com/ChristLBUPT/DSMT-T5, we’ll
actively maintain the repo in the following years.

2 Related Work

Prior works about SCPG can be categorized ac-
cording to different perspectives. In terms of
model structures, Early practices of SCPG such as
(Iyyer et al., 2018; Kumar et al., 2020) utilize RNN
(LSTM, GRU) or RNN-based VAE models (Chen
et al., 2019; Bao et al., 2019; Zhang et al., 2019),
while recent works mainly focus on randomly-ini-
tialized or pre-trained encoder-decoder Transform-
ers (Li et al., 2020; Sun et al., 2021; Huang et al.,
2021; Yang et al., 2022a; Huang et al., 2022) with
reasonable parameter magnitudes. In terms of syn-
tactic control, some of these VAE approaches
(Chen et al., 2019; Bao et al., 2019) exploit syntac-
tical latent variables while others use explicit con-
stituency tree inputs. Among those who feed mod-
els explicit constituency trees, the way that they in-
put the trees also differs, with some of them linear-
ize (Iyyer et al., 2018; Sun et al., 2021) the constit-
uency trees and directly feed them into seq2seq
models just like sentences, while others design ded-
icated model structures such as Tree-LSTM (Ku-
mar et al., 2020) or Tree-Transformer (Yang et al.,
2022a) for intensive tree modeling. This essentially
constitutes the second issue as mentioned in Sec-
tion 1, in our opinion. Moreover, apart from super-
vised SCPG methods trained on parallel corpus,
unsupervised methods on standalone sentences

are also becoming a growing strand, which mainly
achieve unsupervised training by separately encod-
ing semantics and syntactics utilizing correspond-
ing encoders and learn to reconstruct the sentences
(Huang et al., 2021; Huang et al., 2022). These
methods can adapt to SCPG tasks directly by mix-
ing source sentence’s semantics and template sen-
tence’s syntactics. These methods are spiritly simi-
lar to early VAE practices like Chen et al., 2019 and
Bao et al., 2019 which, in our opinion, lacks variety
in terms of tasks and model structures.

3 Dual-Stage Multi-Task Syntax-Ori-
ented Pre-Training: Overview

The framework of our methods is shown in Figure
3. We base our work on T5 model (Raffel et al.,
2020) and ParaNMT-50m (Wieting et al., 2018) da-
taset. Our DSMT pre-training involves structure-
aware pre-training and syntax-aware pre-training.
The former one focus on the structural aspects of
understanding LCTs, like understanding the topol-
ogies which bracketing sequences (as in Figure 2)
stand for, or inferring useful information such as
heights or parent/sibling relationships from these
sequences. The latter one focus on learning the
meanings of different syntax tree constituents and
understanding the co-relationship between constit-
uency trees and sentences. Like T5 pre-training, we
also cast all tasks to text2text format by introducing
task-specific prefixes. Upon pre-training, we fine-

Figure 3: Architecture of our Dual-Stage Multi-Task pre-training and fine-tuning framework. Our mod-
els are trained on a series of tasks which are split into two stages, focusing on learning to comprehend
LCTs structurally and semantically. After DSMT pre-training, our model is fine-tuned on both exemplar
based and target based SCPG still under the text2text setting without introducing any external structures.

vanilla
T5

Treeposition indexing
position: 0, 1 tree:

(<node_1> (<node_2>
<node_3>) <node_4>)

<node_4>

pruned tree
parse: I am a

student.

(ROOT (S (NP(PRP D) (VP
(VBP am)(NP (DT a)(NN

student)))(..)))

scpg source sentence: how
exciting that is . template

sentence: that is exactly right

how exciting that is . <sep> (ROOT
(FRAG (SBAR (WHADJP (WRB how)
(JJ exciting)) (S (NP that) (VP is))) (.

.))) <sep> ...

that's really exciting.
<tgt> (ROOT (S (NP (DT that))

(VP (VBZ 's) (ADJP (RB exactly)
(JJ right))) (. .)))

that's really exciting.

Dual Stage
Multi-Task

Pre-Training

SCPG

Structure-Aware
Pre-Training

(Stage 1)

Syntax-Aware
Pre-Training

(Stage 2)

Exemplar
Based SCPG

Target Based
SCPG

DSMT-
T5

DSMT Pre-Trained
Models

14217

https://github.com/ChristLBUPT/DSMT-T5

4

tune our pre-trained models on exemplar-based and
target-based SCPG tasks, still in a text2text manner.

We’ll demonstrate the two stages of our pre-
training and the process of fine-tuning in the fol-
lowing sections.

4 Stage 1: Structure-Aware Pre-Train-
ing

In the following section, we’ll be discussing the
first stage which makes our model understand LCT
sequences topologically, namely the structure-
aware pre-training stage.

4.1 Datasets

Since most of the preliminary works including
these unsupervised works use ParaNMT-50m
(Wieting et al., 2018) or ParaNMT-small (Chen et
al., 2019) as training set, in consideration of prov-
ing our method’s intrinsic advantage rather than
showcasing a technique of data engineering, we
also use ParaNMT-50m as our pre-training dataset.
Since it’s a pairwise paraphrastic dataset derived
from neural machine translation results, to utilize
more various data, we only use the machine trans-
lation part of each translation pair. After a series of
heuristics of filtering (details are discussed in Ap-
pendix B), around 22-million machine translation
sentences are used for training. We split the sen-
tences into samples for each task, and divide out 5k
examples for each task as validation set. Finally, we
use Stanford CoreNLP parser (Manning et al., 2014)
to parse all sentences into constituency trees. We
linearize the trees to gain LCTs. This processed
ParaNMT-50m dataset will be used in both stages
of our pre-training.

4.2 Data Preprocessing

Prior than training, we apply a series of critical pre-
processing methods for our model and data.

Remind that we use Stanford CoreNLP (Manning
et al., 2014) parsers to parse the sentences, it’s ok
to directly use these LCT as inputs to these struc-
ture-aware tasks. However, since constituency
trees are derived from a series of probabilistic con-
text free grammar (PCFG) rules, they exhibit
strong and easy-to-find regularities (e.g., S is al-
ways at the beginning). These regularities give our
model more possibility to remember LCT by rote
and might thus hinder our models from focusing on
learning topologies. Therefore, we add special to-
kens (<node_1>, <node_2>, … <node_99>)
to our model’s vocabulary and replace all constitu-
ency nodes randomly to these special nodes. We
also all a <sep> token to our model’s vocabulary
for tasks with multiple input/output constituents
and add tokens representing node heights (<H_1>,
<H_2>, …) and ranks among siblings (<S_1>,
<S_2>, …) for tree interpreting task.

4.3 Tasks

The key issue to structure-aware pre-training lies
on tasks. We propose a series of structure-related
tasks. We’ll introduce these tasks in detail in the
following paragraphs.

Treeposition Indexing. Treeposition is a se-
quence which can be used to locate a node in a tree.
Assume the treeposition sequence is {𝑡!, 𝑡", … 𝑡#},
then 𝑡$ indicates that it is the 𝑡$-th child of the (𝑖 −
1)-th node. The treeposition of the root node will
be an empty sequence. We train our model to locate
a node by giving a treeposition sequence and a lin-
earized tree sequence. A typical example is shown
as follows:
Inputs: treeposition indexing posi-

tion: 2 1: tree: (<node_1> <node_11>
(<node_12> <node_21>) <node_13>)
Outputs: <node_21>

We can see that samples are prepended with task
prefixes, with trees linearized. Other details, such
as sampling strategies (probabilities of a node to
be chosen, etc.), and examples of all tasks from
each stage can be found in Appendix A.

Tree Forming: A tree can be constructed ac-
cording to a series of context free grammar (CFG)
productions. The left part of a production corre-
sponds to the root of a subtree while the right part
stands for its children. We train our model to pre-
dict the linearized sequence of the tree constructed
by a set of productions, with the left part of the first
production as the root of the entire tree.

Figure 4: Examples of pruning a constituency
tree to different heights.

ROOT

S

NP

PRP

I

VP

VBP

am

NP

DT

a

NN

student

.

.

ROOT

S

NP

I

VP

am a student

.

.

ROOT

S

NP

PRP

I

VP

VBP

am

NP

a student

.

.

H = 2

H = 3

H = 4

Corresponding
Linearized
Sequences

H = 2: (ROOT (S (NP I) (VP am a student) (. .)))

H = 3: (ROOT (S (NP (PRP I)) (VP (VBP am) (NP a student)) (. .)))

H = 4: (ROOT (S (NP (PRP I)) (VP (VBP am) (NP (DT a) (NN student))) (. .)))

14218

5

Node Deletion: Node deleting is a common tree
operation, especially during construction a bal-
anced tree. For a subtree (A (B C D)), we lift up
C and D to make them as A’s new children upon de-
leting B. We train our model to predict the linear-
ized sequence of the new tree after deleting, giving
the linearized sequence of a tree and the treeposi-
tion of the node to be deleted.

Height selection: In this task, we train our
model to select all nodes left-to-right at a specified
height, given a tree’s linearized sequence and a
specified height.

Tree Interpreting: We selected several im-
portant topology-related attributes of tree nodes in-
cluding height, parent node and rank among sib-
lings, and train our models to predict them for each
node given a tree’s linearized sequence. These at-
tributes include a node’s parent, height, and rank
among its siblings.

We can see that our tasks cover the adding, de-
leting, manipulating and indexing of linearized
trees. We also incorporate parent-descendant and
sibling relationships. These tasks are challenging
and representative and will monitor our models’
understanding of linearized tree sequences. Read-
ers might refer to Appendix A for more details.

4.4 Experiment Settings and Results

We convert the processed ParaNMT-50m dataset
into samples of different tasks with specific propor-
tions, and train our model on a small subset of it.
5k samples are split out for each task as validation
set. Compared to T5’s multi-task settings (Raffel et
al., 2020), we employ a stricter multitask setting
under which we do not fine-tune our models on
each task individually, but train a unified model.
Details about training like task sample proportions,
training and evaluation strategies, and hyperparam-
eter settings are listed in Appendix B and Appendix
C. We run experiments on 5 different seeds, with
data reshuffled, and calculate the mean and stand-
ard deviation of each run.

Results of validation are shown in Table 1.We
can see that our model gets considerable scores on
those tasks, especially on those tree-generation
tasks with trees as outputs such as Tree Forming.
Considering these tasks’ difficulty and representa-
tiveness, we suppose that our model gains yet suf-
ficient knowledge of the topology of linearized tree
sequences, and we’ll explore them in experiments
in Section 7.

5 Stage 2: Syntax-Aware Pre-Training

This section is about the second stage where our
models learn the about LCT themselves (like what
syntax nodes like NP/VP usually stand for), and the
relationships between LCTs and sentences (like a
sentence’s corresponding LCT). We name it the
syntax-aware pre-training stage.

5.1 Data Preprocessing

Since we use random node tokens in stage-1 while
this stage involves real syntax nodes like NP/VP,
we add these nodes to our models’ vocabulary and
embeddings. To better transfer knowledge learned
from stage 1, we calculate the element-wise means
and variances of the embeddings of the random
nodes (added in stage 1) and initialize syntax nodes’
embeddings by sampling from a high dimensional
gaussian distribution featured by those means and
variances, with covariances as zeros (I.I.D. for each
dimension).

5.2 Tasks

We conduct the following tasks for constituency
semantics learning:

Unsupervised Mask Filling: This is also the
basic unsupervised task of T5’s pre-training. We
mask continuous spans from training LCT se-
quences and train our models to predict them. Since
masked spans might correspond to constituency
nodes, leaf nodes (words), brackets, and any arbi-
trary composition of all them above, this is a crucial
way for our models to learn generalizable basic
knowledge about the meaning of syntax nodes to-
gether with the structure of LCTs.

Apart from the span-level unsupervised mask
filling task which is less intensive, we also intro-
duce sequence-level tasks which focus on certain
aspects of LCT comprehending. Some of them fo-
cus more on structural understanding, and are de-
signed in order to prevent catastrophic forgetting of

Task (Metric) Mean Std
Treeposition Indexing (Acc) 96.20 1.59

Node Deleting (F1) 99.87 0.05
Tree Forming (F1) 99.79 0.08

Height Selection (F1) 97.80 0.91
Tree Interpreting (Bleu) 95.71 0.03

Stage 1 Average 97.88 0.28

Table 1: Model’s performance on stage-1 struc-
tural aware pre-training tasks.

14219

6

structural knowledge learned from stage 1, we call
them auxiliary tasks. These tasks include:

Tree Pruning: Given a tree’s LCT sequence and
a specified height ℎ, we train our model to predict
the LCT sequence of that tree pruned (as shown in
Figure 4) at height ℎ.

Production Detection: Given a LCT sequence,
we train our model to list all CFG productions con-
stituting the tree. Productions are listed in root-first
traversal order.

Pruned Tree Completion: Given the linearized
sequence of a sentence’s pruned constituency tree,
we train our model to predict the linearized se-
quence of the full-fledge constituency tree corre-
sponding to the same sentence. This task involves
parsing of find-grained syntactical structures.

 Besides, we also introduce tasks which are more
comprehensive, requiring deeper understanding of
the syntactics of sentences and involving more
parsing abilities. These tasks are called comprehen-
sive task and are shown as follows:

POS Tagging: This is the standard part-of-
speech (POS) tagging task in a text2text manner
without any external sequence labeling structures.
Models are trained to predict each token’s POS tag
sequentially given a sentence as inputs.

Constituency Searching: This task only ac-
cepts sentences as inputs. Given a sentence and a
specified syntax node, our models are trained to
predict all spans corresponding to that node.

Constituency Discrimination: Binary form of
the previous task. Given a sentence, a span from
that sentence and a constituency node, models are
trained to deciding whether the span constitutes the
constituency node. We add this task as an easy-to-
learn alternative of the previous task.

Pruned Tree Parse: Given a sentence, our mod-
els are trained to parse the corresponding constitu-
ency tree pruned at a specified height.

In conclusion, like the tasks on which T5 was
trained, these tasks cover almost all granularities of
constituency syntactics, ranging from low level
POS tags to high level pruned trees. They are also
progressive, with some of them acting as the basics
of others. Again, readers might refer to Appendix A
for more details of these tasks.

5.3 Experiment Settings and Results

Similar to the settings of stage 1, we also convert
the dataset to samples of each task with specific
proportions and train models on 5 runs of different
randomize settings. More details like sample pro-
portions, data usage and training settings are intro-
duced in Appendix B and Appendix C. Results are
shown in Table 2. These results indicate similar
conclusions as in stage 1, that our model gains con-
siderable and sufficient performance on syntax-ori-
ented tasks. We’ll further compare with baselines
and interpret the efficiency of our DSMT training
in Section 7.

6 Downstream Task: Constituency-
Based and Sentence-Based SCPG

A further pre-trained model is gained after dual-
stage multi-task pre-training. We call the model
Dual-Stage Multi-Task pre-trained T5 (DSMT-
T5). With respect to the two genres of previous su-
pervised SCPG methods mentioned in section 1,
it’s time to answer the following two questions:

• Q1: Is DSMT-T5 well capable of target-
based SCPG, when constituency trees are
given as syntactical constraints?

• Q2: Now that exemplar-based SCPG has an
obvious train-validation gap problem, how
can we diminish that gap and will DSMT-T5
fit in well in that solution?

6.1 Target-Based SCPG

To answer Q1, we fine-tune and evaluate DSMT-
T5 on ParaNMT-small (Chen et al., 2019), using
<source, paraphrase > (X, Z) pairs in both training
and validation/test set, using the LCTs of para-
phrase sentences (𝑇(𝑍)) as syntactic constraints.

Methods. Like AESOP (Sun et al., 2021) which
makes no structural engineering to models, we em-
ploy a barely seq2seq input/output scheme. Our
model’s input includes source sentence, source sen-
tence’s pruned LCT and paraphrase sentence’s
pruned LCT without leaf nodes (words), with all of

Task (Metric) Mean Std
POS Tagging (Bleu) 95.74 0.40
Tree Pruning (F1) 96.80 0.26

Production Detection (F1) 98.80 0.35
Constituency Discrimination

(Acc) 92.85 0.76

Constituency Searching (F1) 78.84 0.72
Prune Tree Parse (F1) 80.99 0.27

Stage 2 Average 91.19 0.21

Table 2: Model’s performance on stage 2syntax-
aware pre-training tasks.

14220

7

them concatenated by a special <sep> token. Our
model’s output only includes predicted paraphrase
sentences.

Baselines. Under target-based setting, we com-
pare our methods with preliminary methods also
focusing on target-based SCPG together with their
baselines: SCPN (Iyyer et al., 2018), GuiG (Li et
al., 2020) and SI-SCP (Yang et al., 2022a).

Experiment Setup. We use the constituency
trees provided alongside the public available
ParaNMT-small dataset (Kumar et al., 2020). We
prune the constituency trees to a height of 5 (in-
cluding root) for fair comparison, since most of our
baselines are prone to do so and using more find-
grained constituency tree will significantly close up
predicted sentences with ground truth under target-
based setting. Details of training hyperparameters
are discussed in Appendix D. In order to alleviate
the effects of randomness, we run our experiments
on 5 set of seeds and report the averaged metrics.

Evaluation Metrics. Following previous works,
we employ two sets of metrics, namely semantics
preserving metrics and syntactics conformation
metrics. The former includes BLEU (Papineni et al.,
2002), ROUGE (Lin, 2004) and METEOR (Iyer et
al., 2016). The latter includes Tree-Edit-Distance
(Zhang and Shasha, 1989) between constituency
trees of generated sentences target sentences.

Experiment Results. Experiment results are
shown in Table 3. Through comparing semantically
sand syntactically between different baselines and
our models, we can see that our model achieves a
significantly huger leap (more than 10 BLEU-4 and
1.8 TED-R) and is far better than any of these base-
lines. This is caused not only by the powerfulness
of T5 but also by our DSMT pre-training. We’ll dis-
cuss it in detail in section 7.

6.2 Exemplar-Based SCPG

To answer Q2, we first employ a series of heuristic
filtering and calculating rules to add exemplar sen-
tences (Y) to each (𝑋, 𝑍) pair of ParaNMT-small’s

training set, and then train and evaluate DSMT-T5
under two settings, one taking exemplar constitu-
ency trees as syntactical inputs while the other di-
rectly taking exemplar sentence as syntactical in-
puts. We call them SCPG with Constituency Trees
(SCPG/C) and SCPG with Exemplar Sentences
(SCPG/S)

Data Building. In order to get 𝑌s, we use the
Sequence Edit Distance (Levenshtein distance) of
LCTs as an approximated measure of syntactical
similarity. We find a syntactically closest yet lexi-
cally (bag-of-words) varied sentence for each tar-
get sentence from (𝑋, 𝑍) pairs of ParaNMT-small
training set and obtained a training set consisting of
around 250k (𝑋, 𝑌, 𝑍) triplets. More details about
triplet data building are described in Appendix D.

Methods. For experiments of SCPG/C, we
adopt almost the same settings with target-based
SCPG as illustrated in Section 6.1, apart from re-
placing target LCTs with exemplar LCTs. For
SCPG/S, we still adopt a text-to-text input/output
scheme, with source sentences and exemplar sen-
tences as inputs and target sentences together with
exemplar LCT as outputs. We add exemplar LCTs
to increase the interpretability of SCPG/S since it
doesn’t involve constituency structures in inputs.
Exemplar LCTs and prepended before paraphrase
sentence, splitting with a <tgt> token. Details
about sample formats are discussed in Appendix D.

Baselines. We compare our methods with previ-
ous exemplar-based SCPG advances, CGEN (Chen
et al., 2019), SGCP (Kumar et al., 2020), AESOP
(Sun et al., 2021), ParafraGPT (Bui et al., 2021)
and GCPG (Yang et al., 2022b).

Model B-4 R-1/R-2/R-L MTR TED↓
CGEN 13.6 44.8/21.0/48.3 24.8 6.7/6.0
SCGP 16.4 49.4/22.9/50.3 28.8 8.7/7.0

AESOP 22.9 54.5/29.8/56.4 32.7 6.9/5.7
Parafra-

GPT 14.5 49.7/22.4/51.3 27.8 8.2/-

GCPG 26.2 63.6/40.8/ 65.0 39.8 8.3/-
Target-
Based 26.8 58.0/34.1/60.0 35.2 6.4/5.5

DSMT-
T5/C 27.8 59.2/35.6/61.1 36.5 6.5/6.1

DSMT-
T5/S 30.3 60.9/37.7/62.4 38.2 6.1/5.9

Table 4: Results of exemplar-based SCPG. TED
is calculated between predicted paraphrases and
gold paraphrases/exemplars. DSMT-T5/C(S) re-
fers to models trained on SCPG/C(S), while Tar-
get-Based stands for the inference result of pair-

wise trained model (as in 6.1) on SCPG/C.

Model B-4 R-1/R-2/R-L MTR TED↓
SCPN 21.2 55.1 / 31.3 / 57.4 33.0 6.3
GuiG 26.3 60.7 / 37.1 / 62.5 38.0 6.4

SI-SCP 27.8 62.8 / 39.5 / 64.4 39.9 5.7
DSMT 42.3 72.7/53.8/74.7 49.9 3.9

Table 3: Results of target-based SCPG. Metrics
stand for BLEU-4, Rouge-1/2/L, Meteor and Tree-

Edit Distance between model outputs and target
sentences. ↓ means smaller is better.

14221

8

Experiment Setup and Evaluation Metrics.
We employ similar metrics and other setups as our
target-based experiments. Specially, we also com-
pare the results (on exemplar based SCPG) of mod-
els trained on triplet datasets and pairwise datasets,
by applying models in Section 6.1, which are
trained on (𝑋, 𝑌) pairs, on SCPG/C validation set
consisting of (𝑋, 𝑌, 𝑍). This is the common prac-
tice of previous exemplar-based methods, yielding
the train/validation gap as discussed in 1.

Experiment results. Results are shown in Table
4. In general, exemplar-based methods exhibit
lower semantical and syntactical scores compared
to target-based ones since exemplar sentences in-
evitably introduce syntactical noises, while we can
still see a huge leap of performance of our methods
compared with state-of-the-are baselines, except
for GCPG (Yang et al., 2020b), which utilizes far
more constraints other than syntactics, and per-
forms undoubtedly better than SCPG methods only
involving syntactical constraints. Specially, there
are also two noticeable phenomena: 1. Models
trained on triplet datasets have better performance
than those trained on pairwise dataset, even when
trained on less data (our triplet dataset has ~250k
triplets while the original training set has ~490k
pairs). This is the well alleviation of the train-vali-
dation inconstancy discussed in Section 1. 2. Mod-
els have better performance when accepting sen-
tential syntactical inputs, meaning that models are
understanding the underlying syntactics. There is
no surprise since the stage-2 of DSMT consists of
tasks incorporating LCTs with natural sentences.

7 Ablation Studies

In this section, we’re dedicated to answer the fol-
lowing questions:

For DSMT pre-training:

• Q1: Is structure-aware training stage (stage
1) beneficial to task performances of syntax-
aware training stage (stage 2)?

• Q2: Are tasks corresponding to each stage
exhibit mutual benefits, i.e., does multi-task
setting provide performance gains compared
with single-task setting?

For exemplar and target based SCPG:

• Q3: Since T5 itself is a powerful model, is it
good enough to directly fine-tune T5 on
SCPG task, without DSMT pre-training?

• Q4: If DSMT do gives a performance gain,
in which situation will DSMT be more nec-
essary?

Experiment Settings. To answer Q1, we di-
rectly train T5 model on stage 2 syntax-aware tasks
using the same multitask training settings as what
is described in Section 5.

To answer Q2, we fine-tune vanilla T5 model on
stage 1 tasks individually, and fine-tune T5 model,
which is already trained on stage 1, on stage 2 tasks
individually. We train using the same quantities of
data, steps of optimization and hyperparameters as
DSMT training for each task for fair comparison.

To answer Q3, we directly fine-tune T5 model
under target-based and SCPG/S (exemplar-sen-
tence-based) SCPG settings as shown in Section 6.
We call it vanilla T5. We compare SCPG perfor-
mance of vanilla T5 and our DSMT-T5.

Results and Analysis. Results for DSMT pre-
training ablation studies are shown in Table 5. We
can see that models’ performances degrade when
individually trained on each task of each stage, or
stripping out stage 1 pre-training, proving the ef-
fectiveness of DSMT pre-training.

Model B-4 R-1/R-2/R-L MTR TED↓
Target-Based

DSMT 42.3 72.7/53.8/74.7 49.9 3.9
T5 41.7 72.1/52.7/74.1 49.1 4.1

SCPG/S
DSMT 30.3 60.9/37.7/62.4 38.2 6.1/5.9

T5 30.0 60.6/37.0/62.1 38.1 6.1/6.0

Table 6: Results of SCPG ablation studies. DSMT
means our pre-trained model’s performance (same as

that shown in section 6) while T5 means directly
fine-tuning vanilla T5 on SCPG tasks.

Model Avg. Metric
DSMT Stage-1 97.88 ± 0.28

Ind. Stage-1 94.85
DSMT Stage-2 91.19 ± 0.21

Ind. Stage-2 85.14
w/o/stage-1 90.7

Table 5: Results of DSMT ablation studies (±
means the standard deviation of a metric). We
only report average metrics of each task due to

space constraints. Ind. Stage-1/2 means the aver-
age metric of individually fine-tuning vanilla

T5/stage-1-trained-T5 on each task in Stage-1/2
(for Q2) and w/o/stage-1 means directly training

vanilla T5 model on stage-2 tasks (for Q1).

14222

9

Results for SCPG ablation studies are shown in
Table 6. Readers may notice that DSMT do pro-
vides a performance gain compared with vanilla T5,
while seemingly marginal. Even though results are
averaged over 5 runs, which alleviates the effect of
randomness to a great extent, to make our work
more rigorous, we yielded the following questions:

• Q1: Are the seemingly marginal results sta-
tistically marginal, or explicit?

• Q2: If not, in which case will DSMT offer an
explicit, never to be doubted, performance
gain compared to vanilla T5?

To answer Q1, the obvious solution is perform-
ing statistical tests. Since we have metrics on 5 runs
on different seeds, which constitutes a small sam-
ple count, we perform Student t-test, which well
suits this case, on the metrics of target and exem-
plar based SCPG. To answer Q2, we make two as-
sumptions, that is, DSMT will be more necessary
when 1. model cannot learn structures about LCT
directly from SCPG training data (since target-
based SCPG data itself involves LCTs), or when 2.
samples require understanding complex LCT struc-
tures. The corresponding cases are few-shot SCPG
in which models are trained only on a proportion of
SCPG training data, and hard-sample SCPG in
which we evaluate the performance on the long
samples of SCPG, which are commonly considered
more syntactically complex.

In practice, we train our models on 20%, 10%
and 5% of the training data of target-based SCPG
to justify assumption 1. We compare the perfor-
mances on top-400 (avg. 12.4 words), top-200 (avg.
14.4 words) and top-100 (avg. 16.2 words) long
samples of the test set of ParaNMT-small, which
has average word count of 9.6 words, to justify as-
sumption 2.

Besides, to explore the mutual effects between
Q1 and Q2, we also combined the above solutions
and perform t-tests on top-100 long samples.

Results and Analysis. Results of t-tests of all
samples and top-100 long samples are shown in Ta-
ble 7 of Appendix E. We can see that all p-values
of target-based methods and most p-values of ex-
emplar-based methods indicate that DSMT pro-
vides statistically significant performance gains,
since they are below 0.05, even with some of them
rounded to 0.000. We can also see that the p-values
of long samples are smaller, simultaneously an-
swering Q1 and Q2. Note that since we only have

5 samples, p-values might still suffer from
the small sample problem and some of them appear
large, but still in a reasonable magnitude.

Results of few-shot SCPG and hard-sample
SCPG are shown in Figure 5 and Figure 6 of Ap-
pendix E. We can see that as training data reduces,
vanilla T5's performance degrades quickly, and the
improvements become significantly larger. This in-
dicates that DSMT gives our models general-pur-
pose knowledge about syntactic structures, and
gives them few-shot abilities, which vanilla T5
lacks, to adapt to syntax-intensive tasks rapidly. We
can also see a growing trend for improvements
when data becomes longer and longer. Since
ParaNMT-small is far shorter than syntax-intensive
datasets like PTB or SST, we believe the improve-
ments will become more significant if tested on
longer datasets. These two cases well demonstrate
DSMT’s effectiveness and necessity, drawing more
research effort onto investigating the mutual rela-
tionship between our nova, DSMT pre-training,
and various syntax-intensive tasks.

8 Conclusion and Future Work

We found three issues of previous SCPG works.
We proposed a novel dual-stage multi-task pre-
training framework which offers a possibility to ap-
ply pre-trained models on SCPG tasks with no ex-
ternal structures or specifically-designed input/out-
put schemes. Upon resolving the three issues and
proving the effectiveness of our pre-trained models
on SCPG tasks, we have two critical findings. First,
we found that exemplar-based SCPG exhibits bet-
ter performance when trained on triplet dataset, or
directly using sentential exemplars. This paved the
way for subsequent exemplar-based SCPG re-
searchers and suggests them to pay more attention
on how to better utilize natural language based syn-
tactical constraints and dive deeper on model’s un-
derstanding of syntactics of sentences. Second, we
found that transformer based seq2seq models may
also have strong performance on tree comprehend-
ing tasks even with constituency trees fully linear-
ized. This, to our best knowledge, is the first solid
step on exploring the extent for seq2seq models to
understand and generate LCTs, appealing for vari-
ous syntax-intensive downstream applications, and
also appealing further constituency parsing works
to focus not only on working under CKY frame-
work and taking neural models as a neural alterna-
tive of PCFG rules, but also focus on the networks
themselves and explore various seq2seq solutions.

14223

10

9 Limitations & Ethical Considerations

We further pre-trained T5 model on ParaNMT-50m
dataset using various tasks. Generally, pre-training
involves training on a large-scale dataset thus ran-
domness such as model initialization or data re-
shuffling might have strong effects. Theoretically,
it’s encouraged that we run every experiment on
different seeds and calculate mean accordingly.
However, it’s much too computational expensive
for us so we only run the main DSMT pre-training
experiments several times and record their means
and variances. This is a similar practice as T5 (Raf-
fel et al., 2020) pre-training but might still intro-
duce the side-effects caused by randomness.
What’s more, due to the computational resource
limits, we only trained our model on a subset of
ParaNMT-50m for experiments on different seeds
and ablation studies. This might not fully showcase
the powerfulness of DSMT pre-training and might
increase the effect of randomness. Moreover, since
DSMT pre-training, as well as obtaining exemplar
sentences (𝑌s) requires constituency trees of sen-
tences, we used the trees produced by Stanford
CoreNLP (Manning et al., 2014). Since it’s an au-
tomated toolkit, wrong constituency trees are inev-
itable and noise might thus be added to our training
data. Finally, we’ve only trained our model on
ParaNMT-50m/ParaNMT-small dataset. This sin-
gle-dataset setting might also introduce biases to
our results and might hinder the demonstration our
training framework’s generalization, and might
also raise a data leakage issue, since ParaNMT-
small itself is a subset of ParaNMT-50m. However,
since DSMT pre-training and SCPG exhibit quite
difference formulations, we argue that the effect of
data leakage is limited.

Moreover, we’re using T5 model and ParaNMT-
50m dataset as model and dataset. The former one
is unsupervised trained on a large unlabeled corpus
C4 (Raffel et al., 2020) while the latter one is de-
rived from machine translation of a large corpus
mainly consisting of movie subtitles. Partly due to
the colloquial and dramatic nature of movie lines,
through manually inspecting some of the samples
from our training data, we found biased opinions or
impolite words from those training samples. This
means that we can’t deny the possibility that our
models generate toxic or harmful contents. We
strongly suggest following researchers do safety-
check prior than deploying DSMT-T5 on produc-
tion environments.

Last but not least, as illustrated in Section 8, ap-
plications of DSMT pre-trained models on various
downstream tasks (and various models, especially
for LLMs which are ubiquitous nowadays) is desir-
able, but not explored by ourselves, due to the time
and computational resource limit. Again, we would
like to appeal for further researchers to explore
more on this newly founded syntax-intensive pre-
training scheme and reveal the immeasurable pos-
sibilities beneath it.

Acknowledgments
We would like to thank Meituan Inc. for offering
computational resources, which is essential to our
work. We’d also like to thank the anonymous re-
viewers who paid efforts to offer precious sugges-
tions and made our paper more rigorous and self-
contained.

References
Alfred. V. Aho and Jeffrey D. Ullman. 1972. The The-

ory of Parsing, Translation and Compiling, volume
1. Prentice-Hall, Englewood Cliffs, NJ.

Yu Bao, Hao Zhou, Shujian Huang, Lei Li, Lili Mou,
Olga Vechtomova, Xin-yu Dai, and Jiajun Chen.
2019. Generating Sentences from Disentangled
Syntactic and Semantic Spaces. In Proceedings of
the 57th Annual Meeting of the Association for
Computational Linguistics, pages 6008–6019, Flor-
ence, Italy. Association for Computational Linguis-
tics.

Tien-Cuong Bui, Van-Duc Le, Hai-Thien To, and
SangKyun Cha. 2021. Generative pre-training for
paraphrase generation by representing and predict-
ing spans in exemplars. In IEEE BigComp, pages
8390. IEEE.

Ziqiang Cao, Wenjie Li, Sujian Li, and Furu Wei. 2018.
Retrieve, Rerank and Rewrite: Soft Template Based
Neural Summarization. In Proceedings of the 56th
Annual Meeting of the Association for Computa-
tional Linguistics (Volume 1: Long Papers), pages
152–161, Melbourne, Australia. Association for
Computational Linguistics.

Mingda Chen, Qingming Tang, Sam Wiseman, and
Kevin Gimpel. 2019. Controllable Paraphrase Gen-
eration with a Syntactic Exemplar. In Proceedings
of the 57th Annual Meeting of the Association for
Computational Linguistics, pages 5972–5984, Flor-
ence, Italy. Association for Computational Linguis-
tics.

Raffel Colin, Noam Shazeer, Adam Roberts, Katherine
Lee, Sharan Narang, Michael Matena, Yanqi Zhou,
Wei Li, and Peter J. 2020. Liu. Exploring the limits
of transfer learning with a unified text-to-text

14224

https://aclanthology.org/P19-1602
https://aclanthology.org/P19-1602
https://ieeexplore.ieee.org/document/9373226/
https://ieeexplore.ieee.org/document/9373226/
https://ieeexplore.ieee.org/document/9373226/
https://aclanthology.org/P18-1015
https://aclanthology.org/P18-1015
https://aclanthology.org/P19-1599/
https://aclanthology.org/P19-1599/
https://dl.acm.org/doi/abs/10.5555/3455716.3455856
https://dl.acm.org/doi/abs/10.5555/3455716.3455856

11

transformer. The Journal of Machine Learning Re-
search, 21(1), 5485-5551.

Bill Dolan, Chris Quirk, and Chris Brockett. 2004. Un-
supervised construction of large paraphrase corpora:
Exploiting massively parallel news sources. In 20th
International Conference on Computational Lin-
guistics (COLING).

Silin Gao, Yichi Zhang, Zhijian Ou, and Zhou Yu. 2020.
Paraphrase Augmented Task-Oriented Dialog Gener-
ation. In Proceedings of the 58th Annual Meeting of
the Association for Computational Linguistics,
pages 639–649, Online. Association for Computa-
tional Linguistics.

Kuanhao Huang and Kaiwei Chang. 2021. Generating
Syntactically Controlled Paraphrases without Using
Annotated Parallel Pairs. In Proceedings of the 16th
Conference of the European Chapter of the Associ-
ation for Computational Linguistics: Main Volume,
pp. 1022-1033. 2021.

Kuanhao Huang, Varun Iyer, Anoop Kumar, Sriram
Venkatapathy, Kai-Wei Chang, and Aram Galstyan.
2022. Unsupervised Syntactically Controlled Para-
phrase Generation with Abstract Meaning Repre-
sentations. In Findings of the Association for Com-
putational Linguistics: EMNLP 2022, pp. 1547-
1554. 2022.

Srinivasan Iyer, Ioannis Konstas, Alvin Cheung, and
Luke Zettlemoyer. 2016. Summarizing source code
using a neural attention model. In Proceedings of the
54th Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers). Asso-
ciation for Computational Linguistics.

Shankar Iyer, Nikhil Dandekar, and Korn el Csernai.
2017. First quora dataset release: Question pairs.
data.quora.com.

Mohit Iyyer, John Wieting, Kevin Gimpel, and Luke
Zettlemoyer. 2018. Adversarial Example Genera-
tion with Syntactically Controlled Paraphrase Net-
works. In Proceedings of the 2018 Conference of the
North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long Papers), pages 1875–
1885, New Orleans, Louisiana. Association for
Computational Linguistics.

Ashutosh Kumar, Kabir Ahuja, Raghuram Vadapalli,
and Partha Talukdar. 2020. Syntax-Guided Con-
trolled Generation of Paraphrases. Transactions of
the Association for Computational Linguistics,
8:329–345.

Yinghao Li, Rui Feng, Isaac Rehg, and Chao Zhang.
2020. Transformer-based neural text generation
with syntactic guidance. arXiv preprint
arXiv:2010.01737.

Chin-Yew Lin. 2004. ROUGE: A package for auto-
matic evaluation of summaries. In Text Summariza-
tion Branches Out. Association for Computational
Linguistics.

Christopher D. Manning, Mihai Surdeanu, John Bauer,
Jenny Finkel, Steven J. Bethard, and David
McClosky. 2014. The Stanford CoreNLP natural
language processing toolkit. In Association for
Computational Linguistics (ACL) System Demon-
strations, pages 55–60.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. Bleu: a method for automatic eval-
uation of machine translation. In Proceedings of the
40th Annual Meeting of the Association for Compu-
tational Linguistics. Association for Computational
Linguistics

Martin Potthast, Benno Stein, Alberto Barrón-Cedeño,
and Paolo Rosso. 2010. An Evaluation Framework
for Plagiarism Detection. In Coling 2010: Posters,
pages 997–1005, Beijing, China. Coling 2010 Or-
ganizing Committee.

Jiao Sun, Xuezhe Ma, and Nanyun Peng. 2021. AESOP:
Paraphrase Generation with Adaptive Syntactic
Control. In Proceedings of the 2021 Conference on
Empirical Methods in Natural Language Pro-
cessing, pages 5176–5189, Online and Punta Cana,
Dominican Republic. Association for Computa-
tional Linguistics.

John Wieting and Kevin Gimpel. 2018. Paranmt-50m:
Pushing the limits of paraphrastic sentence embed-
dings with millions of machine translations. In Pro-
ceedings of the 56th Annual Meeting of the Associ-
ation for Computational Linguistics (Volume 1:
Long Papers), pages 451–462.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Remi Louf, Morgan Fun-
towicz, Joe Davison, Sam Shleifer, Patrick von
Platen, Clara Ma, Yacine Jernite, Julien Plu, Can-
wen Xu, Teven Le Scao, Sylvain Gugger, Mariama
Drame, Quentin Lhoest, and Alexander Rush. 2020.
Transformers: State-of-the-art natural language pro-
cessing. In Proceedings of the 2020 Conference on
Empirical Methods in Natural Language Pro-
cessing: System Demonstrations. Association for
Computational Linguistics.

Xuewen Yang, Yingru Liu, Dongliang Xie, Xin Wang,
and Niranjan Balasubramanian. 2019. Latent partof-
speech sequences for neural machine translation. In
Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing and the
9th International Joint Conference on Natural Lan-
guage Processing (EMNLP-IJCNLP). Association
for Computational Linguistics.

14225

https://dl.acm.org/doi/abs/10.5555/3455716.3455856
https://aclanthology.org/C04-1051
https://aclanthology.org/C04-1051
https://aclanthology.org/C04-1051
https://aclanthology.org/2020.acl-main.60
https://aclanthology.org/2020.acl-main.60
https://aclanthology.org/2021.eacl-main.88.pdf
https://aclanthology.org/2021.eacl-main.88.pdf
https://aclanthology.org/2021.eacl-main.88.pdf
https://aclanthology.org/2022.findings-emnlp.111.pdf
https://aclanthology.org/2022.findings-emnlp.111.pdf
https://aclanthology.org/2022.findings-emnlp.111.pdf
https://aclanthology.org/P16-1195.pdf
https://aclanthology.org/P16-1195.pdf
https://quoradata.quora.com/First-Quora-Dataset-Release-Question-Pairs
https://aclanthology.org/N18-1170/
https://aclanthology.org/N18-1170/
https://aclanthology.org/N18-1170/
https://aclanthology.org/2020.tacl-1.22/
https://aclanthology.org/2020.tacl-1.22/
https://arxiv.org/abs/2010.01737
https://arxiv.org/abs/2010.01737
https://aclanthology.org/W04-1013.pdf
https://aclanthology.org/W04-1013.pdf
https://aclanthology.org/P14-5010/
https://aclanthology.org/P14-5010/
https://aclanthology.org/P02-1040.pdf
https://aclanthology.org/P02-1040.pdf
https://aclanthology.org/C10-2115/
https://aclanthology.org/C10-2115/
https://aclanthology.org/2021.emnlp-main.420/
https://aclanthology.org/2021.emnlp-main.420/
https://aclanthology.org/2021.emnlp-main.420/
https://aclanthology.org/P18-1042/
https://aclanthology.org/P18-1042/
https://aclanthology.org/P18-1042/
https://aclanthology.org/2020.emnlp-demos.6/
https://aclanthology.org/2020.emnlp-demos.6/
https://aclanthology.org/D19-1072.pdf
https://aclanthology.org/D19-1072.pdf

12

Erguang Yang, Chenglin Bai, Deyi Xiong, Yujie Zhang,
Yao Meng, Jinan Xu, and Yufeng Chen. 2022a.
Learning Structural Information for Syntax-Con-
trolled Paraphrase Generation. In Findings of the
Association for Computational Linguistics: NAACL
2022, pages 2079–2090, Seattle, United States. As-
sociation for Computational Linguistics.

Kexin Yang, Dayiheng Liu, Wenqiang Lei, Baosong
Yang, Haibo Zhang, Xue Zhao, Wenqing Yao and
Boxing Chen. 2022b. GCPG: A General Framework
for Controllable Paraphrase Generation. In Findings
of the Association for Computational Linguistics:
ACL 2022, 4035–47. Dublin, Ireland: Association
for Computational Linguistics, 2022.

Kaizhong Zhang and Dennis Shasha. 1989. Simple fast
algorithms for the editing distance between trees
and related problems. SIAM J. Comput., 18:1245–
1262.

Xinyuan Zhang, Yi Yang, Siyang Yuan, Dinghan Shen,
and Lawrence Carin. 2019. Syntax-Infused Varia-
tional Autoencoder for Text Generation. In Proceed-
ings of the 57th Annual Meeting of the Association
for Computational Linguistics, pages 2069–2078,
Florence, Italy. Association for Computational Lin-
guistics.

14226

https://aclanthology.org/2022.findings-naacl.160/
https://aclanthology.org/2022.findings-naacl.160/
https://doi.org/10.18653/v1/2022.findings-acl.318
https://doi.org/10.18653/v1/2022.findings-acl.318
https://epubs.siam.org/doi/abs/10.1137/0218082
https://epubs.siam.org/doi/abs/10.1137/0218082
https://epubs.siam.org/doi/abs/10.1137/0218082
https://aclanthology.org/P19-1199
https://aclanthology.org/P19-1199

13

Appendix A. DSMT Task Details

Below are examples of each tasks’ training data and
evaluation methods. If a involves sampling like
choosing a span or a specified tree node, we’ll also
introduce the introduction of sampling strategies.

A.1 Treeeposition Indexing (Stage 1).

Example:
Inputs: treeposition indexing posi-

tion: 1 2 1: tree: (<node_1> (<node_3>
<node_9> (<node_11> <node_13>
<node_33>)) (<node_4> <node_27))
Outputs: <node_33>

Sampling Strategy: Longer treepositions
(treepositions of nodes close to leaf) are sampled
more frequently. We sample from each treeposition
of a tree, with the length of each treeposition as
sampling weights.

Evaluation Metrics: We calculate the accuracy
(proportion of properly predicted nodes).

A.2 Tree Forming (Stage 1):

Example:
Inputs: tree forming: <node_1> ->

<node_2> <node_7> <sep> <node_2> ->
<node_8> -> <node_11> <sep> <node_7>
-> <node_25>
Outputs: (<node_1 (<node_2>

<node_8> <node_11>) (<node_7>
<node_25>))

Evaluation Metrics: We calculate the bracket
F1 score widely used by constituency works.
Bracket F1 score is based on bracket precision and
recall. They are defined as follows:

𝐵𝑟prec =
#(correct	brackets)

#(brackets	in	predicted	LCT)

𝐵𝑟recall =
#(correct	brackets)

#(brackets	in	ground-truth	LCT)

𝐵𝑟F1 =
2 ⋅ 𝐵𝑟prec ⋅ 𝐵𝑟recall
𝐵𝑟prec + 𝐵𝑟recall

Where #(⋅) means the number of.

A.3 Node Deleting (Stage 1):

Example:
Inputs: node deleting position: 1 2

tree: (<node_1> (<node_3> <node_9>
<node_13> <node_33>) (<node_4>
<node_27))
Outputs: (<node_1> (<node_3>

<node_9> (<node_11> <node_13>
<node_33>)) (<node_4> <node_27))

Sampling Strategy: Nodes are sampled with
even possibilities.

Evaluation Metrics: We use bracket F1 de-
scribed in A.3 as evaluation metrics.

A.4 Height Selection (Stage 1):

Example:
Inputs: height selection height: 3

tree: (<node_1> (<node_3> <node_5>
<node_11>) (<node_2> <node_4>)
Outputs: <node_5> <node_11>

<node_4>

Sampling Strategy: We sample heights with
number of nodes of each height as weights.

Evaluation Metrics: We take output and label
sentences as bag-of-words and calculate F1.

A.5 Tree Interpreting (Stage 1):
Inputs: tree interpreting:

(<node_1> (<node_11> <node_21>)
<node_12>)
Outputs: (<node_1> <H_1> <S_1>

<none> (<node_11> <H_2> <S_1>
<node_1> <node_21> <H_3> <S_1>
<node_11> <node_12> <H_2> <S_2>
<node_1>)

Evaluation Metrics: We calculate Bleu-4 (Pap-
ineni et al., 2002) between generated tree interpret-
ing sequences and ground truth sequences.

A.6 Unsupervised Mask-Filling.

Example:
Inputs: low difficulty inter span:

(ROOT (S (NP (<extra_id_0>)) <ex-
tra_id_1>am) (NP DT a) (NN student<ex-
tra_id_2> (. .)))
Outputs: <extra_id_0>PRP I<ex-

tra_id_1>(VP VBP<extra_id_2>)))<ex-
tra_id_3>

We have 4 sets of unsupervised mask-filling task
settings: low difficulty intra span, low difficulty in-
ter span, high difficulty intra span, high difficulty
inter span. Intra span and inter span means whether
masked spans should be within brackets or across
brackets. Low difficulty and high difficulty mean
the different proportions of length of masked spans.
Low means masking around 15% of the sequence
while High means masking around 30% of the se-
quence.

We do not evaluate mask-filling during evalua-
tion phases.

14227

14

A.7 Tree Pruning.

Example:
Inputs: tree pruning: (ROOT (S (NP

(DT these) (NNS people)) (VP (VBP
have) (VP (VBN been) (NP (NP (DT an)
(JJ integral) (NN part)) (PP (IN of)
(NP (DT this) (NN program)))))) (..)))
Outputs: (ROOT (S (NP (DT these)

(NNS people)) (VP (VBP have) (VP (VBN
been) (NP an integral part of this
program))) (..)))

Evaluation Metrics: We use bracket F1 de-
scribed in A.3 as evaluation metrics.

A.8 Pruned Tree Completion.

Example:
Inputs: pruned tree completion:

(ROOT (S (NP (DT these) (NNS people))
(VP (VBP have) (VP (VBN been) (NP an
integral part of this program)))
(..)))
Outputs: (ROOT (S (NP (DT these)

(NNS people)) (VP (VBP have) (VP (VBN
been) (NP (NP (DT an) (JJ integral)
(NN part)) (PP (IN of) (NP (DT this)
(NN program)))))) (..)))

Evaluation Metrics: We also use bracket F1 de-
scribed in A.3 as evaluation metrics.

A.9 Production Detection.

Example:
Inputs: production detection: （ROOT

(S (NP (PRP I)) (VP (VBP am) (NP (DT
a) (NN student))) (. .)))
Outputs: ROOT -> S <sep> S -> NP

VP . <sep> NP -> PRP <sep> PRP -> I
<sep> VP -> VBP NP <sep> VBP -> am
<sep> NP -> DT NN <sep> DT -> a <sep>
NN -> student <sep> . -> .

Evaluation Metrics: We calculate the F1 score
of productions. Recall and Precision is calculated
by #(exactly matched productions) divided by
#(ground truth productions) and #(predicted pro-
ductions), where #(⋅) means the number of.

A.10 POS Tagging.

Example:
Inputs: pos tagging: I am a student.
Outputs: PRP I VBP am DT a NN stu-

dent . .

Evaluation Metrics: We calculate Bleu-4 (Pap-
ineni et al., 2002) between generated sentence-
POS-tag sequences and ground truth sequences.

A.11 Constituency Searching.

Example:
Inputs: constituency searching

node: NP sentence: I am a student.
Outputs: I <sep> a student

Sampling Strategy: We sample from each con-
stituency node with equal possibilities.

Evaluation Metrics: Like production detection,
we calculate the F1 score of constituency spans.

A.12 Constituency Discrimination.

Example:
Inputs: constituency discrimination

node: NP span: I am sentence: I am a
student.
Outputs: False

Sampling strategy: We sample the node using
the same strategy as constituency searching. We
sample 50% positive samples and 50% negative
samples. For negative samples, we sample two off-
sets from {-3, -2, -1, 0, 1, 2, 3} and move the left
bound & right bound according to offsets and
clamp them within [0, length of sentence). This
sampling strategy will produce harder samples than
random sampling.

Evaluation Metrics: We calculate the accuracy,
that is, proportion of correct predictions as metrics.

A.13 Pruned Tree Parse.

Example:
Inputs: pruned tree parse: I am a

student.
Outputs: (ROOT (S (NP (PRP I)) (VP

(VBP am) (NP (DT a) (NN student)))
(. .)))

Note that we use a fixed prune height of 5, which
is the optimal or sub-optimal prune height of previ-
ous SCPG tasks (Kumar et al., 2020; Sun et al.,
2021).

Evaluation metrics: We use bracket F1 de-
scribed in A.3 as evaluation metrics.

Appendix B. DSMT Training Strategies

This section of appendix will be discussing the
training strategies, like proportions of each task in
dataset, the overall proportion of dataset together
with training and evaluation strategies, of DSMT
training.

B.1 Data Preprocessing & Filtering

The original ParaNMT-50m dataset is a noisy da-
taset consisting of 50-million <reference-sentence,

14228

15

translate-sentence> pairs. We adopt the following
filtering strategies:

• We filter out sentences shorter than 5 tokens
and longer than 25 tokens.

• Some sentences contain repeatedly gener-
ated tokens due NMT model’s limitations.
We filter out sentences consisting of 5 or
more repeat tokens.

• Some sentences are barely upper-case. We
lowercase these sentences.

• We filter out sentences having 40% or the
characters as digits, since these sentences are
numerical sentences which might corre-
spond to serial numbers or bookpages.

• We clean the punctuations to make quotes or
double tildes match.

After filtering and processing, a dataset consist-
ing of around 22-million sentences is obtained.

B.2 Data Partitioning & Training Strategies

Structure Aware Training Stage. We perform
training on a portion of the processed (like shown
in section 4.2) ParaNMT-50m dataset, with around
250k linearized tree sequences. We divide out 25k
LCT sequences from that dataset as validation sam-
ples (5k for each task) and do evaluation every
8192 steps. In terms of the proportions of each task,
we first split samples equally, observe validation
performance alongside training, and adjust data
splitting strategy accordingly in order to make
model’s performance harden on each task. As a
trade-off between sufficient learning and prevent-
ing overfitting, we choose to train on around 15%
data of our processed ParaNMT-50m dataset
(around 3.2M samples), after which our model’s
validation performance harden. What’s more, Fol-
lowing T5’s multi-task training practice (Raffel et
al., 2020), we separately fine-tune our model on
each task and after multi-task training regard
model’s corresponding performance as final per-
formance.

Syntax-Aware Pre-Training Stage. For mod-
els used as seed repetition experiments and ablation
studies, we train them on around 20% of our dataset
(around 4.3M samples). For models used for SCPG
fine-tuning, we train them on 80% of our dataset
(around 17M samples). 60% of the sentences are
randomly selected and masked as unsupervised

samples while the rest of them are equally parti-
tioned for each auxiliary and comprehensive task.
These samples are pre-processed and converted
from constituency annotated sentences to samples
corresponding to each auxiliary/comprehensive
tasks. Like what has been done in stage 1 pre-train-
ing, we also picked out 35000 sentences of our
training set as the validation set, which are also
equally partitioned for each auxiliary/comprehen-
sive tasks (total 7 tasks).

Appendix C. DSMT Implementation De-
tails

C.1 Training Hyperparameters.

We use PyTorch T5 model implemented by hug-
gingface transformers (Wolf et al., 2020) library.
Our transformers library version is 4.27.1 and our
PyTorch version is 1.13.1. We expand the tokenizer
vocabulary and model embedding layers prior than
each stage’s training as described in Section 4 and
Section 5. We use Adam optimizer with 𝛽! = 0.9
and 𝛽" =0.99 and use a learning rate of 5𝑒 − 5 in
constant schedule with 1000-step warmups. We use
a per-device batch size of 16 and set gradient accu-
mulation steps to 16. During the evaluation phase,
we use greedy decoding with genera-
tion_kwargs as default settings.

C.2 Computational Costs.

Our models are trained on machines with 2 ×32G
Nvidia V100 GPUs with Distributed Data Parallel
implemented by huggingface accelerate library.
Training elapses around 10-15 hours for stage 1
and stage 2 pre-training on a 15%/20% subsets and
around 2 days on 80% of our dataset. This is
roughly 4 × computational costs of target-based
SCPG, which, in our opinion, is acceptable consid-
ering its gains.

Appendix D. SCPG Implementing Details.

D.1 Building of Triplet ParaNMT Dataset.

The procedure of building a training set consisting
of (𝑋, 𝑌, 𝑍) triplets is that for each (𝑋, 𝑍) pair, find
a 𝑌 which has the least syntactical variance com-
pared to 𝑍 according to a specific syntactical meas-
urement 𝐷-(𝑌, 𝑍) , while having enough lexical
variance according to lexical measurement
𝐷.(𝑌, 𝑋; 𝑍), in order to effectively prevent tem-
plate sentence word copying problem (Chen et al.,
2019; Yang et al., 2022b).

14229

16

 Now that deciding 𝑌 involves Θ(n") outer loop

among the training set, as a balance between syn-
tactical representation and computational effi-
ciency, we regard the edit distance of the LCT se-
quences of 𝑌, 𝑍 LevEdit(𝐿𝐶𝑇/, 𝐿𝐶𝑇0)	 as
𝐷-(𝑌, 𝑍), and regard bag-of-word F1 as 𝐷.(𝑌, 𝑋).
For each (𝑋, 𝑍) pair, we apply the aforementioned
heuristics on {𝑌|𝑌 ∈ {𝑋} ∪ {𝑍}, ^|𝑌| − |𝑍|^ <
2, 𝑌 ∉ {𝑋, 𝑍}} , that is, sentences in training set
within 2-token length difference and other than
(𝑋, 𝑌), to find the appropriate 𝑌. Pairs which have
little syntactical variance are filtered out by calcu-
lating Tree-Edit Distances between (𝑋, 𝑍)s and fil-
tering out the low-distance ones. Eventually,
around 250k (𝑋, 𝑌, 𝑍) triplets are obtained.

D.2 Model Inputs & Outputs.

For target-based SCPG, we use the special token
<sep>, as used in DSMT pre-training, to split
source sentences and LCTs. Inputs & outputs are
shown as follows:
Inputs: [source sentence] <sep>

[source LCT] <sep> [paraphrase LCT].
Outputs: [parphrase sentence].

Note that compared with source LCT, para-
phrase LCT has stripped leaf nodes (words) out.

For SCPG/C, we use similar input/output
schemes as target based SCPG. Inputs & outputs
are shown as follows:
Inputs: [source sentence] <sep>

[source LCT] <sep> [exemplar LCT].
Outputs: [parphrase sentence].

For SCPG/S, we use different input/output
schemes, which is shown as follows:
Inputs: no-tree-scpg source sen-

tence: [source sentence] template
sentence: [exemplar sentence].
Outputs: [parphrase sentence] <tgt>

[exemplar LCT].

Note that this text2text format is similar to those
of DSMT pre-training tasks but different from tar-
get-based SCPG. Actually, during experiments, we
tried a great many formats and found that sample
formats has quite limited effect on task perfor-
mance. Therefore, for target-based SCPG and
SCPG/C, we choose a similar scheme as AESOP
(Sun et al., 2021), which is the previous text2text
SOTA (corresponding to methods adapting to
model structures mentioned in Section 1), for better
comparison.

D.3 Training Details.

We use the same hyperparameter settings in all sets
of experiments. We train our model 8 epochs with
a batch size of 16 and gradient accumulation steps
of 8. We use Adam Optimizer with (𝛽! = 0.9,
𝛽" = 0.99) using cosine schedule. We also use
Nvidia V100-32G for training, which elapses
around 24 hours for target based SCPG on original
ParaNMT-small dataset and 9 hours for exemplar
sentence based SCPG, 12 hours for exemplar tree
based SCPG on our processed and filtered triplet
ParaNMT-small dataset.

Appendix E. SCPG Ablation Results.

E.1 Student t-Test Results.

Below are results of Student t-Test of whether or
not model results of DSMT-T5 are significantly
higher than those of vanilla T5, under target-based
and sentential exemplar based (SCPG/S) settings:

E.2 Few-Shot / Hard-Sample SCPG Results.

Below are results of vanilla T5 together with
DSMT-T5 under few-shot and hard-sample SCPG
settings:

Few-shot SCPG:

Model B-4 R-1/R-2/R-L MTR TED↓
Target-Based

DSMT 42.3 72.7/53.8/74.7 49.9 3.9
T5 41.7 72.1/52.7/74.1 49.1 4.1

SCPG/S
DSMT 30.3 60.9/37.7/62.4 38.2 6.1/5.9

T5 30.0 60.6/37.0/62.1 38.1 6.1/6.0

Table 7: p-values of ablation study results of target-
based SCPG and SCPG/S.

Figure 5: Results (BLEU-4) of vanilla/DSTM-T5 on
target-based SCPG, when trained on all, 20%, 10%
and 5% of ParaNMT-small training data.

14230

17

Hard-Sample SCPG:

Figure 6: Results of vanilla/DSMT-T5 (in blue and
orange solid lines) and their differences (in grey
dashed lines) when evaluated on all, top-400, top-
200 and top-100 long samples.

14231

