
Findings of the Association for Computational Linguistics: ACL 2024, pages 13657–13670
August 11-16, 2024 ©2024 Association for Computational Linguistics

Efficient Domain Adaptation for
Non-Autoregressive Machine Translation

Wangjie You♠*, Pei Guo♠*, Juntao Li♠†, Kehai Chen♢, Min Zhang♠
♠Institute of Computer Science and Technology, Soochow University, China

♢Harbin Institute of Technology, Shenzhen
{wjyouuu, pguolst}@stu.suda.edu.cn;

{ljt, minzhang}@suda.edu.cn;
chenkehai@hit.edu.cn

Abstract

Domain adaptation remains a challenge in the
realm of Neural Machine Translation (NMT),
even in the era of Large language models
(LLMs). Existing non-parametric approaches
like nearest neighbor machine translation have
made small Autoregressive Translation (AT)
models achieve efficient domain generalization
and adaptation without updating parameters,
but leaving the Non-Autoregressive Transla-
tion (NAT) counterparts under-explored. To
fill this blank, we introduce Bi-kNN, an in-
novative and efficient domain adaptation ap-
proach for NAT models that tailors a k-Nearest-
Neighbor algorithm for NAT. Specifically, we
introduce an effective datastore construction
and correlated updating strategies to conform
the parallel nature of NAT. Additionally, we
train a meta-network that seamlessly integrates
the kNN distribution with the NMT distribu-
tion robustly during the iterative decoding pro-
cess of NAT. Our experimental results across
four benchmark datasets demonstrate that our
Bi-kNN not only achieves significant improve-
ments over the Base-NAT model (7.8 Bleu on
average) but also exhibits enhanced efficiency.1

1 Introduction

LLMs have dramatically shifted the paradigm of
various language processing tasks, and there have
also been extensive discussions recently to weigh
up the pros and cons of LLMs to NMT (Lyu et al.,
2023; Jiao et al., 2023; Hendy et al., 2023; Zhang
et al., 2023). LLMs can achieve appealing gener-
alization and task performance by pretraining on
vast and varied corpora across languages and do-
mains, surpassing the task expert model trained
on supervised translation pairs under resource-rich
scenarios, but might suffer from the prohibitive

* Equal Contribution
† Corresponding Author
1Our code is availabel at https://github.com/

Moriarty0923/BIKNN.

Models WMT Domain (Avg.) Speed (tokens/s)

ChatGPT 39.59 32.63 -
LLaMA-2 (7B) 34.65 22.66 27.08
AT (65M) 37.15 32.41 148.99
NAT (73M) 37.03 30.48 240.86

Table 1: Comparison between LLMs, AT, and NAT mod-
els on general and domain-specific datasets (Aharoni
and Goldberg, 2020).

inference cost for highly concurrent service. Never-
theless, recent studies (Moslem et al., 2023; Yang
et al., 2023; Jiao et al., 2023) have highlighted that
while LLMs demonstrate impressive translation
capabilities for mainstream languages, their perfor-
mance significantly declines when confronted with
specific domains. How to deal with the NMT task
of specific domains in the era of LLMs, i.e., the
domain adaptation setting, is still not well-known.

To explore this problem further, we first briefly
compare different lines of possible solutions for
NMT tasks, including closed-sourced LLM (Chat-
GPT), open-sourced LLM (LLaMA-2), and two
types of transformer-based expert models (i.e.,
the auto-regressive (AT) and non-auto-regressive
(NAT) fashion).2 LLMs are introduced to calibrate
the domain-specific translation performance with-
out any further task training due to possible pro-
hibitive costs. Expert models are presented to learn
the domain adaptation capabilities of small capacity
models with supervised task training, e.g., initially
converged on the WMT training dataset but infer-
ence on specific domains like IT, Medical, Law,
and Koran. Table 1 averages the BLEU scores
on four specific domains. We can see that though
supervised task expert models no longer have per-
formance superiority to LLMs on high-resource
languages, they still show promising domain adap-
tation potential. Meanwhile, considering that ex-

2More details of the comparison experiments are given in
Appendix A.1.

13657

https://github.com/Moriarty0923/BIKNN
https://github.com/Moriarty0923/BIKNN

pert models are much more affordable in real-world
usage at scale (e.g., over 10 × speedup), it is worth
figuring out how to solve NMT for specific domains
with small experts.

There are already some effective strategies to en-
hance the domain adaptation performance of small
models, particularly the non-parametric paradigm.
For instance, Khandelwal et al. (2020) present a
k-Nearest-Neighbor Machine Translation method,
which utilizes a trained NMT model to construct a
datastore, consisting of (query: context represen-
tations; value: the correlated target tokens) pairs
in the training set, and then retrieves relevant to-
kens during inference to enhance the translation
accuracy. This non-parametric approach equips the
model with rapid domain adaptation and generaliza-
tion abilities without the need for parameter adjust-
ments. However, most of the existing methods are
tailored for AT models, leaving the domain adapta-
tion problem of NAT models under-explored.

To fill this blank, we introduce an innovative do-
main adaptation approach for NAT models, namely
Bidirectional-Iterative-knn (Bi-kNN), which is an
efficient method tailored for NAT models. Unlike
k-Nearest-Neighbor NMT for AT models, NAT
models struggle with producing accurate represen-
tations due to insufficient context with parallel de-
coding. To overcome this, we present a novel and
effective framework for kNN-MT with NAT mod-
els, including (1) building a bidirectional datastore,
(2) renewing the indecipherable datastore, (3) train-
ing a robust Meta-network, and (4) iterative-kNN
decoding. We conducted experiments on multi-
ple domain-specific NMT tasks. Across four do-
mains, our approach achieved an average of 7.8
BLEU score improvement for the Base-NAT mod-
els and outperformed the specialized models which
are trained on the corresponding datasets on most
datasets. Furthermore, without tuning the parame-
ters of pre-trained models, our method proved more
efficient and avoided catastrophic forgetting com-
pared to the straightforward fine-tuning method.

2 Related Work

Machine Translation with LLMs Large Lan-
guage Models (LLMs), notably ChatGPT (Ouyang
et al., 2022) and GPT-4 (Achiam et al., 2023),
have demonstrated their substantial potential in
the sphere of Neural Machine Translation (NMT).
These models have delivered remarkable improve-
ments in terms of translation accuracy and fluency

compared to traditional machine translation sys-
tems, especially in the context of high-resource
bilingual translation tasks (Agrawal et al., 2022;
Hendy et al., 2023; Zhang et al., 2023). Moreover,
their strong generality is believed to address tra-
ditional challenges in NMT, such as multilingual
and domain-specific translation (Yang et al., 2023;
Reinauer et al., 2023). However, challenges still
persist. Numerous studies (Moslem et al., 2022;
Jiao et al., 2023) have shown that though LLMs can
effectively compete with commercial translation
products like Google Translate for resource-rich
European languages across various domains, their
performance significantly deteriorates when deal-
ing with resource-scarce or specific domains. This
underscores the importance of domain adaptation,
which remains a central challenge of NMT.

Domain adaptation Many efforts have been
made to address the domain adaptation challenge of
NMT, particularly in the non-parametric paradigm.
Notably, kNN-MT (Khandelwal et al., 2020), has
been shown to be both simpler and more expres-
sive, breaking the capacity limitation in a plug-
and-play manner. Typically, it utilizes the de-
coder representations as keys and the correspond-
ing target words as values to construct a datas-
tore. During inference, the predicted distribution
of the NMT model is interpolated with the kNN
distribution using a hyper-parameter λ, based on
the retrieved results. Subsequently, some stud-
ies (Zheng et al., 2021a; Jiang et al., 2021, 2022a;
Wang et al., 2022b) have achieved improved results
by dynamically estimating λ. Meanwhile, other re-
searchers have made efforts to accelerate inference
by compressing data (He et al., 2021; Wang et al.,
2022a; Martins et al., 2022a) or limiting the search
space (Meng et al., 2022; Martins et al., 2022b;
Deguchi et al., 2023). However, the effectiveness
of the kNN approach has only been tested on au-
toregressive models, and the non-autoregressive
models, co-existing as a critical branch in the tree
of machine translation, remain unexplored.

Non-autoregressive Machine Translation
NATs (Gu et al., 2018) have been introduced to
reduce decoding latency but might suffer from
poor generation quality. Numerous studies (Gu
and Kong, 2020; Qian et al., 2021; Zeng et al.,
2022; Lv et al., 2023; Guo et al., 2023) have
been dedicated to addressing this issue. Notably,
iterative refinement in NATs (Lee et al., 2018;
Ghazvininejad et al., 2019; Huang et al., 2021;

13658

Xiao et al., 2023) has shown potential, achieving
performance on par with autoregressive (AT)
models by incorporating target-side dependencies.
This is accomplished by conditioning each
prediction on the output from the preceding
iteration. Nevertheless, in the landscape dominated
by LLMs, NATs lag behind AT models, primarily
due to their limitations in leveraging pretraining
effectively with LLMs. Furthermore, while the
general translation capabilities of NATs have been
the focus of much research, their domain adapta-
tion proficiency has not been adequately addressed.
An exception is Lv et al. (2023), they conducted
preliminary exploration on the domain adaptation
problem of the NAT models and proposed an
N-gram-based method. However, their method
failed to achieve significant improvement. In this
work, we further explore the domain adaptation
challenges for NAT models. We propose Bi-kNN,
an efficient domain adaptation approach, adapting
kNN for NATs, to enhance their adaptability
across various domains. Our method has achieved
significant performance improvements for NAT
models, presenting a cost-effective strategy to
enhance the versatility and applicability of NATs
in domain-specific machine translation tasks.

3 Preliminary Study

3.1 Nearest-Neighbor Machine Translation

Khandelwal et al. (2020) pioneered the integration
of k-nearest-neighbor (kNN) retrieval into machine
translation, demonstrating notable advancements
in NMT and domain adaptation challenge by intro-
ducing pre-stored external target-side information
during the decoding stage. Specifically, kNN-MT
contains two steps: datastore creation and kNN
decoding. Given a bilingual sentence pair in the
training set (x, y) ∈ (X ,Y) and a pre-trained NMT
model f(·). kNN-MT utilizes the hidden state
ht = f(x, y<t)

3 when predicting the t-th target
token yt as key and the corresponding ground-truth
tokens as value to construct key-value pairs. Then,
the datastore is constructed by a single forward
pass over each target token in the training set.

During inference, at time-step t, kNN-MT uti-
lizes the hidden state ĥt = f(x, ŷ<t) to query the
datastore for k nearest neighbors according to l2
distance. The kNN prediction probability is cal-

3Following previous works (Khandelwal et al., 2020;
Zheng et al., 2021b), we use the hidden state before the final
softmax as h.

culated by the distance between the query and re-
trieved keys,

pknn
t (yt|x, ŷ<t) ∝

∑

(hi,vi)∈N
1yt=vi exp(

−dk
τ

),

(1)
where dk is the l2 distance and τ denotes the tem-
perature. The final prediction probability of yt is
calculated by interpolating the kNN prediction and
model prediction with a hyper-parameter λ:

p(yt|x, ŷ<t) = λ pknn
t (yt|x, ŷ<t) (2)

+ (1− λ) pNMT
t (yt|x, ŷ<t).

3.2 Limitation of kNN for NAT Models

However, the vanilla kNN approach, originally tai-
lored for AT models, exhibits obvious limitations
when repurposed for NAT models, primarily due to
the absence of dependencies on the target side. In
detail, NAT models disrupt the conventional con-
ditional dependencies, simultaneously generating
all tokens. This process is mathematically repre-
sented by p(y|x) = p(Ty|x) ·

∏Ty

t=1 p(yt|x), where
p(Ty|x) signifies the target length prediction of the
model. The typical decoder input for NAT mod-
els is an identical copy of source representations
or an empty sequence, constructed using [UNK]
or [MASK] tokens. Therefore, in the conventional
kNN approach, the datastore keys for NAT models
are synthesized using hi = f(x, yunk), where x
represents the source sentences and yunk denotes
the substituted decoder input. Owing to the absence
of pertinent target-side information, the constructed
keys may lack clarity and precision and fail to aid
the following decoding stage. Conversely, for AT
models, the construction process benefits from the
autoregressive pattern, which incorporates the pre-
vious steps’ unidirectional target-side information,
resulting in more precise and informative keys.

4 Methodology

In this section, we present the overall process of our
proposed Bi-kNN, as illustrated in Figure 1. Con-
cretely, our method contains four specific steps, i.e.,
build bidirectional datastore, renew indecipherable
datastore, train robust Meta-network and iterative
decoding with kNN.

4.1 Build Bidirectional Datastore

The primary obstacle for NATs during the datas-
tore creation stage is the deficiency of target-side

13659

NAT Model

Key Value

leads

this
you
leads

... ...

Value

leads

this
you
leads

conflicts

Key

leads
........

Distance

leads

Value

are

makes
you
...

2
8

19
23
...

..are...leads..makes..

NN Distribution

Das führe zu Konflikten. This to conflicts.

~

NAT Distribution

Meta-Network..are...leads..makes..

..are...leads..makes..
Final Distribution

Figure 1: Overview of our proposed Bi-kNN. ⇑ represents the process of bidirectional datastore construction and
Meta-network training, while ↑ represents the process of iterative decoding with kNN.

information. We draw inspiration from iterative-
based NAT models, which iteratively enhance their
outputs by utilizing predictions from previous it-
erations. This paradigm enables us to harness
the abundant bidirectional information embedded
in past iteration predictions, thereby aiding NAT
models to obtain partial contextual information.
Given a bilingual pair (x, y) ∈ (X ,Y), we random
mask part of positions in y, and split the original
y into [ymask, yobs], where ymask is the positions
replaced by [MASK] tokens and yobs is the observed
target tokens. We denote the hidden representation
of i-th masked position yi as hi = f(x, yobs), and
then the datastore is constructed over each masked
position in parallel:

(K,V) =
⋃

(x,y)∈(X ,Y)

{(hi, yi), ∀i ∈ ymask}, (3)

In this context, we integrate explicit target-side
contextual information during the construction pro-
cess, thereby significantly enhancing the robust-
ness and preciseness of key-value pairs. To capture
more potential contextual information, we set up
multiple iterations and set different mask ratios for
each iteration. We initiate n iterations on a given
sentence, which is determined by the target length
ylen, n is computed as n = min(

√
ylen, β), where

we β to 5 for most datasets in practice to achieve
trade-off between performance and effectiveness.
In t-th iteration, we define the mask ratio α based
on t with linear decay mechanics as α = t

n + λ,
where λ is the pre-set parameter to limit the bound.

However, there remain several challenges:

• The constructed datastore lacks robustness
due to the presence of [MASK] tokens in the
decoder input, which causes the hidden state
to point to an ambiguous representation.

• There is a discrepancy between the creation
and inference stages. While the creation stage
only considers the model’s output, the infer-
ence stage also factors in the kNN probability
distribution, leading to inconsistencies.

4.2 Renew Indecipherable Datastore

Upon completion of the initial stage, we get a basic
bidirectional datastore. However, this datastore is
of subpar quality and lacks distinguishability, as
only a subset of the target tokens are evident during
the construction phase. Moreover, the datastore
might encompass ambiguous, irrelevant, and use-
less representations, conversely lacking essential
information that the model cannot autonomously

13660

generate.4 To enhance the quality of the datas-
tore, we propose a renewal strategy subsequent to
the building stage. Concretely, we deploy a stan-
dard k nearest-neighbor decoding using the origi-
nal model’s outputs on the training dataset. For a
given masked target position, we employ its cor-
responding hidden state as the query to conduct a
search within the bidirectional datastore we have
established. Adhering to a predefined value of k,
we retrieve the top k closest key-value pairs, along
with their distances to the query. We then proceed
to polish the datastore from three distinct perspec-
tives: Inclusion of overlooked items: If the top k
retrieval candidates fail to include the correct cor-
responding tokens and the model’s output diverges
from the ground truth, we identify these instances
as cases of overlooked key items. These are then
incorporated into the datastore, with the current
decoder representation serving as the new keys,
and the corresponding ground truth target tokens
as values. Removal of indistinguishable items:
We meticulously track the retrieval frequency of
each key-value pair within the original bidirectional
datastore, noting both correct and incorrect times of
retrieval. Subsequently, we cull key-value pairs that
exhibit a higher frequency of incorrect retrievals
compared to correct ones. We believe such pairs
likely harbor ambiguous information, which fails
to offer constructive external aid during the de-
coding phase but potentially impedes it. Pruning
of redundant items: When a given query yields
multiple correct target tokens in the retrieval re-
sults, while the model output itself is also accurate,
we recognize this as an indication of redundancy
within the key-value pairs. Consequently, we re-
moved items with high similarity and more distant
from the query, effectively pruning redundant in-
formation in the datastore.

4.3 Train Robust Meta-network
With previous steps, we have established a rela-
tively accurate and comprehensive datastore. How-
ever, a challenge remains in the kNN decoding
process, where the parameter λ is typically fixed to
directly combine the kNN probability distribution
and the model probability distribution for all situ-
ations, as depicted in formula 2. However, unlike
decoding in AR, where the process is kept exactly
the same at the datastore creation and inference
stages, NATs do not probabilistically encounter the

4We have provided more concrete examples of these defi-
ciencies in A.2

same distribution of giving y at construction and
inference times. Following previous works (Zheng
et al., 2021a; Jiang et al., 2022b), we train a light-
weight Meta-network to combine model prediction
with the knn probability distribution organically
and to enhance robustness in noisy situations.

Given a query ĥi, we identify the set of retrieved
neighbor pairs Ni = {(hk, vk)|1 ≤ k ≤ K}. To
calibrate the probability distribution of the query,
we consider two factors: the L2 distance between
ĥi and each neighbor key hk, denoted as dk, and the
count of distinct values among the top k neighbors,
denoted as ck. These metrics are concatenated to
form the input feature for Meta-network, which
modulates the temperature of the kNN distribution.
The kNN distribution is formally defined as:

pkNN(yi|ĥi) ∝
∑

(hk,vk)∈Ni

1yi=vk exp

(−dk
T

)
,

(4)
where the temperature T is calculated as:

T = W1 (tanh (W2[d1, . . . , dK ; c1, . . . , cK])) , 5

(5)
Upon establishing the kNN distribution, we then

explore its adaptive integration with the model pre-
dictions, enhancing robustness in noisy scenarios.
Following Jiang et al. (2022b), we consider the con-
fidence of NMT distribution and kNN distribution
to estimate the weight λi adaptively. Furthermore,
we incorporate the mask ratio α of the decoder in-
put as a factor to reflect the reliability of the NAT
distribution:

λi =
exp(skNN)

exp(skNN) + exp(sNAT)
, (6)

skNN = W3(tanh(W2[d1, ..., dK ; r1, ..., rK])),
(7)

sNAT = W4[pNAT(vk|ĥi);pNAT(vk|hk);α], (8)

where k ranges from 1 to K and α is the current
mask ratio of decoder input.

4.4 Iterative Decoding with kNN

During inference, we further integrate iterative de-
coding of NAT models with kNN decoding. The
conventional iterative decoding process is defined
as follows:

P (y
(t)
i) = P (y

(t)
i |X, Ŷ (t−1); Θ) (9)

5W∗ refers to parameter matrices.

13661

where y
(t)
i denotes the predicted word at position

i at iteration t, Ŷ (t−1) represents the prediction
from the previous iteration, and Θ encapsulates the
model parameters.

Subsequently, we incorporate kNN retrieval at
each iteration for all positions of interest in parallel,
employing the Meta-Network we have trained to
combine the NAT distribution and the kNN distri-
bution as follows:

p(y
(t)
i |X, Ŷ (t−1)) = λipkNN(y

(t)
i |X, Ŷ (t−1))

+ (1− λi)pNAT(y
(t)
i |X, Ŷ (t−1))

(10)
In our experiments, we limit the maximum number
of iterations to 10, which implies that we perform
at most 10 kNN retrieval processes. We introduce
an early stopping mechanism: if the predictions
across all positions remain unchanged between two
consecutive iterations, we terminate the iterative
process ahead of schedule. This approach not only
accelerates inference but also, as we observed, en-
hances performance to a certain degree.

5 Experiments

5.1 Experimental Settings

Datasets and Evaluation We follow the pre-
vious works (Khandelwal et al., 2020; Zheng
et al., 2021b) and utilize the German-English multi-
domain dataset released by Aharoni and Goldberg
(2020). We consider four commonly used domains
including IT, Medical, Law, and Koran. We use
the Moses6 toolkit to tokenize sentences and split
words into subword units (Sennrich et al., 2015).
For evaluation, we use SacreBLEU7 (Post, 2018) to
measure all results with case-sensitive detokenized
BLEU (Papineni et al., 2002).

Models We set up three experimental groups as
the LLMs, AT, and NAT models and test our pro-
posed method on the NAT model. For LLMs,
we utilize GPT-3.5-Turbo (OpenAI, 2022) and
GPT-4-Turbo (OpenAI, 2023) APIs and follow-
ing the prompt and settings given by Jiao et al.
(2023). We utilize the vanilla Transformer-base
model (Vaswani et al., 2017) as the AT backbone
model and CMLMC (Huang et al., 2021) for the
NAT model, as they demonstrate similar capabil-
ities on the WMT19 de-en test set. Both models
are trained from scratch on the training split of

6https://github.com/moses-smt/mosesdecoder
7https://github.com/mjpost/sacrebleu

WMT19 de-en datasets, following the default set-
tings in the respective papers to ensure a fair com-
parison. In the domain adaptation task for NAT
models, we establish three baselines: the Base-
NAT model, which is trained on the WMT19 de-
ne dataset, Domain-specific models, which are
trained on the training split of four domain datasets
respectively, and the vanilla kNN method directly
adapted on the Base-NAT model. Further details
can be found in Appendix A.1.

Implementation We adopt fairseq toolkit8 (Ott
et al., 2019) for NMT models and faiss9 (Johnson
et al., 2019) for kNN to conduct datastore creation
and retrieval. For NAT models, we set the max
iteration number to 10, which is decided adaptively
in our proposed method. For all datasets, we use
faiss to learn 4k cluster centroids and set the code
size to 64. During inference, we set the max search
clusters as 8, except for the Koran dataset.

5.2 Main Results

The experimental results are listed in Table 2. Our
proposed Bi-kNN strategy demonstrates substan-
tial enhancements over the Base-NAT model across
all domains, with an average improvement of 7.8
BLEU points. Additionally, our method surpasses
the domain-specific NAT model in a majority of
domains, achieving an average uplift of 2.4 BLEU
points. In contrast, the vanilla kNN approach fails
to yield superior outcomes, and in most cases, it
even degrades the original predictions. This sug-
gests that the vanilla kNN approach may not be di-
rectly applicable to NAT models as we mentioned
in section 3.2. When compared with LLMs and
AT models, our NAT model, aided by our proposed
Bi-kNN method, exhibits performance on par with
the domain-specific AT model. Compared to LLMs
and AT models, our NAT model, aided by our pro-
posed Bi-kNN method, demonstrates significant
competitiveness with fewer model parameters and
enhanced inference speed. We have expanded our
evaluation to include COMET and ChrF metrics,
the results can be found at A.1.

5.3 Cost Anlysis

Training Cost A significant merit of kNN meth-
ods is their non-parametric characteristic, eliminat-
ing the necessity for extra training to adapt the origi-
nal model’s parameters to domain-specific datasets.

8https://github.com/pytorch/fairseq
9https://github.com/facebookresearch/faiss

13662

https://github.com/moses-smt/mosesdecoder
https://github.com/mjpost/sacrebleu
https://github.com/pytorch/fairseq
https://github.com/facebookresearch/faiss

WMT ’19 IT Medical Law Koran Avg.
Test set sizes 2,000 2,000 2,000 2,000 2,000 -

LLM
- GPT-3.5-turbo 39.59 33.66 41.31 38.52 17.03 32.63
- GPT-4-turbo 39.17 33.67 41.49 41.01 18.00 33.56

Base AT 37.15 36.01 37.38 41.85 14.41 32.41
- Domain-specific models - 40.80 50.70 57.86 12.32 40.22

Base NAT 37.03 33.25 35.84 38.93 13.91 30.48
- Domain-specific models - 36.59 46.30 49.77 10.75 35.85
+kNN:

- vanilla kNN 37.03 32.30 33.80 36.28 10.49 28.21
- Bi-kNN(ours) 37.03 39.30 46.47 49.27 18.10 38.28

Table 2: Experimental results on German-English Multi-domain translation tasks. Bold denotes the best performance
for NAT models. The performance improvements over Base-NAT are statistically significant with p < 0.05. All
experiments are our own implementation; more details can be found in Appedix A.1.

Models Training Cost Inference Speed
(gpu·hours) (tokens/s)

Domain-specific AT 2.13 149.63
Domain-specific NAT 3.39 263.66

Base-AT
+ fine-tuning 1.68 154.51
+ vanilla-kNN < 0.1 124.18
+ adaptive-kNN 0.26 118.41

Base-NAT
+ fine-tuning 2.67 259.65
+ vanilla-kNN < 0.1 218.74
+ Bi-kNN (ours) 0.38 203.60

Table 3: Comparsion of different strategies on training
cost and inference speed on koran dataset. The batch
size is set to 1, and the beam is set to 4 for all the
strategies during inference.

The training cost of kNN methods mainly lies in
the datastore creation stage, which utilizes forward
passes of the NMT models but without updating
the original parameters of the model. Our method
incorporates additional meta-network; however, it
is quite light-weight, and the number of parameters
is negligible compared to the model itself.

We assess the training cost of different strategies,
as illustrated in Table 3. Obviously, parameter-
updating methods i.e., training a domain-specific or
fine-tuning on a pre-trained NMT model, are more
time-consuming compared to the non-parametric
method. The vanilla kNN only includes a single for-
ward pass over all examples in the training set dur-
ing the datastore creation stage, so its training cost
can be essentially disregarded. On the other hand,
adaptive kNN and our method introduce an addi-
tional meta-network that requires training, which to
some extent increases the training cost, but this cost
is completely acceptable compared to parameter

tuning methods.
Decoding Speed The primary drawback of the
kNN approach lies in its decoding speed; retrieval
keys from a dataset containing billions of items in
the decoding stage significantly decrease its gen-
eration speed. For AT models, retrieval of each
position must be performed sequentially, resulting
in retrieval times equivalent to the length of the
predicted target. In contrast, NAT models gener-
ate results on all positions in parallel, originally
decreasing the translation latency. Our method
incorporated kNN retrieval into the iterative decod-
ing strategy for NAT models, enabling simultane-
ous retrieval across all positions, thereby reducing
retrieval times to the number of iterations. Fur-
thermore, we adaptively set the iteration numbers
based on the current prediction, which effectively
reduces the number of interactions.

We also evaluate the inference speed of different
strategies, as shown in Tabel 3. As clearly demon-
strated, the NAT model itself has an advantage in
terms of inference speed compared to the AT model,
achieving 1.5 to 2 times acceleration. While incor-
porating kNN leads to a certain loss in inference
speed, Bi-kNN still maintains a significant advan-
tage in inference speed compared to AT models
especially those equipped with kNN retrieval.

6 Analysis

6.1 Catastrophic Forgetting of NAT

A straightforward approach for domain adaptation
involves fine-tuning pre-trained models on specific
target domain data. However, studies (Chu et al.,
2017; Chu and Wang, 2018; Saunders) have sug-
gested that a direct continuation of training on new

13663

10

15

20

25

30

35

40

0 5 10 15 20 25 30

B
LE

U
 S

C
O

R
E

FINE-TUNED ITERATION

IT
Medical
Law
Koran

Figure 2: The results of Base-NAT on WMT19 de-en
test set with fine-tuning on four domain-specific data.

Models IT Medical

(1): Base-NAT 33.25 35.84
(2): (1) + Build Datastore 37.40 44.45
(3): (2) + Renew Datastore 37.79 45.41
(4): (2) + Training Meta-network 38.13 45.76
(5): (3) + Training Meta-network 39.30 46.47

Table 4: The ablation study on our proposed Bi-kNN.
Results on settings without Meta-network utilized the
default hypermeters provided by (Khandelwal et al.,
2021).

data often results in overfitting on the new data and
catastrophic forgetting (French, 1999) of perfor-
mance on previous domains for AT models. We
conducted experiments to verify if NAT models
exhibit similar issues, and the results are depicted
in Figure 2. While fine-tuning the model with data
from the new domain, we observe a consistent de-
crease in the model’s proficiency in the initial train-
ing data across all four domains. This indicates
that NAT models, akin to their AR counterparts,
are susceptible to catastrophic forgetting, Which
further amplifies the advantages of non-parametric
methods in domain adaptation tasks.

6.2 Effect of Each Part

Our proposed method includes multiple strategies,
i.e., building a bidirectional datastore, renewing
the indecipherable datastore, and training a robust
Meta-network. We conduct an ablation study to an-
alyze each component’s contributions to the whole
process in this section. The results are listed in Ta-
ble 4. The introduction of bidirectional information
as the key value information of the kNN datastore
has already significantly improved the effectiveness
of obtaining externally stored knowledge during the

37.12
37.96

28.29

48.89

46.14

37.25

49.4

46.33

39.12

49.27

46.47

39.3

25

30

35

40

45

50

Law Medical IT

B
LE

U
 S

C
O

R
E

Iteration 1
Iteration 5
Iteration 9
Adaptive

Figure 3: The performance of setting different iteration
numbers (1, 5, 9 and adaptive numbers) in the decoding
stage on three domain datasets.

decoding stage. The updating of the datastore and
the training of a robust original network is aimed
at improving the quality of the datastore and better
integrating it with the model’s prediction results. It
is evident that although the improvement brought
by the renewed datastore is relatively modest, it
reduces a large amount of redundant information
in the datastore and increases retrieval efficiency.
At the same time, it is apparent that without datas-
tore update operations, subsequent network train-
ing may be affected by dirty data in the datastore,
leading to the final effect. The Meta-network not
only brings about certain improvements but also in-
creases the overall stability of the method, allowing
the kNN probability distribution to be adaptively
combined with the model’s own output, rather than
relying on fixed hyperparameters.

6.3 Effect of Iteration numbers

In this subsection, we explore the influence of vary-
ing iteration numbers during the decoding phase, as
depicted in Figure 3. Evidently, with a small num-
ber of iterations (=1), the performance is notably
inadequate across all the domains. This shortfall is
attributable to the NAT model’s initial inability to
extract valuable latent contextual information from
the preceding iteration, which further leads to an
imprecise kNN search. As we increase the num-
ber of iterations (≥5), there emerges a remarkable
improvement in performance. Nevertheless, this
pattern does not suggest that performance enhance-
ments are inexorably tied to more iteration numbers
as has proven in past works (Gu et al., 2019; Kasai
et al., 2020). Our investigations further indicate
that employing adaptive strategies to calibrate the
number of iterations can frequently yield superior
results while mitigating the decoding cost.

13664

7 Conclusion

In this paper, we highlight the ongoing challenge
of domain adaptation for NMT and point out the
deficiency of NAT models for domain adaptation
tasks. Subsequently, we introduce Bi-kNN, an
innovative domain adaptation approach, tailoring
kNN for NAT models, which creates a robust bidi-
rectional datastore and integrates iterative decoding
with kNN retrievals. Extensive evaluation results
and in-depth analysis consistently demonstrate the
overall effectiveness and efficiency of our method.

8 Limitations

Despite the promising results of our proposed Bi-
kNN, several limitations remain that should be ad-
dressed in future work:

• While our method’s reduction of kNN
searches to the number of iterations, retriev-
ing from the datastore continues to impose
an overhead on the decoding process. Future
work will aim to minimize retrieval costs and
further accelerate the inference stage.

• The introduction of the Meta-network in our
approach adds an extra training process over
the standard kNN-MT, thus marginally in-
creasing the overall training cost.

• Our experiments focused solely on domain
adaptation tasks, showcasing the effectiveness
of Bi-kNN. The potential effect of incorpo-
rating our method into other tasks, such as
Language Modeling and Question Answering,
has yet to be explored.

These limitations highlight further investigation
and refinement to enhance our method’s applicabil-
ity and performance in a wider range of scenarios.

9 Acknowledgements

We want to thank all the anonymous reviewers
for their valuable comments. This work was sup-
ported by the National Science Foundation of
China (NSFC No. 62206194), the Natural Sci-
ence Foundation of Jiangsu Province, China (Grant
No. BK20220488), Young Elite Scientists Spon-
sorship Program by CAST (2023QNRC001). The
work of Kehai Chen was supported by the National
Natural Science Foundation of China under Grant
62276077 and Guangdong Basic and Applied Basic
Research Foundation (2024A1515011205).

References

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama
Ahmad, Ilge Akkaya, Florencia Leoni Aleman,
Diogo Almeida, Janko Altenschmidt, Sam Altman,
Shyamal Anadkat, et al. 2023. Gpt-4 technical report.
arXiv preprint arXiv:2303.08774.

Sweta Agrawal, Chunting Zhou, Mike Lewis, Luke
Zettlemoyer, and Marjan Ghazvininejad. 2022. In-
context examples selection for machine translation.
arXiv preprint arXiv:2212.02437.

Roee Aharoni and Yoav Goldberg. 2020. Unsupervised
domain clusters in pretrained language models. arXiv
preprint arXiv:2004.02105.

Chenhui Chu, Raj Dabre, and Sadao Kurohashi. 2017.
An Empirical Comparison of Simple Domain Adapta-
tion Methods for Neural Machine Translation. Com-
ment: 6 pages.

Chenhui Chu and Rui Wang. 2018. A Survey of Domain
Adaptation for Neural Machine Translation. Com-
ment: COLING 2018, 16 pages, 9 figures.

Hiroyuki Deguchi, Taro Watanabe, Yusuke Matsui,
Masao Utiyama, Hideki Tanaka, and Eiichiro Sumita.
2023. Subset retrieval nearest neighbor machine
translation. In Proceedings of the 61st Annual Meet-
ing of the Association for Computational Linguistics
(Volume 1: Long Papers), pages 174–189.

Robert M French. 1999. Catastrophic forgetting in con-
nectionist networks. Trends in cognitive sciences,
3(4):128–135.

Marjan Ghazvininejad, Omer Levy, Yinhan Liu, and
Luke Zettlemoyer. 2019. Mask-predict: Parallel
decoding of conditional masked language models.
arXiv preprint arXiv:1904.09324.

Jiatao Gu, James Bradbury, Caiming Xiong, Victor OK
Li, and Richard Socher. 2018. Non-autoregressive
neural machine translation. In International Confer-
ence on Learning Representations.

Jiatao Gu and Xiang Kong. 2020. Fully non-
autoregressive neural machine translation: Tricks of
the trade. arXiv preprint arXiv:2012.15833.

Jiatao Gu, Changhan Wang, and Junbo Zhao. 2019. Lev-
enshtein transformer. Advances in Neural Informa-
tion Processing Systems, 32.

Pei Guo, Yisheng Xiao, Juntao Li, and Min Zhang. 2023.
Renewnat: Renewing potential translation for non-
autoregressive transformer.

Junxian He, Graham Neubig, and Taylor Berg-
Kirkpatrick. 2021. Efficient nearest neighbor lan-
guage models. In Conference on Empirical Methods
in Natural Language Processing.

13665

http://arxiv.org/abs/1701.03214
http://arxiv.org/abs/1701.03214
http://arxiv.org/abs/1806.00258
http://arxiv.org/abs/1806.00258
http://arxiv.org/abs/2303.07665
http://arxiv.org/abs/2303.07665

Amr Hendy, Mohamed Abdelrehim, Amr Sharaf,
Vikas Raunak, Mohamed Gabr, Hitokazu Matsushita,
Young Jin Kim, Mohamed Afify, and Hany Hassan
Awadalla. 2023. How good are gpt models at ma-
chine translation? a comprehensive evaluation.

Xiao Shi Huang, Felipe Perez, and Maksims Volkovs.
2021. Improving non-autoregressive translation mod-
els without distillation. In International Conference
on Learning Representations.

Hui Jiang, Ziyao Lu, Fandong Meng, Chulun Zhou, Jie
Zhou, Degen Huang, and Jinsong Su. 2022a. To-
wards Robust k-Nearest-Neighbor Machine Transla-
tion. Comment: Accepted to EMNLP 2022.

Hui Jiang, Ziyao Lu, Fandong Meng, Chulun Zhou, Jie
Zhou, Degen Huang, and Jinsong Su. 2022b. To-
wards robust k-nearest-neighbor machine translation.
In Proceedings of the 2022 Conference on Empiri-
cal Methods in Natural Language Processing, pages
5468–5477.

Qingnan Jiang, Mingxuan Wang, Jun Cao, Shanbo
Cheng, Shujian Huang, and Lei Li. 2021. Learn-
ing Kernel-Smoothed Machine Translation with Re-
trieved Examples. In Proceedings of the 2021 Confer-
ence on Empirical Methods in Natural Language Pro-
cessing, pages 7280–7290, Online and Punta Cana,
Dominican Republic. Association for Computational
Linguistics.

Wenxiang Jiao, Wenxuan Wang, Jen-tse Huang, Xing
Wang, Shuming Shi, and Zhaopeng Tu. 2023. Is
ChatGPT A Good Translator? Yes With GPT-4 As
The Engine. Comment: Analyzed/compared the out-
puts between ChatGPT and Google Translate; both
automatic and human evaluation.

Jeff Johnson, Matthijs Douze, and Hervé Jégou. 2019.
Billion-scale similarity search with gpus. IEEE
Transactions on Big Data, 7(3):535–547.

Jungo Kasai, James Cross, Marjan Ghazvininejad, and
Jiatao Gu. 2020. Non-autoregressive machine trans-
lation with disentangled context transformer. In In-
ternational conference on machine learning, pages
5144–5155. PMLR.

Urvashi Khandelwal, Angela Fan, Dan Jurafsky, Luke
Zettlemoyer, and Mike Lewis. 2020. Nearest neigh-
bor machine translation. In International Conference
on Learning Representations.

Urvashi Khandelwal, Angela Fan, Dan Jurafsky, Luke
Zettlemoyer, and Mike Lewis. 2021. Nearest Neigh-
bor Machine Translation. Comment: ICLR 2021.

Yoon Kim and Alexander M Rush. 2016. Sequence-
level knowledge distillation. arXiv preprint
arXiv:1606.07947.

Diederik P Kingma and Jimmy Ba. 2014. Adam: A
method for stochastic optimization. arXiv preprint
arXiv:1412.6980.

Jason Lee, Elman Mansimov, and Kyunghyun Cho.
2018. Deterministic non-autoregressive neural se-
quence modeling by iterative refinement. In Proceed-
ings of the 2018 Conference on Empirical Methods
in Natural Language Processing, pages 1173–1182.

Rui Lv, Junliang Guo, Rui Wang, Xu Tan, Qi Liu, and
Tao Qin. 2023. N-Gram Nearest Neighbor Machine
Translation.

Chenyang Lyu, Jitao Xu, and Longyue Wang. 2023.
New trends in machine translation using large lan-
guage models: Case examples with chatgpt. arXiv
preprint arXiv:2305.01181.

Pedro Martins, Zita Marinho, and André FT Martins.
2022a. Efficient machine translation domain adap-
tation. In Proceedings of the 1st Workshop on Semi-
parametric Methods in NLP: Decoupling Logic from
Knowledge, pages 23–29.

Pedro Henrique Martins, Zita Marinho, and André FT
Martins. 2022b. Chunk-based nearest neighbor ma-
chine translation. In Proceedings of the 2022 Con-
ference on Empirical Methods in Natural Language
Processing, pages 4228–4245.

Yuxian Meng, Xiaoya Li, Xiayu Zheng, Fei Wu, Xi-
aofei Sun, Tianwei Zhang, and Jiwei Li. 2022. Fast
nearest neighbor machine translation. In Findings of
the Association for Computational Linguistics: ACL
2022, pages 555–565.

Yasmin Moslem, Rejwanul Haque, John D Kelleher,
and Andy Way. 2022. Domain-specific text gen-
eration for machine translation. arXiv preprint
arXiv:2208.05909.

Yasmin Moslem, Rejwanul Haque, John D Kelleher,
and Andy Way. 2023. Adaptive machine transla-
tion with large language models. arXiv preprint
arXiv:2301.13294.

Nathan Ng, Kyra Yee, Alexei Baevski, Myle Ott,
Michael Auli, and Sergey Edunov. 2019. Facebook
fair’s wmt19 news translation task submission. arXiv
preprint arXiv:1907.06616.

OpenAI. 2022. Gpt-3.5-turbo.

OpenAI. 2023. Gpt-4.

Myle Ott, Sergey Edunov, Alexei Baevski, Angela Fan,
Sam Gross, Nathan Ng, David Grangier, and Michael
Auli. 2019. Fairseq: A fast, extensible toolkit for
sequence modeling. NAACL HLT 2019, page 48.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida,
Carroll Wainwright, Pamela Mishkin, Chong Zhang,
Sandhini Agarwal, Katarina Slama, Alex Ray, et al.
2022. Training language models to follow instruc-
tions with human feedback. Advances in Neural
Information Processing Systems, 35:27730–27744.

13666

http://arxiv.org/abs/2302.09210
http://arxiv.org/abs/2302.09210
http://arxiv.org/abs/2210.08808
http://arxiv.org/abs/2210.08808
http://arxiv.org/abs/2210.08808
https://doi.org/10.18653/v1/2021.emnlp-main.579
https://doi.org/10.18653/v1/2021.emnlp-main.579
https://doi.org/10.18653/v1/2021.emnlp-main.579
http://arxiv.org/abs/2301.08745
http://arxiv.org/abs/2301.08745
http://arxiv.org/abs/2301.08745
http://arxiv.org/abs/2010.00710
http://arxiv.org/abs/2010.00710
http://arxiv.org/abs/2301.12866
http://arxiv.org/abs/2301.12866

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. Bleu: a method for automatic evalu-
ation of machine translation. In Proceedings of the
40th annual meeting of the Association for Computa-
tional Linguistics, pages 311–318.

Matt Post. 2018. A call for clarity in reporting bleu
scores. arXiv preprint arXiv:1804.08771.

Lihua Qian, Hao Zhou, Yu Bao, Mingxuan Wang, Lin
Qiu, Weinan Zhang, Yong Yu, and Lei Li. 2021.
Glancing transformer for non-autoregressive neural
machine translation. In Proceedings of the 59th An-
nual Meeting of the Association for Computational
Linguistics and the 11th International Joint Confer-
ence on Natural Language Processing (Volume 1:
Long Papers), pages 1993–2003.

Raphael Reinauer, Patrick Simianer, Kaden Uhlig, Jo-
hannes E. M. Mosig, and Joern Wuebker. 2023. Neu-
ral Machine Translation Models Can Learn to be
Few-shot Learners.

Danielle Saunders. Domain adaptation for Neural Ma-
chine Translation.

Rico Sennrich, Barry Haddow, and Alexandra Birch.
2015. Neural machine translation of rare words with
subword units. arXiv preprint arXiv:1508.07909.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in neural information pro-
cessing systems, pages 5998–6008.

Dexin Wang, Kai Fan, Boxing Chen, and Deyi Xiong.
2022a. Efficient cluster-based k-nearest-neighbor
machine translation-nearest-neighbor machine trans-
lation. In Proceedings of the 60th Annual Meeting of
the Association for Computational Linguistics (Vol-
ume 1: Long Papers), pages 2175–2187.

Dongqi Wang, Haoran Wei, Zhirui Zhang, Shujian
Huang, Jun Xie, and Jiajun Chen. 2022b. Non-
parametric online learning from human feedback
for neural machine translation. In Proceedings of
the AAAI Conference on Artificial Intelligence, vol-
ume 36, pages 11431–11439.

Yisheng Xiao, Ruiyang Xu, Lijun Wu, Juntao Li, Tao
Qin, Tie-Yan Liu, and Min Zhang. 2023. Amom:
adaptive masking over masking for conditional
masked language model. In Proceedings of the
Thirty-Seventh AAAI Conference on Artificial Intel-
ligence and Thirty-Fifth Conference on Innovative
Applications of Artificial Intelligence and Thirteenth
Symposium on Educational Advances in Artificial
Intelligence, AAAI’23/IAAI’23/EAAI’23. AAAI
Press.

Xinyi Yang, Runzhe Zhan, Derek F Wong, Junchao Wu,
and Lidia S Chao. 2023. Human-in-the-loop machine
translation with large language model. arXiv preprint
arXiv:2310.08908.

Chun Zeng, Jiangjie Chen, Tianyi Zhuang, Rui Xu, Hao
Yang, Qin Ying, Shimin Tao, and Yanghua Xiao.
2022. Neighbors are not strangers: Improving non-
autoregressive translation under low-frequency lexi-
cal constraints. In Proceedings of the 2022 Confer-
ence of the North American Chapter of the Associ-
ation for Computational Linguistics: Human Lan-
guage Technologies, pages 5777–5790.

Biao Zhang, Barry Haddow, and Alexandra Birch. 2023.
Prompting large language model for machine transla-
tion: A case study. arXiv preprint arXiv:2301.07069.

Xin Zheng, Zhirui Zhang, Junliang Guo, Shujian Huang,
Boxing Chen, Weihua Luo, and Jiajun Chen. 2021a.
Adaptive nearest neighbor machine translation. In
Proceedings of the 59th Annual Meeting of the Asso-
ciation for Computational Linguistics and the 11th
International Joint Conference on Natural Language
Processing (Volume 2: Short Papers), pages 368–374,
Online. Association for Computational Linguistics.

Xin Zheng, Zhirui Zhang, Junliang Guo, Shujian Huang,
Boxing Chen, Weihua Luo, and Jiajun Chen. 2021b.
Adaptive nearest neighbor machine translation. arXiv
preprint arXiv:2105.13022.

13667

http://arxiv.org/abs/2309.08590
http://arxiv.org/abs/2309.08590
http://arxiv.org/abs/2309.08590
https://doi.org/10.1609/aaai.v37i11.26615
https://doi.org/10.1609/aaai.v37i11.26615
https://doi.org/10.1609/aaai.v37i11.26615
https://doi.org/10.18653/v1/2021.acl-short.47

A Appendix

A.1 Experiment Setup
Datasets We utilize four domain datasets for
domain adaptation tasks and the WMT19de-en
dataset for general NMT tasks. Their statistics are
listed in Table 5. Following Aharoni and Goldberg
(2020), we use the bpecodes provided by Ng et al.
(2019) to process datasets.

Datasets WMT19 IT Medical Law Koran

Train 37M 223k 248k 467k 18k
Dev 2k 2k 2k 2k 2k
Test 2k 2k 2k 2k 2k

Table 5: Statistics of the datasets.

LLMs We utilize Llama2-chat 7b, ChatGPT,
and GPT-4 in our experiment. The Llama2-
chat 7b is open-sourced and available at https:
//huggingface.co/meta-llama. ChatGPT and
GPT-4 are closed-sourced, and we utilize the API
released by OpenAI. The version for ChatGPT is
GPT-3.5-turbo, and for GPT-4, it is GPT-4-1106-
preview. We utilize few-shot examples to exploit
their abilities better. For ChatGPT and GPT-4, we
provide clearer instruction because they have better
instruction-following ability, and we set the exam-
ple number to 1 in our experiments. The prompt
we used is depicted in Figure 5. For Llama2, we
set the example number to 3 since we find it hard
to control the format of its output. The prompt we
used is depicted in Figure 4. We post-processed
their output results as they may contain irrelevant
information such as "English:".

AT and NAT models We establish our baseline
models by training them from scratch using the
Fairseq library(Ott et al., 2019). The model archi-
tectures for both AT and NAT align with the config-
uration outlined in the respective papers (Vaswani
et al., 2017; Huang et al., 2021): 6 layers per stack,
8 attention heads per layer, 512 model dimensions,
and 2048 hidden dimensions. For our founda-
tional models, both the Base-AT and Base-NAT are
trained on the WMT19de-en dataset from scratch.
The Base-AT model adheres to the implementation
strategies described by Ng et al. (2019), while the
hyperparameters for the Base-NAT model are tuned
by us, as illustrated in Table 6. For domain-specific
models, we emulate the implementations for both
AT and NAT models as proposed by (Aharoni and
Goldberg, 2020) as depicted in Table 6. For de-
tails, we use the ADAM optimizer (Kingma and

Hyperparameters GPUs lr warm-up dropout epoches tokens/GPU

Base-NAT 4xA5000 0.0007 40,000 0.2 250 8,192
Domain-specific 1xA5000 0.0005 4,000 0.2 200 4,096

Table 6: The hyperparameters configuration we used for
model training.

Ba, 2014) with an initial learning rate of 0.0005
and a maximum of 4096 tokens per batch. We set
the dropout rate to 0.2 and the maximum number
of epochs to 200. Early stopping is employed if the
BLEU score on the domain-specific development
set does not improve in 10 consecutive checkpoints.
Notably, we do not adopt sequence-level knowl-
edge distillation (Kim and Rush, 2016), which is
a common practice for NAT models, in our experi-
ments to ensure a fair comparison.

Decoding For AT models, we follow the tra-
ditional decoding configuration provided by (Ng
et al., 2019). For NAT models, we set the beam size
to 5 and fix the iteration number to 10 for baselines,
while setting the iteration number adaptively in the
decoding with kNN.

Other Evaluation Metrics We employed the
BLEU metric to maintain consistency with our
baseline work, namely knnMT. We have expanded
our evaluation to include COMET and ChrF met-
rics and conducted additional experiments. Specifi-
cally, we used the "wmt22 comet da" for COMET
and implemented chrF as provided in ScaleBLEU.
In figure7, we present the results of our NAT exper-
iments under these expanded evaluation metrics.

AT Baselines Our methodology was primarily
designed for NAT models, hence our focus was
largely on comparing it with non-autoregressive
generation methods. The inherent attributes of
NMT models can significantly influence the effec-
tiveness of the knn method. Consequently, a direct
comparison between conventional AT models with
knn might not present a fair comparison. Neverthe-
less, we have performed additional experiments on
some AT baselines for comparison in 8. The per-
formance gap is still It is evident that there remains
a substantial performance gap between the AT and
NAT methods. Future efforts should be dedicated
to bridging this gap.

A.2 Example
To illustrate the deficiencies as mentioned in sec-
tion 4, let’s consider three scenarios:

1. Missing Information: This is the most in-
tuitive case. During the construction of the

13668

https://huggingface.co/meta-llama
https://huggingface.co/meta-llama

IT Medical Law Koran

Domain Models 0.7819 / 58.10 0.7846 / 64.04 0.8089 / 68.92 0.5231 / 33.17
BaseNAT 0.7902 / 55.37 0.7798 / 57.59 0.7945 / 60.49 0.6546 / 36.85

+ vanilla 0.7663 / 53.94 0.7337 / 56.09 0.7368 / 59.12 0.5669 / 34.20
+ Bi-kN 0.8153 / 58.35 0.7870 / 64.66 0.7905 / 67.79 0.6335 / 40.51

Table 7: Evaluation results using COMET / ChrF metrics.

IT Medical Law Koran

Transformer-base 36.01 37.38 41.85 14.41

+ Vanilla-kNN 43.80 53.25 60.06 16.94

+ Adaptive-kNN 46.73 55.95 61.69 18.52

Table 8: Performance of Auto-regressive translation
methods

database, we perform random masking on the
input, which means there is a possibility that
crucial information may not be selected and
included in the database.

2. Ambiguity: This issue arises because NATs
do not provide as clear a context as ATs in
the teacher forcing pattern during datastore
construction. The NAT model generates hid-
den states in parallel under conditions where
only a fraction of the words are visible, which
can lead to ambiguity. For example, given the
sentence "All work and no play makes Jack a
dull boy," the input to the NAT model might
be "All [MASK1] and no [MASK2] makes
Jack a dull boy" during construction. The
hidden state of the NAT at [MASK2] could
correspond to either "work" or "play." How-
ever, for the AR model, when at the [MASK2]
position, "all work and no" is known, allowing
the model to generate a more accurate key.

3. Redundancy: Since we adopt random mask-
ing during the construction phase, the same
position might be selected multiple times. Ad-
ditionally, there may be multiple similar hid-
den states pointing to the same value, leading
to redundancy.

To address these issues, we have an in-depth
discussion in the "Renew Datastore" section of our
methodology and propose corresponding solutions.

13669

Prompt:
You are a helpful and precise assistant, following the examples and translate the following
German sentence into English. You only need to give the translation directly, no explanation or
other information.

German: In diesem Sinne untergraben diese Maßnahmen teilweise das demokratische System der USA.
English: In this sense , the measures will partially undermine the American democratic

German: {Input}

Figure 4: Prompt we used in our experiments for ChatGPT and GPT-4.

Prompt:
You are a helpful and precise assistant, following the examples and translate the following
German sentence into English.

German: In diesem Sinne untergraben diese Maßnahmen teilweise das demokratische System der USA.
English: In this sense , the measures will partially undermine the American democratic

German: Eine Irren-Anstalt, wo sich heute Jugendliche begegnen sollen.
English: A mental asylum, where today young people are said to meet\n.

German: Heute liegt Untersendling mitten in der Stadt.
English: Today, Untersendling lies in the middle of the city.

German: {Input}

Figure 5: Prompt we used in our experiments for Llama2.

13670

