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Abstract
Large language models (LLMs) adapted to fol-
low user instructions are now widely deployed
as conversational agents. In this work, we ex-
amine one increasingly common instruction-
following task: providing writing assistance
to compose a long-form answer. To evaluate
the capabilities of current LLMs on this task,
we construct KIWI, a dataset of knowledge-
intensive writing instructions in the NLP re-
search domain. Given a question, an initial
model-generated answer and a set of relevant
papers, an expert annotator iteratively issues in-
structions for the model to revise and improve
its answer. We collect 1,260 interaction turns
from 234 interaction sessions with three state-
of-the-art LLMs. Each turn includes a user in-
struction, a model response, and a human evalu-
ation of the model response. Through a detailed
analysis of the collected responses, we find that
all models struggle to incorporate new infor-
mation into an existing answer, and to perform
precise and unambiguous edits. Further, we
find that models struggle to judge whether their
outputs successfully followed user instructions,
with accuracy at least 10 points short of human
agreement. Our findings indicate that KIWI will
be a valuable resource to measure progress and
improve LLMs’ instruction-following capabili-
ties for knowledge intensive writing tasks.1

1 Introduction

As LLM-powered conversational agents (OpenAI,
2023; Touvron et al., 2023; Google, 2023) have
gained widespread adoption, users have turned to
these systems for assistance on a wide range of
real-world tasks. In particular, recent works study-
ing LLM interactions “in the wild” (Ouyang et al.,
2023; Zheng et al., 2023a) have discovered that
10-20% of user queries contain requests for writ-
ing assistance, i.e. using an LLM to create, revise,

∗∗Work performed during an internship at AI2.
1Our dataset and code is released at https://www.cs.u

texas.edu/~fxu/kiwi/.

or organize a piece of written text. However, we
currently lack an understanding of LLMs’ capabili-
ties as writing assistants, especially in knowledge-
intensive settings. What types of writing instruc-
tions do users issue to LLMs, and how well can
LLMs follow different types of instructions?

We present KIWI, a dataset of expert-written
Knowledge-Intensive Writing Instructions to better
understand LLMs’ instruction-following abilities
as writing assistants. To collect KIWI, we set up an
interactive interface between a researcher and an
LLM (Figure 1). We first prompt an LLM to gen-
erate a long-form answer (Fan et al., 2019) to an
NLP research question, based on a set of passages
from relevant research papers. A researcher then
iteratively issues instructions for the model to re-
vise the answer and evaluates the model-generated
revision. The interaction session continues until
the user is satisfied with the final answer or a max-
imum number of turns is reached. KIWI contains
instructions collected from 234 interaction sessions
with three state-of-the-art language models (GPT-
4,GPT-3.5-turbo and LLaMA-2-70b-chat), consist-
ing of a total of 1,260 unique instruction instances.
Each instance contains (1) a user instruction, (2)
the model’s previous and (3) revised answers, and
(4) a human annotator’s judgment (both categorical
rating and free-form explanation) on whether the
revised answer followed the instruction.

Using KIWI, we conduct an in-depth analysis to
characterize the types of instructions issued by re-
searchers, and to measure how well models can
follow different types of instructions. We find that
LLMs do not excel at this task yet, with the best
model (GPT-4) achieving success for only 59% of
the instructions. Specifically, LLMs fail to pre-
cisely follow user’s instructions (such as satisfying
location and length constraints), often cause answer
quality to degrade when integrating new informa-
tion into a previous answer, and struggle to avoid
making changes to answers that are not requested.
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In-context learning works due to … Research has shown that in some cases, in-context 
learning can be understood as the implicit implementation of known learning algorithms, 
including gradient descent [3]. …

In-context learning works due to several key factors, including the ability of language 
models (LMs) to leverage previously…

Why does in-context learning work? q
In-context learning works because it allows the model to learn without parameter updates and has several 
practical advantages over finetuning. First, it enables practitioners […] a0

r1, c1
a1

What are the mechanics that allow the model to use examples? Describe in detail how it works and 
why from a technical standpoint. i1

Can you provide more evidence for why in-context learning works spanning multiple papers?

a3

Can you gather more explanations for why in-context learning works including data mixtures, LM 
scale, emergence, etc.

In-context learning  … One explanation is the LM's ability to leverage previously learned latent concepts and infer the task from examples 
in the prompt [2][0]. … One important mechanistic property is the LM's ability to conduct implicit gradient descent …

r4, c4
Summarize what you have here into a smaller answer. 

r5, c5
a5

Keep what you have. Add into it information about how gradient descent can contribute to in-context learning.

i2
a2

r2, c2

i3
r3, c3

a′ 3

i4

i5

Edit

In-context learning … When trained on massive text corpora, LMs like GPT-3 implicitly learn to 
infer latent concepts shared across sentences in a document [0]. …

Retrieved passages

Retrieved passages

Retrieved passages

Retrieved passages

a1

a2

a3

Retrieved passages

    I think this is a good 
final answer!

   It followed my 
feedback correctly.

    It didn't really include any 
more papers except for maybe 1. 

In-context learning … Multiple works have provided evidence for the effectiveness of in-
context learning and have demonstrated its capabilities. One paper …

   It's still not finding more explanations and 
only sticking with a few high level points.

In-context learning  … One explanation is the LM's ability to leverage previously learned 
latent concepts and infer the task from examples in the prompt [2][0]. … 

   We lost the information about 
how the gradient effects ICL.

a2

a3

a4

Turn 0

Turn 1

Turn 2

Turn 3

Turn 4

Turn 5

Figure 1: An example interaction session between a user and our system. Given a question q and a set of documents
D, the model first generates an initial answer a0. At each turn t, the user issues an instruction it, for which an
updated answer at is generated. The user provides a rating rt and a comment ct for the generated answer, and
optionally edits the answer (such as a′3 in turn 3) such that the edited answer completely follows the instruction.

Finally, we examine the ability of the strongest
LLM (GPT-4) to evaluate whether a response fol-
lows an instruction, comparing its judgement to the
user ratings in KIWI. Unlike prior works which
found that LLMs can judge outputs as reliably
as humans for open-ended instruction following
(Zheng et al., 2023b; Li et al., 2023), our exper-
iments show that GPT-4 cannot reliably evaluate
responses for instructions in KIWI, which are often
specific and precise. While the best performing
model which retrieves and prepends 10-shot exam-
ples improves upon zero-shot performance by 5%
accuracy, it still lags behind human agreement by
12% accuracy. Given these findings, we believe
that KIWI will be a valuable resource for future
research in instruction following and evaluation.

2 Interaction Design

2.1 Design goals

While prior works (Kopf et al., 2023; Zhao et al.,
2023; Zheng et al., 2023a) have deployed an LLM
in the wild to collect diverse types of user interac-

tion data, we focus on the use case of seeking writ-
ing assistance. We design a knowledge-intensive in-
teraction setting with two key considerations. First,
the information in the answer should be grounded
to a set of relevant documents. This allows us to ex-
amine model’s ability to leverage information from
multiple documents, motivated by writing tasks
such as literature review (Shen et al., 2023). Sec-
ond, the user interacts with the model for multiple
turns to iteratively revise the answer. Compared to
collecting a single editing instruction for (question,
answer) pairs, this setting adheres to the iterative
nature of the text editing process (Collins and Gen-
tner, 1980; Du et al., 2022), and allows us to collect
diverse and fine-grained instructions across differ-
ent editing stages, as we will see in §4.1.

2.2 Interaction process

We provide an overview of the interaction process
(Figure 1) and describe the data collection proce-
dure in §3. The system inputs are an NLP research
question q and a collection D of research papers,
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which collectively contain information sufficient to
write a high-quality, paragraph-length answer to q.
To begin the interaction process, an LLM generates
a “first draft” answer a0 to q based on D. Each
interaction turn t involves four steps with actions
taken by the user ( ) or the model (�): (1) The
user reads the LLM-generated answer and issues
an instruction it to the model to revise the answer.
(2) The model then generates an updated answer at
given q, at−1 and it. (3) The user provides a rating
rt and a comment ct evaluating how well at fol-
lows it. (4) The user can choose to edit the answer
at if it did not follow their instruction, producing
a′t. Afterwards, the user can start a new turn by
issuing another instruction for at (or a′t). The in-
teraction continues until either the user is satisfied
with the answer, or a total of 10 turns is reached.
We describe each step below with additional details
(prompts, hyperparameters) in Appendix A.1.

� Generating the initial answer Given the
question q, we first retrieve a set of five passages
from D with a retrieval model R, denoted as
R(q,D). We prepend the retrieved passages to the
question q to generate the initial answer a0 with a
language model M , that is, a0 = M(q,R(q,D)).2

  Issuing instructions To start a turn t, the user
issues an instruction it, specifying how they would
like the LLM to revise its answer in the previous
turn at−1, and categorizes its type It. We identify
two types of instructions. Information-seeking
instructions require the model to incorporate new
information into the answer; e.g. Turn 3 of Figure
1 asks the model to acquire additional information
from the source documents D. Stylistic instruc-
tions ask the model to transform content that is
already present; e.g. Turn 4 in Figure 1 asks the
model to compress its answer. For each interaction
turn, the user indicates the type of the instruction It
by selecting a checkbox in the annotation interface.

� Answer revisions Next, the model M is
prompted to revise its previous answer at−1 to sat-
isfy user instruction it. We use one prompt for
information-seeking instructions (which require
passage retrieval from D), and another for stylistic
questions (which do not).

For information-seeking instructions, we first
leverage a retrieval model R to retrieves five pas-

2We perform retrieval because prepending the full text of
multiple papers (each with around 6,000 tokens) exceeds the
context window of the LLMs (with at most 8,000 tokens).

sages pt from D, using the instruction it as the
query. Next, we prompt M to summarize the in-
formation in pt that is likely to be relevant given
(at−1, it); we denote this summary as st. Finally,
we generate an updated answer by prompting M
with (q, at−1, it, st).3 For stylistic instructions,
we generate the updated answer directly by pro-
viding (q, at−1, it) as input. We only include a
single previous answer in the prompt to generate
the updated answer; in the pilot study, we found
that this approach yielded comparable performance
to including the entire interaction history.

  Measuring answer quality After a revised
answer at is generated, the user provides a rating
indicating whether M successfully followed their
instruction: rt = r(it, q, at−1, at). We instruct the
annotators to rate at as one of the following:

• good: Successfully followed the instruction.
• neutral: Partially followed the instruction.
• bad: Didn’t follow the instruction at all, or modi-

fied the answer to an undesirable state.

Since our goal is to measure the helpfulness of
the model response as determined by the annotator,
we ask annotators to use their own judgement in
selecting a rating rather than providing a detailed
guideline.4 Nonetheless, we find in §5 that anno-
tators have high agreement on this categorization.
We also collect a mandatory free-form comment ct
from the annotator explaining their rating rt. Ex-
ample turns are in Table 9 in the Appendix A.2.

  Handling incorrect instruction-following
When rt ̸= good, answer at does not fully fol-
low instruction it and needs to be corrected. While
the user might issue instructions in the subsequent
turns to correct what has gone wrong with at, the
success of the user’s correction attempt depends
heavily on the model’s instruction following abil-
ity. The user might fall into a loop of continu-
ing to prompt a model which is not able to per-
form the action requested in the instruction. To
avoid such scenarios, we allow the user to edit
at when rt ̸= good, which induces a′t, such that
r(it, q, at−1, a

′
t) = good. If the user chooses to

not edit the answer and rt = bad, we remove the

3We found that this “summarize-then-answer” workflow
yielded better results than directly prompting M with the re-
trieved passages pt to produce at in preliminary experiments.

4To alleviate annotator burden, annotators are not required,
but welcomed, to check the factual correctness of model-
generated answers. Assessing faithfulness of LLM generations
represents an important but orthogonal research direction.
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answer from the answer history when generating
answers in the subsequent turns.

3 Dataset Collection

We first describe our approach to curate high-
quality (q,D) pairs (§3.1), followed by our an-
notation protocol for interaction collection (§3.2).

3.1 (Question, Document set) creation

The process proposed in §2.2 requires high-quality
(q,D) pairs to serve as a starting point for interac-
tion collection. We aim to create (q,D) pairs which
satisfy the following desiderata: (1) the questions
should be realistic and likely to be asked by a re-
searcher, (2) the questions should be challenging,
requiring information from multiple documents and
(3) each document set D should contain sufficient
information to answer its corresponding question.
We observe that the related work section of a re-
search paper often answers a set of implicit re-
search questions, and supplies the documents an-
swering each question as citations. Thus, we col-
lect high-quality (q,D) pairs by writing questions
implied by related work sections, and pairing each
question with its cited papers.

Source article selection We select a set of
roughly 100 papers published in ACL 2023 across
11 different tracks listed in the ACL handbook.5

This set of papers covers a wide range of NLP re-
search topics and was published after the training
data cutoff time of the language models used for
interaction collection in this work. The model thus
has to answer the question based on the documents,
instead of memorizing from its training data.

Question creation and filtering Three of the au-
thors with prior NLP research experience manually
annotate 88 questions from 75 papers. Given a
source paper, the annotator first reads through its
related work section and decides if a good question
can be derived. A good question should fulfill the
following criteria: (1) it should “stand alone”, i.e.
it is not anchored in the source paper; and (2) there
should be at least four articles cited in the related
work which contain relevant information for an-
swering the question. If a good question can be
derived, the annotator writes a question q, together
with the list of evidence papers D and the section
of the related work r, from which the question is

5We choose to focus on NLP research questions, since the
authors of this paper have expertise in this domain.

Source Paper: Small pre-trained language models can be
fine-tuned as large models via over-parameterization (Gao
et al., 2023)

Related work paragraph: Over-parameterization in Neural
Network. Over-parameterization has shown the superiority
on providing better model initialization (Arpit and Bengio,
2019), improving model convergence (Du et al., 2019; Allen-
Zhu et al., 2019b; Gao et al., 2022a) and generalization
(Allen-Zhu et al., 2019a). [...]
Question: Why does over-parameterization lead to improved
initialization and convergence of deep neural networks?
Evidence papers: Du et al. (2019); Allen-Zhu et al. (2019);
Li and Liu (2016); Gao et al. (2022)

Table 1: An example (q, D) annotation (§3.1). Given a
source paper, the annotator first selects the related work
paragraph(s) that imply the question, then writes the
question and extracts evidence papers cited.

derived. We query the S2ORC (Lo et al., 2020)
corpus to retrieve the full text of each paper and
extract paragraphs. To ensure sufficient coverage,
we filter out questions with either (1) more than
one evidence paper missing in S2ORC or (2) fewer
than 4 evidence papers in total. We obtain a total
of 78 questions with an average of 6 cited papers
per question.

Analysis of collected questions Our annotated
questions consist of 12 words on average, with the
majority of questions starting with "How" (47%)
and "What" (46%). Upon manual examination, all
models are able to generate a reasonable initial
answer given the question and retrieved passages.
This shows that our pipeline creates high quality
data: the document set indeed contains sufficient
information to answer the question.6 See example
questions in Table 8 in the Appendix A.2.

3.2 Interaction data collection
At the start of an interaction session, the annota-
tor is shown the question, initial answer, and the
titles of relevant papers for the question. During
the interaction, the annotator is shown the full in-
teraction history, and the retrieved passages from
the last info-seeking instruction. We release anno-
tation instruction7 and provide annotation interface
screenshot as Figure 4 in Appendix A.1.

6In the initial phase of the project, we explored using GPT-
4 to generate questions given related work paragraphs, but
found that the generated questions were often not answer-
able by the cited papers. We include analysis on question
generation in the Appendix A.6.

7https://docs.google.com/document/u/1/d/e/2PA
CX-1vTrsM5r-p5kjy6Ue7AkbLqwOmJ-GoK9kwToBEnW-Nwk
00yd4tKSFkWu9p63j7rH-PvNwwNXLzTyRWhi/pub
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Language models We conduct annotations with
three models M : GPT-3.5-turbo, GPT-4 and
LLaMA-2-chat(70B) (Touvron et al., 2023), com-
petitive commercial and public LLMs available at
the time of data collection, respectively. For all
models, we decode with temperature 0.7. During
data collection, the identity of model M is not
revealed to the annotator. For each question, we
collect one interaction session with each model.
We ensure that annotators do not answer the same
question more than once.

Retrieval models We use the state-of-the-art
dense retriever Contriever (Izacard et al., 2021)
finetuned on MSMARCO (Campos et al., 2016)
as our retriever R. In preliminary experiments, we
found that Contriever outperformed sparse meth-
ods like BM25 (Robertson and Zaragoza, 2009),
which struggle at handling synonyms.

Annotators To ensure our annotators have ex-
pertise in answering research questions, we re-
cruit NLP researchers through Upwork8 and profes-
sional networks. We pay the annotators USD $25
per hour on average. The annotators first partici-
pate in a paid pilot study, which involves reading
the instructions and completing an annotation ex-
ample. A total of 22 annotators participated in our
pilot annotations and 15 of them performed final
annotations for KIWI. The final group of annotators
consists of four people with a Ph.D. degree, seven
NLP Ph.D. students, one person with a Master’s
degree and three undergraduate students. All an-
notators have at least one year of NLP research
experience. On average, each interaction session
required 15 minutes to complete. To ensure that
the annotators are familiar with the subject matter
of the question, we first collect their preferences on
a set of topics derived from the track information
of each question’s source paper. We assign ques-
tions to annotators based on their preferences. We
randomly assign models to each annotator and hide
the model information from the annotator. The an-
notations were collected from July to December
2023. In total, our annotations cost $2,240 USD.

4 Analysis of KIWI

We first present results on overall model perfor-
mance (§4.1). Then we conduct a fine-grained anal-
ysis to understand the different types of instructions
(§4.2) and errors made by LLMs (§4.3).

8https://www.upwork.com/

Model # turn (edited) avg. # t/s % info/style

gpt-4 370 (55) 4.7 59/41
gpt-3.5 402 (111) 5.2 61/39
llama2 488 (149) 6.3 44/56

Total 1,260 (315) 5.4 54/46

Table 2: Data statistics of the KIWI. We collect a total of
234 sessions (78 sessions per model). We report the total
number of turns, number of turns with edited answers,
number of turns per session, and the distribution of
instruction types for each model.
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Figure 2: Top: distribution of annotator ratings. The
left columns represent ratings for stylistic instructions
(s), the middle columns for info-seeking instructions (i)
and the right columns for overall (o) ratings. Bottom:
distribution of instruction types across the session.

4.1 Dataset overview

We present statistics of the interaction sessions in
Table 2. We observe that the number of turns re-
quired to reach a satisfactory answer negatively
correlates with model capability, with gpt-4 re-
quiring the fewest turns and llama2 requiring the
most. Comparing instruction types, around 60%
of instructions are information-seeking for gpt-4 ,
and 45% for llama2 ; this suggests that the gpt-4
is able to more quickly generate stylistically accept-
able text, allowing users to focus on information
content. We also observe that users tend to issue
information-seeking instructions early in the in-
teraction session followed by stylistic instructions
(Figure 2). This confirms that collecting instruc-
tions over multiple turns allows us to cover diverse
instructions occurring in different writing stages.
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Type % info/style % good Definition Example Instruction

More
information
(43%)

88/12
gpt-4 : 57 Asking for auxiliary information

related to the question or the answer
(e.g. example, results, limitation).

How well do state-of-the-art models perform on
these datasets?

gpt-3.5 : 45
llama2 : 34

Expand
coverage
(9%)

86/14
gpt-4 : 40 Asking for more information directly

answering the question, usually from
multiple papers.

Keep the text content as it is, but extract
examples of applications of contrastive
explanations to NLP from papers 0,1, and 2.

gpt-3.5 : 31
llama2 : 12

Clarification (5%) 69/31
gpt-4 : 52

Asking for clarification of a concept
already in the answer.

Do all of the quantization methods you mention
require additional training?

gpt-3.5 : 50
llama2 : 50

Remove (13%) 4/96
gpt-4 : 77

Requests to remove certain part of the
answer.

Remove the repeated techniques listed in the last
paragraph.

gpt-3.5 : 28
llama2 : 16

Specific edit (6%) 23/77
gpt-4 : 59 Requests to directly add information

that are provided in the instruction
verbatim to the answer.

At the end of the final paragraph, add the
sentence "Evaluation of factuality for natural text
remain active research lines."

gpt-3.5 : 35
llama2 : 19

Condense (10%) 4/96
gpt-4 : 63

Requests to shorten or summarize the
answer.

Please shorten the answer to a maximum of 6
paragraphs.

gpt-3.5 : 27
llama2 : 23

Reorganize (11%) 13/87
gpt-4 : 74

Requests to reorganize the answer (e.g.
move things around)

Reorganize the answer so that positive results are
described first, followed by challenges and open
problems.

gpt-3.5 : 27
llama2 : 34

Others (3%) 53/47
gpt-4 : 62

Edits that don’t belong to any of the
category above.

Don’t change anything further about this answer
but copy it as-is.

gpt-3.5 : 23
llama2 : 29

Table 3: Definitions and example instructions for the fine-grained instruction types (§4.2). We report the distribution
classified by GPT-4 and % good rating (color-coded based on the % good) across the three models.

KIWI presents a challenge for existing LLMs:
The distribution over user ratings of model re-
sponses is shown in Figure 2. gpt-4 exhibits the
strongest instruction-following performance (59%
good responses), while llama2 exhibits the weak-
est (27% good responses). Interestingly, trends for
the two types of instruction differ—while gpt-4
provides good responses to stylistic instructions
around 70% of the time, it struggles at following
information seeking instructions (i.e. adding new
information to an answer). In contrast, llama2 per-
forms extremely poorly at following stylistic feed-
back, with only 15% of responses rated as good.
All models fail to follow user instructions in more
than 40% of responses, leaving significant head-
room for LLMs’ instruction-following ability.

4.2 Fine-grained instruction analysis

Based on our findings that LLMs struggle at fol-
lowing the instructions in KIWI, we conduct a fine-
grained analysis to categorize the different types
of instructions found in the dataset, and measure
model performance on each. We manually label a
sampled set of instructions, finding eight categories,
and then scale up the analysis using GPT-4. We
construct a prompt containing an example of [(orig-

inal question, instruction) → fine-grained instruc-
tion type] for each instruction type, and prompt
GPT-4 to label the entire dataset. Details about
the prompt and human analysis can be found in
the Appendix A.3. We validate our approach by
confirming that GPT-4 achieves an agreement of
0.96 Cohen’s kappa (Cohen, 1960) with humans
on a held-out set of 40 instructions.

KIWI contains diverse instruction types: The
results of our analysis are shown in Table 3. Al-
though we did not reference coarse-grained cat-
egory labels when defining the fine-grained cate-
gories, we observe that our resulting fine-grained
categories can be divided based on our distinction
between information-seeking and stylistic instruc-
tions. Information-seeking instructions include re-
quests to provide auxiliary information, expand
answer coverage, or provide clarification. Stylistic
instructions range from lower-level requests such
as performing a specific edit, to more complicated
operations such as condensing and reorganizing
the answer. We report additional statistics for each
category in Table 6 in the Appendix A.3.

Models struggle at integrating new information
and precise editing: Among the information
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seeking instructions, “expand coverage” is the most
difficult, as this type of instruction requires both
successfully retrieving relevant passages from mul-
tiple papers and coherently integrating these new
information into the previous answer. For stylistic
instructions, gpt-4 performs well at removal and
reorganization, achieving more than 70% good rat-
ings, while gpt-3.5 and llama2 perform poorly.
Interestingly, all three models struggle to make spe-
cific edits (e.g. add a requested sentence verbatim),
which are usually trivial for humans. While prior
work has found that LLMs excel at single document
text summarization (Goyal et al., 2022), we observe
poor performance for the “condense” instructions
(which request to shorten previous answer), with
gpt-4 ’s response rated as good for only 63% of the
time. We hypothesize that this is because answers
in our task involve information from multiple pa-
pers, and multi-document summarization remains
a challenge for current LLMs (Shaib et al., 2023;
Martin-Boyle et al., 2024).

4.3 Error analysis

To understand how models fail to follow instruc-
tions, we analyze the free-form comments ct writ-
ten by the annotators. As in §4.2, we manually
label a small set of comments and scale up with
GPT-4 to all 760 turns which received a neutral
or bad rating. We construct a prompt containing
[(instruction, comment → target category)] demon-
strations for each fine-grained error category; see
Appendix A.4 for details of human analysis and
the exact prompt. On a validation set with 22 ex-
amples, GPT-4 achieves achieves an agreement of
0.72 Cohen’s kappa with humans.

We find five major categories (Table 4). The
most common error type is Unrequested change,
indicating that models fail to maintain answer con-
sistency across turns. Models also fail to satisfy
hard constraints, such as the location (“At the be-
ginning of the answer...”) and length of the infor-
mation (“Add one sentence about...”) specified in
the instruction. This suggests that current models
struggle to perform precise actions, in agreement
with findings from recent work (Sun et al., 2023;
Yao et al., 2024) on controlled generation. Finally,
models struggle to coherently integrate new infor-
mation into the existing answer text, often leading
to imbalanced structure or awkward answer flow.

Retrieval analysis The updated answer could
fail to follow the instruction due to failure of the

Error type Example

Unrequested change
(31%)
The update introduces
changes not requested.

Instruction: Limit the number of sentences
describing advantages and disadvantages for
each method to 3.
Comment: The model shortened the desired
paragraphs but added another and removed
information from the previous answer.

Ignored (21%)
The requested change
was not made.

Instruction: Reduce the discussion about
task-specific pretraining objectives
Comment: Model does not seem to have
reduced any information at all.

Constraint failure
(11%)
The update in the
answer does not follow
some constraint(s).

Instruction: As first sentence of the text pro-
vide a definition of "clarification question".
Comment: It gave the definition but not as
first sentence in the text.

Poor integration (9%)
The answer is less coher-
ent after the update.

Instruction: Please start the answer by de-
scribing what "leveraging future utterance
for dialogue generation" is.
Comment: The requested info was added.
However, the quality of the answer degraded
somewhat and now has a odd ordering.

Others (28%)
The update is not satis-
factory for other reason.

Instruction: Explain some examples of
methods in detail.
Comment: only one example of an actual
technique is given here

Table 4: Fine-grained error categories alongside exam-
ple instruction and corresponding annotator comment
pairs. We report the distribution classified by GPT-4 on
interaction turns that are rated as neutral or bad.

retriever instead of of the LM. We randomly sam-
ple 20 turns with info-seeking instructions that are
rated as neutral or bad and manually examine re-
trieval performance. We find that for 50% of the
turns, relevant passages are retrieved which contain
sufficient information to follow the instruction, yet
the language models fail to integrate the informa-
tion into the previous answer. For 20% of turns,
some (but not all) relevant passages are retrieved.
For the remaining 30%, the retrieval system fails
to retrieve any relevant information. This demon-
strates room for improvement in both components.

5 Experiments: Automatically evaluating
instruction following

Our analysis so far demonstrates that current LLMs
often fail to follow users’ instructions to revise
long-form answers. Next, we examine whether
they can serve as an evaluator to assess whether a
model-generated answer followed the instructions
(Dubois et al., 2023; Chiang and Lee, 2023; Zeng
et al., 2023; Zheng et al., 2023b; Liu et al., 2023).

Setting and data Formally, the task is to predict
the user rating rt = r(q, it, at−1, at), introduced in
§2.2. To simplify the task, we collapse {neutral,
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Model Acc P R F1 % g/b

Majority 53 0 0 0 0/100
Random 47 42 31 36 38/62
gpt-4 zero-shot 63 57 91 70 75/25
gpt-4 one-shot 62 50 86 65 65/35
gpt-4 ten-shot 66 67 59 63 40/60
T5(findtuned) 64 50 73 37 24/76

Human* 805 639 907 747 466/546

Table 5: Test set results on predicting ratings for instruc-
tion following edits (§5). We report the % of good and
bad ratings in the model predictions in the last column.

bad} into a single label.9 We randomly split the
1,260 turns into train/dev/test set in a 70%, 15%,
15% ratio. We report aggregated results on three
different random splits.

Metrics and baselines We evaluate using
Accuracy, Precision, Recall and F1 against the col-
lected human labels rt, with the good label as the
positive class. We report two baselines: a Random
baseline which randomly assigns a label accord-
ing to the training data distribution, and a Majority
baseline which always chooses the majority class in
the training data. We measure Human agreement
by collecting a second set of human ratings for 65
randomly-sampled instructions, which reaches a
moderate to substantial agreement (Cohen’s Kappa
of 0.59) with the original rating.10 We report the
average and standard deviation for human perfor-
mance obtained through bootstrapping.

Model We experiment with zero-shot and few-
shot prompting with gpt-4 and a fine-tuned T5-
large (770M) (Raffel et al., 2019) model. For zero-
shot prompting, we construct an instruction which
specifies the criteria for the two ratings. Inspired
by prior work on retrieving in-context examples
(Rubin et al., 2022), we retrieve the k turns from
the training data whose instructions have the high-
est BM25 similarity with the test instruction. See
Appendix A.5 for details.

Results We report results on the test set in Table
5. GPT-4 zero-shot performs slightly worse than
choosing the majority label; we found that it is
biased heavily towards judging answers as good.
Adding 10 in-context examples improves perfor-

9We report performance on three-way prediction in §A.5.3;
the same conclusions hold as for two-way prediction.

10Two authors and two annotators from the interaction an-
notation performed the annotation. We ensure the interaction
annotators do not re-annotate their own previous interactions.

mance, while leaving a substantial gap relative to
human agreement. Finetuned T5 only achieves sim-
ilar accuracy with zero-shot gpt-4 . While recent
work found that LLMs can rate responses as reli-
ably as human (Chiang and Lee, 2023; Zheng et al.,
2023b), our experiments show that they are not reli-
able for judging responses for specific instructions
(Zeng et al., 2023; Liu et al., 2023).

6 Related Work

Instruction following A number of recent ef-
forts have collected instruction following datasets
to train and evaluate LLMs. Some datasets con-
tain crowd-sourced interactions in the wild (Taori
et al., 2023; Conover et al., 2023; Kopf et al., 2023;
Zhao et al., 2023; Zheng et al., 2023a), while others
target specific tasks such as summarization (Liu
et al., 2023) and controllable generation (Zhou
et al., 2023). Our work focuses specifically on
instruction-following for writing assistance and
text editing. A number of prior works have curated
instruction-based editing benchmarks (Dwivedi-Yu
et al., 2022; Shu et al., 2023; Raheja et al., 2023;
Zhang et al., 2023). However, these efforts consist
of post-hoc synthetic instructions derived from pre-
vious datasets, consisting of a limited set of edit
instructions. Our data consists of diverse instruc-
tions issued by expert users interacting with LLMs.

LLM-based Evaluation Recent works have in-
vestigated using an LLM as an evaluator in place of
human evaluation (Chiang and Lee, 2023; Zheng
et al., 2023b; Li et al., 2023) for instruction follow-
ing. A line of work shows that LLMs can judge
responses as reliably as human annotators (Zheng
et al., 2023b; Li et al., 2023). Recent work (Zeng
et al., 2023) points out that evaluating open-ended
instruction following exhibits high subjectivity and
thus low human performance. The authors curate a
set of instructions that are objective and craft adver-
sarial responses to stress test LLMs, finding that the
models struggle at evaluating responses for such
instructions while humans exhibit high agreement.
Our study also shows that LLMs struggle at evalu-
ating responses for precise instructions collected in
a realistic setting, complementing prior work.

Domain-specific datasets Prior work has intro-
duced datasets to evaluate language models in spe-
cific domains, including law (Shen et al., 2022;
Niklaus et al., 2023; Guha et al., 2023), medicine
(Jin et al., 2019; Fleming et al., 2023), and com-
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puter science research papers (Dasigi et al., 2021;
Lee et al., 2023). While most prior work focuses
on addressing a specific information need (e.g.
through task formulations such as question answer-
ing or summarization), our setup more generally
evaluates a model’s ability to closely follow user
instructions, which can encompass many of these
information needs.

7 Conclusion

We present KIWI, a dataset with expert-issued writ-
ing instructions to revise a long-form answer to a
research question using relevant documents. Our
analysis and experiments show that current LLMs
(including GPT-4) cannot perform this task reliably
yet and identify common failure patterns. We are
optimistic that KIWI will be a useful resource for
several research directions. First, the model revi-
sions that were judged as successful by humans,
and answers edited manually by humans when mod-
els failed, can be used as training data to improve
models’ instruction following abilities. Second, hu-
man judgments of model revision quality can be
used to develop more accurate reward models for
writing assistance. Finally, the instructions in KIWI
can be used as inputs to evaluate the performance
of future models; either through human judgments,
or by future reward models.
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A Appendix

A.1 Implementation details for the interaction
system

We implement the annotation interface with gra-
dio11. Figure 4 presents a screenshot of our an-
notation interface. We use the OpenAI API12 for
gpt-family model inference and the Together AI
API 13 for llama2. Below are the prompt templates
we use.

Prompt for generating initial answer We in-
clude the top 5 retrieved passages from the docu-
ment set to generate the initial answer. title_i
and passage_i refers to the title and text of the i-th
retrieved passages using question as the query.

SYSTEM MESSAGE: You are a help-
ful assistant which answers a question
based on a given set of documents.
Please add reference (e.g. [0]) to the
document in the answer.

USER MESSAGE: Documents:

[0] Paper title: title_0

Passage: passage_0

[1] Paper title: title_1

Passage: passage_1

[2] Paper title: title_2

Passage: passage_2

[3] Paper title: title_3

Passage: passage_3

[4] Paper title: title_4

Passage: passage_4

Question: question
Answer:

Prompt for answer revision of information seek-
ing instructions We first prompt the model to
generate a summary st given the previous answer
(at−1), the retrieved passages and the instruction
it.

SYSTEM MESSAGE: You are a
helpful assistant which generates an

11https://www.gradio.app/
12https://platform.openai.com/docs/api-referen

ce
13https://docs.together.ai/reference/inference
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intermediate answer given a feedback
to the previous answer. Please add
reference (e.g. [0]) to the document in
the answer.

USER MESSAGE: Documents:

[0] Paper title: title_0

Passage: passage_0

[1] Paper title: title_1

Passage: passage_1

[2] Paper title: title_2

Passage: passage_2

[3] Paper title: title_3

Passage: passage_3

[4] Paper title: title_4

Passage: passage_4

Previous answer:at−1

Feedback:it

Generate an answer to the feedback.

We then prompt the model to generate an up-
dated answer, given the original question, the an-
swer in the previous turn at−1, the instruction it
and the summary st. For llama2 , we add an ad-
ditional instruction at the end “Do not generate
“Sure”, directly generate the updated answer. Up-
dated answer: ”.

SYSTEM MESSAGE: You are a
helpful assistant which generates an
intermediate answer given a feedback
to the previous answer. Please add
reference (e.g. [0]) to the document in
the answer.

USER MESSAGE: Original question:
question

Previous answer: at−1

Feedback: it

Extra information related to the feedback:
st

Answer the original question and incor-
porate the feedback to the previous an-
swer. Preserve all relevant information
from previous answer.

Prompt for answer revision of stylistic instruc-
tions We include the original question, answer in
the previous turn (at−1) and the instruction it in the
prompt. For llama2 , we add an additional instruc-
tion at the end “Do not generate “Sure”, directly
generate the updated answer. Updated answer: ”.

SYSTEM MESSAGE: You are a help-
ful assistant which answers a question
based on a given set of documents.
Please add reference (e.g. [0]) to the
document in the answer.

USER MESSAGE: Original question:
question

Previous answer: at−1

Feedback: it

Answer the original question and incor-
porate the feedback to the previous an-
swer. Preserve all relevant information
from previous answer.

Prompt length On average, the prompt for gener-
ating an answer revision for information seeking in-
structions (with question, previous answer, instruc-
tion and retrieved passages) consists of 607 words.
The retrieved passages consists of 560 words on av-
erage. The prompt for answer revision for stylistic
instructions (with question, previous answer and
instruction) consists of 458 words on average.

Retrieval unit We use S2ORC to parse the pa-
per into paragraphs and retrieve from the set of
paragraphs in the relevant papers D.

A.2 Examples

Examples turns with good, neutral and bad rating
can be found in Table 9. Example of questions
annotated (§3.1) can be found in Table 8.

A.3 Implementation details for automatic
instruction analysis with GPT-4

Manual analysis We randomly sample 50 inter-
action turns and manually group the instructions
into fine-grained categories. We discover 8 fine-
grained categories: requesting for more informa-
tion (46%); expanding answer coverage (6%); ask-
ing for clarification (6%), categorization (6%), re-
moval (10%), specific edits (2%), condense (12%)
and reorganization (10%).
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GPT-4 analysis We construct a prompt with def-
inition and in-context examples for each of the
category. The prompt we use to perform automatic
instruction analysis in in Table 11. We prompt
gpt-4 with temperature of 0 and top_p=1. The
distribution classified by GPT-4 is presented in 3.
We see a slight distribution differences between the
large-scale GPT-4 analysis and small-scale manual
analysis, with GPT-4 identifying more instructions
as “specific edits” and less as “categorization”. We
merge categories with fewer than 5% of examples
into “Others”.

More statistics We report additional statistics for
each instruction type in Table 6. We filter out turns
where the response is rated as neutral or bad with
an edited answer, resulting in a total of 815 turns.
Among the coarse-grained instruction types, we see
that stylistic instructions are longer, yet with less
edit ratio compared to information seeking ones.
Specific edit instructions are the longest, while in-
structions asking for more information requires the
most amount of edits to the previous answer (high-
est edit ratio).

A.4 Implementation details for error analysis
Manual analysis We randomly sample 10 inter-
action turns per model which are rated as neutral
or bad, resulting in 30 total turns. We then group
them into 5 fine-grained categories based on the
question and comment.

GPT-4 analysis The prompt we use to perform
automatic instruction analysis is in Table 12. We
prompt gpt-4 with temperature of 0 and top_p=1.

A.5 Implementation details for automatic
evaluation of instruction following

A.5.1 GPT-4
We prompt gpt-4-1106-preview 14 for this task,
whose context window can fit the ten-shot exam-
ples. We decode with temperature of 0 and top_p=1.
Below are the prompt templates for the different
baselines.

Zero-shot prompt template The model is given
an instruction, the question, the answer in the pre-
vious turn at−1, the instruction it and the answer
in the current turn at.

SYSTEM MESSAGE: You are a help-
ful assistant in evaluating the quality of

14https://platform.openai.com/docs/models

the outputs for a given instruction to up-
date an answer for an question. Your
goal is to score a given updated answer
for the given instruction.

USER MESSAGE: Score the updated
answer for the given instruction by com-
paring it with the original answer.You
should give one of the two ratings: good,
or bad.

Give a bad rating if the updated answer
either (1) only partially followed the in-
struction (for example, the instruction
specify an edit of a certain length or at a
certain location but the updated answer
didn’t follow the constraint) or (2) intro-
duced changes that are not mentioned in
the instruction compared to the original
answer or (3) provided a vague answer
(e.g. without naming actual method) or
(4) added the requested information but
made the answer less coherent/correct.

Only give a good rating if the answer
COMPLETELY followed the instruction
and didn’t have ANY issues mentioned
above. Your response should be ONLY
the ratings.

# Question:

# question

# Original answer:

# at−1

# Instruction:

# it

# Updated answer:

# at

# Rating of the Updated answer:

#

Few-shot prompt template Each few-shot ex-
ample j contains the question, the answer in the
previous turn, the instruction, the answer in the
current turn and the rating of the answer.

SYSTEM MESSAGE: You are a help-
ful assistant in evaluating the quality of
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Type # words Len ratio Edit distance Edit ratioinst src target

More information 17 227 340 1.60 162 0.85
Expand coverage 39 295 398 1.48 195 0.78
Clarification 27 287 324 1.23 137 0.58
Remove 24 396 339 0.87 91.31 0.24
Specific edit 75 278 325 1.22 93 0.38
Condense 15 388 234 0.64 213 0.55
Reorganize 26 391 339 0.87 91.31 0.24
Others 23 327 342 1.36 212 0.88

Stylistic 29 361 316 0.94 141 0.42
Info seeking 22 259 355 1.60 176 0.87

GPT-4 24 260 286 1.28 145 0.70
GPT-3.5 23 289 332 1.34 145 0.68
Llama 29 379 387 1.20 173 0.56

Total 26 310 336 1.27 158 0.64

Table 6: We report statistics for each individual turns in our dataset: number of words in the instruction, number of
words in the previous answer (src); number of words in the answer (target); the average length fraction between the
source and the target; the token-level edit distance; and the fraction between th edit distance and the source text. We
filter out turns where the response is rated as neutral or bad and there isn’t an edited answer.

the outputs for a given instruction to up-
date an answer for an question. Your
goal is to score a given updated answer
for the given instruction.

USER MESSAGE: Score the updated
answer for the given instruction by com-
paring it with the original answer.You
should give one of the two ratings: good,
or bad.

Give a bad rating if the updated answer
either (1) only partially followed the in-
struction (for example, the instruction
specify an edit of a certain length or at a
certain location but the updated answer
didn’t follow the constraint) or (2) intro-
duced changes that are not mentioned in
the instruction compared to the original
answer or (3) provided a vague answer
(e.g. without naming actual method) or
(4) added the requested information but
made the answer less coherent/correct.

Only give a good rating if the answer
COMPLETELY followed the instruction
and didn’t have ANY issues mentioned
above. Your response should be ONLY
the ratings.

# Question:

# question_j

# Original answer:

# a(t−1)j

# Instruction:

# itj

# Updated answer:

# atj

# Rating of the Updated answer:

# rtj

# Question:

# question

# Original answer:

# at−1

# Instruction:

# it

# Updated answer:

# at

# Rating of the Updated answer:

#
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Model Acc P R F1 % g/n/b

Majority 38 13 33 18 100/0/0
Random 35 34 34 34 40/36/24

zero-shot 48 50 45 40 78/11/11
one-shot 44 31 34 31 60/24/16
ten-shot 48 48 48 48 41/38/21

T5(fine-tuned) 45 44 44 44 37/39/24

Human* 586 576 606 566 466/255/296

Table 7: Test set results on automatic three-way evalua-
tion for instruction following edits. stands for gpt-4
. We report the % of good, neutral and bad ratings in
the model predictions in the last column.

A.5.2 T5

We finetune the model to output target sequence
“Rating : ri” with input sequence “Original ques-
tion: q Previous answer: at−1 Instruction: it Up-
dated answer: at”, where ri is the traget binary
rating, q is the question, at−1 is the answer in the
previous turn, it is the instruction and at is the an-
swer in the current turn. We use a batch size of 16
and an initial learning rate of 1e-4 with Adam opti-
mizer and a linear learning rate schedule. We train
the model for 5 epochs and choose the checkpoint
with the best validation accuracy. The hyperparam-
eters are manually searched by the authors.

A.5.3 Additional experiments on three-way
rating prediction

We report results from experiments on three-way
rating prediction. The experimental setup (i.e. data
splits, hyperparameters, etc.) is the same as §5,
except that the task is to predict among {good,
neutral, and bad}, instead of predicting between
{good and bad}. We report macro precision, recall,
F1 among the three classes.

Results Results are reported in Table 7. We ob-
serve a similar trend as the results for binary rat-
ing prediction (Table 5). While gpt-4 zero-
shot is biased towards judging answers as good,
adding ten-shot in-context examples boosts the F1
score from 40 to 48. Fine-tuned T5 achieves better
F1 compared to zero-shot prompting but under-
performs ten-shot prompting. Here again, we see
that there is a substantial gap between human per-
formance and model performance, suggesting that
LLMs are not yet a reliable evaluator for this task.

A.6 Analysis on question generation with
GPT-4

During the initial phase of the project, we explored
an automatic version of the pipeline described in
§3.1 by using GPT-4 to generate questions. We
describe the pipelines below:

Step 1: Extracting and filtering related works
We extract related work paragraphs from papers
published in NLP venues (ACL, EMNLP, NAACL,
etc.) using S2ORC (Lo et al., 2020). We extract
the papers cited and filter out paragraphs with more
than 30% of the papers missing from S2ORC or
with less than 4 cited papers available. This gives
us an initial set of (q, D).

Step 2: Prompting LMs to generate questions
For each related work paragraph, we prompt GPT-4
to generate five questions using the below prompt.
We set the temperature to be 1 and top_p=1.
paper_title is the title of the paper from which
the related work paragraph is extracted.

SYSTEM MESSAGE: You are a
helpful assistant which generates
five questions that the paragraph is
addressing. The question should require
multiple sentences to answer. Don’t
ask multiple sub questions in a single
question. Don’t refer to specific paper in
the question.
USER MESSAGE: Paper title:
paper_title
Passage: related work paragraph

Step 3: Question filtering We employ two filter-
ing steps to filter out questions that do not fulfill
the desiterata that we described in §3.1. First, we
use a heuristic rule to filter out questions that con-
tain keywords which make the question anchored
to specific papers (e.g. “this paper”, “mentioned”,
“author”). This process filters out 23% of the ques-
tions generated.

We then prompt GPT-4 on whether the gener-
ated question (question) can be answered by the
related work paragraph using the following prompt.
This process filters out 12% of the question which
are rated as No or Paratially by GPT-4.

SYSTEM MESSAGE: You are a
helpful assistant.
USER MESSAGE: Check if the
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paragraph answers the question. Reply
Yes, No or Partially.

Question: question

Paragraph: related work paragraph

Manual examination We conduct a manual ex-
amination on the quality of the (q,D) pairs gener-
ated through this automatic pipeline. We look at
both the question and an initial answer generated
by GPT-4 given q,D, using the prompt described
in §A.1. Two of the authors randomly sample 50
(question, initial answer) pairs to examine both the
quality of the question and the initial answer.

We found that only 60% of the questions ful-
fill our desiderata described in §3.1. 28% of the
question do not make sense to a researcher (e.g.
“How do previous approaches to multi-task learn-
ing and domain adaptation try to create a universal
representation space using encoders and architec-
tures?”), 6% of the questions are too specific or
niche (e.g. “What are the primary components
used by the VGVAE model to represent the seman-
tics and syntax of a sentence in a monolingual set-
ting?”) and 6% of the questions do not stand alone
(e.g. “How do labels like "other" or "information
providing" act indicate issues with these models?”).
For the questions that fulfill our desiderata, GPT-4
is unable to generate a good initial answer for 26%
of them, often due to retrieval failure (e.g. “The
documents provided do not discuss the potential
issues with using word segmentation information
and dependency trees for Chinese Named Entity
Recognition (NER) as extra features.”). We note
that this is not necessarily an issue with the re-
trieval system, rather a potential indication that the
question is irrelevant to the papers cited.

Overall, we find that this pipeline does not pro-
duce high quality (q, D) pairs needed for KIWI.
Hence we proceed with human annotations as de-
scribed in §3.1.

How are features of text and images fused in multimodal
summarization models?
What are the different methods proposed for improving fac-
tual consistency in summaries generated by summarization
systems?
Is it possible to extract the data used to train a language
model and if so, how to do it?
How are pre-training corpora constructed for language mod-
els?
How are cross-lingual language models pre-trained?

Table 8: Example questions annotated (§3.1).

Require: Language model M , Retrieval model R, User
U
Input: question q and a set of relevant papers D
Output: a series of interaction I, each consists of
(instruction i, answer a, rating r, comment c, edited
answer a′)

1: I ← ∅
a0 = M(q,R(q,D)) {Generate an initial answer}
ap ← a0 {Set initial answer as previous answer}

2: for t ∈ {1, . . . , 10} do
3: it, It = U(q, a0, ...at−1, D) {User issues an in-

struction it, and It, the type of the instruction.}
4: pt ← ∅
5: if It == info then
6: pt = R(it, D)
7: end if
8: at = M(q, ap, pt, it)
9: rt, ct = U(q, it, prev_ans, at) {User provides

a rating and comment for the updated answer.}
10: a′

t ← at

11: if rt ∈ {neutral, bad} then
12: a′

t = U(q, it, at−1) {User optionally edits
the updated answer.}

13: end if
14: I ← I ∪ {(it, at, rt, ct, a

′
t)}

15: if U(q, a′
t) == Good then

16: break {Interaction ends if the user is satisfy
with the answer at this turn.}

17: else if rt! = Bad or at! = a′
t then

18: ap ← a′
t {Update previous answer if answer

in this turn is not rated as bad OR edited by
user.}

19: end if
20: end for

Figure 3: We present the workflow for collecting KIWI.
Detailed description for each step is in §2.
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Rating Example

good Original question: Are there any datasets available fro table-to-text generation tasks in NLP?
Previous answer: Yes, there are datasets available for table-to-text generation tasks in NLP. State-of-the-art models for data-to-text generation tasks have been
trained and evaluated on various datasets. One commonly used dataset is the WebNLG dataset [0]. The DART model, for example, has achieved new state-of-the-art
results on all WebNLG 2017 test set splits by fine-tuning T5-large on DART [0]. Other competitive models, both pretrained and not pretrained, have also been
evaluated on this dataset [0]
The DART dataset has been used for data augmentation and has shown to improve the performance of existing models on the WebNLG 2017 dataset [0].
The TOTTO dataset is another dataset used for table-to-text generation tasks [5]. However, state-of-the-art neural models have been found to struggle in generating
faithful results on the TOTTO dataset, despite the high quality of the training data [5]. The performance gap between the models and the oracle upper-bound, which
treats one of the references as a candidate, has been shown to be considerable [5].
The WikiTableT dataset focuses on generating Wikipedia article sections based on structured data [4]. However, the performance of state-of-the-art models on this
dataset has not been explicitly mentioned in the provided documents.
Overall, while state-of-the-art models have achieved impressive results on these datasets, there is still room for improvement and further research in the field of
data-to-text generation [0] [4] [5].
Instruction: What metric was used to measure performance on these datasets?
Updated answer: Yes, there are datasets available for table-to-text generation tasks in NLP. State-of-the-art models for data-to-text generation tasks have been
trained and evaluated on various datasets. One commonly used dataset is the WebNLG dataset [0]. The participating systems on the WebNLG dataset were evaluated
using three automatic metrics [1]. The DART model, for example, has achieved new state-of-the-art results on all WebNLG 2017 test set splits by fine-tuning T5-large
on DART [0]. Other competitive models, both pretrained and not pretrained, have also been evaluated on this dataset [0].
The DART dataset has been used for data augmentation and has shown to improve the performance of existing models on the WebNLG 2017 dataset [0].
The TOTTO dataset is another dataset used for table-to-text generation tasks [5]. The evaluation on the TOTTO dataset used the BLEU metric, which measures
n-gram overlap between the reference and the prediction at the corpus level [5]. However, state-of-the-art neural models have been found to struggle in generating
faithful results on the TOTTO dataset, despite the high quality of the training data [5]. The performance gap between the models and the oracle upper-bound, which
treats one of the references as a candidate, has been shown to be considerable [5].
The WikiTableT dataset focuses on generating Wikipedia article sections based on structured data [4]. The performance of state-of-the-art models on this dataset has
not been explicitly mentioned in the provided documents.
Overall, while state-of-the-art models have achieved impressive results on these datasets, their performance was measured using various metrics such as BLEU and
REP [1] [4] [5]. These metrics provide quantitative measures to assess the performance of models on these datasets and compare different approaches. However,
there is still room for improvement and further research in the field of data-to-text generation [0] [4] [5].
Free-form comment: The model provided the requested metrics.

neutral Original question: What approaches have been proposed to edit a generated text to be factually consistent with a collection of evidence?
Previous answer: In the context of factuality correction, a “collection of evidence” refers to a set of information or data that supports or refutes a claim or statement.
This collection typically consists of retrieved snippets or passages from various sources, such as web pages or documents, which are used to assess the factual
consistency of the generated text and make necessary revisions [1].
Approaches that have been proposed to edit a generated text to be factually consistent with a collection of evidence include:
1. Fact extraction or attention on fact triples: This approach involves extracting and incorporating factual information from the evidence collection into the generated
text. Fact triples, which consist of subject-predicate-object statements, can be used to represent these extracted facts [5].
2. Natural language inference or question-answering models for consistency checking: These models can be employed to verify the factual consistency of the
generated text with the evidence collection. By comparing the generated text with the evidence, these models can identify any inconsistencies and suggest appropriate
modifications [5].
3. Training the model on artificial datasets: In order to improve factuality correction, the model can be trained on artificial datasets that contain both generated text
and corresponding evidence. This approach helps the model learn to align the generated text with the evidence and make necessary revisions [5].
4. Adversarial data generation process using Infilling Language Models: This approach involves generating adversarial examples by filling in missing information in
the generated text. By iteratively generating and updating the text, the model can be fine-tuned to ensure factual consistency with the evidence [4].
5. Factual error correction by editing inconsistent parts in generated summaries: This approach focuses on identifying and editing specific parts of the generated text
that are inconsistent with the evidence. By revising these inconsistent parts, the overall factuality of the text can be improved [5].
6. Factual error correction by rewriting claims to better align with retrieved evidence: This approach involves rewriting or modifying the claims made in the generated
text to align them more closely with the evidence. By making these adjustments, the generated text can be made more factually consistent [6].
These approaches from papers [0], [2], [3], [4], [5], and [6] aim to enhance the factuality of generated texts by incorporating evidence and making necessary changes
to ensure factual consistency.
Instruction: Now keep the content and the order of the text as it is, but re-write the text into 1 paragraph only
Updated answer: Approaches that have been proposed to edit a generated text to be factually consistent with a collection of evidence include: extracting and
incorporating factual information from the evidence collection into the generated text using fact extraction or attention on fact triples [5]; employing natural language
inference or question-answering models to verify the factual consistency and suggest modifications [5]; training the model on artificial datasets that contain both
generated text and corresponding evidence to align the text with the evidence [5]; generating adversarial examples by filling in missing information in the text and
fine-tuning the model for factual consistency [4]; identifying and editing specific parts of the text that are inconsistent with the evidence to improve factuality [5];
rewriting or modifying the claims made in the text to align them more closely with the evidence [6]. These approaches aim to enhance the factuality of generated
texts by incorporating evidence and making necessary changes to ensure factual consistency [0] [2] [3] [4] [5] [6]. [1]
Free-form comment: It removed a lot from the text, including the definition

Table 9: Example turns rated as good, neutral. The bad example is in Table 10.

12986



Long-form QA Interaction Study
Imagine you are an NLP researcher and your colleague has asked you for a paragraph-length answer about a research topic of interest. You will work with a large language model to

generate an answer to send to the colleague. You will first see the question, an initial answer generated by the model, and a set of relevant papers, based on which the model generates

answers.

Your task is to provide feedback for improving the generated answer through several rounds of interaction. Detailed instructions can be found here

This process can last up to 10 interactions, or you can end it early by clicking “✉  Ready to Send” if you find the answer satisfactory.

Question: How are features of text and images fused in multimodal
summarization models?

Submit Feedback

Answer:

In multimodal summarization models, features of text and images are fused through a
process that involves using OCR transcripts in all multimodal baselines. The OCR-
generated transcripts guide the text-embeddings to focus on the most important
parts in a long ASR transcript. The Factorized Multimodal Transformer (FMT) based
Language Model (FLORAL) proposed in the research, takes a video, its corresponding
audio and text transcript as input and generates a textual summary. The first part of
FLORAL extracts unimodal features using respective unimodal feature extraction
networks. Then, these unimodal features are processed using the FMT based decoder-
only network over multiple steps, which in turn generates one summary word in each
step. A�er every step, the generated word is appended to the source text with a
delimiter[2].

Enter feedback Does this question asked for more
information?

🔍  More Info

😊 😐 😟

Enter comment

In multimodal summarization models, features of text and images are fused through a process that 
involves using OCR transcripts in all multimodal baselines. The OCR-generated transcripts guide the 
text-embeddings to focus on the most important parts in a long ASR transcript. The Factorized 
Multimodal Transformer (FMT) based Language Model (FLORAL) proposed in the research, takes a 
video, its corresponding audio and text transcript as input and generates a textual summary. The first 
part of FLORAL extracts unimodal features using respective unimodal feature extraction networks. 
Then, these unimodal features are processed using the FMT based decoder-only network over 
multiple steps, which in turn generates one summary word in each step. A�er every step, the 
generated word is appended to the source text with a delimiter[2]

⏳Current turn: 1

🔄 Status: Please read the answer and
input feedback

Papers:
[0] Multimodal Sentence Summarization via Multimodal Selective Encoding
Haoran Li, Junnan Zhu, Jiajun Zhang, Xiaodong He, Chengqing Zong
[1] Multi-modal Sentence Summarization with Modality Attention and Image Filtering
Haoran Li, Junnan Zhu, Tianshang Liu, Jiajun Zhang, Chengqing Zong
[2] See, Hear, Read: Leveraging Multimodality with Guided Attention for Abstractive Text
Summarization
Yash Atri, Shraman Pramanick, Vikram Goyal, Tanmoy Chakraborty
[3] DM$^2$S$^2$: Deep Multi-Modal Sequence Sets with Hierarchical Modality Attention
Shunsuke Kitada, Yuki Iwazaki, Riku Togashi, Hitoshi Iyatomi
[4] Multimodal Abstractive Summarization for How2 Videos
Shruti Palaskar, Jindřich Libovický, Spandana Gella, Florian Metze
[5] Multistage Fusion with Forget Gate for Multimodal Summarization in Open-Domain
Videos
Nayu Liu, Xian Sun, Hongfeng Yu, Wenkai Zhang, Guangluan Xu

Retrieved documents:
[2] See, Hear, Read: Leveraging Multimodality with Guided Attention for Abstractive Text
Summarization
Influenced by the performance of unimodal summarization models, we incorporate the OCR
transcripts into all of our multimodal baselines. Supporting our intuition, the multimodal
systems obtain significant performance enhancement with OCR transcripts as shown in
Table 2. The multimodal hierarchical attention model, MulT, and FMT-based encoder-
decoder models show [0.8 − 1.5] points improvement in the R-L score. Our proposed FLORAL
model yields the highest performance boost with OCR among all the multimodal systems,
showing 3.87, 4.66, and 2.95 point enhancement in R-1, R-2, and R-L scores respectively. The
performance boost can be easily attributed to the keywords in the OCR-generated transcript,
which guides the text-embeddings to attend the most important portions in a very long ASR
transcript. Hence, in the rest of our discussion, we always report results with (ASR + OCR)
transcript, fused with guided attention, as the textual modality. Table 3 shows the ROUGE
scores for di�erent unimodal and multimodal text summarization systems on the How2 and
AVIATE datasets. Among the unimodal variants, the abstractive text summarization systems
generally perform much better than the extractive systems, especially on AVIATE. Note that
despite being a very strong extractive baseline, Lead3 does not perform well on AVIATE, as
the text transcripts of academic presentation videos do not tend to be structured with the
most important information at the beginning. The two video-only models, simple conv-pool
action features and action features with RNN perform very close to the abstractive textonly
baselines, which clearly indicates the necessity of visual modality in addition to the textual
modality. 12 As presented in Table 3, the MulT, and FMT multimodal baselines and the
proposed FLORAL model beat most of the unimodal systems by a large margin, on both the
datasets. This result is expected because of the inherent ability of MulT and FMT to capture
the intra-model and inter-modal dynamics within asynchronous multimodal sequences and
incorporate diverse information in a single network. Overall, the combination of visual,
acoustic, and textual signals significantly improves over the unimodal variants, with an
improvement of 1.57, 3.04, and 3 R-1, R-2, and R-L points on How2 and 6.86, 7.1 and 4.41 on
AVIATE.
[2] See, Hear, Read: Leveraging Multimodality with Guided Attention for Abstractive Text
Summarization
In this section, we describe our proposed system, Factorized Multimodal Transformer (Zadeh
et al., 2020) based Language Model (FLORAL) for abstractive text summarization using
multimodal signals. Figure 3 shows the overall architecture of FLORAL. It takes a video, its
corresponding audio and text transcript as input and generates an abstractive textual
summary. A video generally has three distinct modalities -visual, textual, and acoustic, which
supplement each other by providing complementary information, and thus when fused,
separately contribute to generating richer and more fluent summaries. The first part of
FLORAL extracts unimodal features using respective unimodal feature extraction networks.
This phase does not consider the contextual relationship between the three di�erent
modalities. In the next part, unimodal features are processed using the Factorized
Multimodal Transformer (FMT) based decoder-only network over multiple steps, which in
turn generates one summary word in each step. A�er every step, the generated word is
appended to the source text with a delimiter. Therefore, FLORAL considers the entire
summarization problem as a language modeling task, simplifying traditional encoder-
decoder architecture. The remaining part of this section discusses individual modules of
FLORAL in detail.

Chatbot

Rating
How satisfied are you with the updated answer?

Comments

Edit (this will be enabled if the rating is 😐  or 😟 )

Other relevant passages

Figure 4: A screenshot of our annotation interface.
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Rating Example

bad Original question: Is it possible to extract the data used to train a language model and if so, how to do it?
Previous answer: Yes, it is possible to extract the data used to train a language model through extraction attacks. These attacks involve recovering specific training
examples from a language model by leveraging its output [0]. The goal is to reconstruct verbatim training examples rather than just representative or "fuzzy" examples
[0].
The process of performing extraction attacks typically involves several steps. First, the attacker generates probing queries designed to elicit specific responses from
the language model [0]. These queries are carefully crafted to contain clues about the training data. Then, the attacker analyzes the responses generated by the
language model to identify potential matches with the training data [0]. By observing patterns and similarities in the modelś output, the attacker can infer the presence
of specific training examples.
The attacker iteratively refines their probing queries based on the model responses, gradually narrowing down the potential training examples [0]. This iterative
refinement process involves generating new queries that are tailored to elicit more precise responses from the language model. Once the attacker has identified
potential training examples, they can reconstruct the verbatim content by combining multiple queries and responses [0]. By carefully analyzing the modelś behavior,
the attacker can piece together the training data that the language model has memorized.
Extraction attacks have been shown to be practical and efficient, allowing adversaries to extract hundreds of training examples from a language model [0][5][7]. These
attacks have been successfully performed against various language models, including GPT-2 and clinical language models like ClinicalBERT [5][7]. Furthermore,
extraction attacks can succeed even when a specific training example appears only a few times in the data [0].
In addition to extraction attacks, membership inference attacks can also be used to extract training data from language models. These attacks focus on determining
whether a given example is part of the training data [5]. Adversaries train shadow models that mimic the behavior of the attacked model and use them to train an
auditing model that can predict membership in the training dataset [5]. Membership inference attacks have been performed on different NLP models, including
masked language models like GPT-2 and clinical language models such as ClinicalBERT, successfully extracting training data from these models [5][7].
Therefore, both extraction attacks and membership inference attacks can be used to extract the data used to train a language model [0][5][7].
Instruction: Combine the second and third paragraphs into one paragraph of no more than five sentences in which the steps to perform an extraction attack are listed.
Upadted answer: Yes, it is possible to extract the data used to train a language model through extraction attacks. These attacks involve recovering specific training
examples from a language model by leveraging its output [0]. The process of performing extraction attacks typically involves several steps.
First, the attacker generates probing queries designed to elicit specific responses from the language model [0]. These queries are carefully crafted to contain clues
about the training data. Then, the attacker analyzes the responses generated by the language model to identify potential matches with the training data [0]. By
observing patterns and similarities in the model’s output, the attacker can infer the presence of specific training examples.
The attacker iteratively refines their probing queries based on the model responses, gradually narrowing down the potential training examples [0]. This iterative
refinement process involves generating new queries that are tailored to elicit more precise responses from the language model. Once the attacker has identified
potential training examples, they can reconstruct the verbatim content by combining multiple queries and responses [0]. By carefully analyzing the model’s behavior,
the attacker can piece together the training data that the language model has memorized.
Extraction attacks have been shown to be practical and efficient, allowing adversaries to extract hundreds of training examples from a language model [0][5][7]. These
attacks have been successfully performed against various language models, including GPT-2 and clinical language models like ClinicalBERT [5][7]. Furthermore,
extraction attacks can succeed even when a specific training example appears only a few times in the data [0].
In addition to extraction attacks, membership inference attacks can also be used to extract training data from language models. These attacks focus on determining
whether a given example is part of the training data [5]. Adversaries train shadow models that mimic the behavior of the attacked model and use them to train an
auditing model that can predict membership in the training dataset [5]. Membership inference attacks have been performed on different NLP models, including
masked language models like GPT-2 and clinical language models such as ClinicalBERT, successfully extracting training data from these models [5][7].
Therefore, both extraction attacks and membership inference attacks can be used to extract the data used to train a language model [0][5][7]. [0]
Free-form comment: The model did not shorten the answer as requested.

Table 10: Example turns rated as bad by the annotator.
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You are given an instruction to improve an answer to a question. Your job is to assign the instruction into one of the category below.

Example 1
# Original question: Are there any datasets available fro table-to-text generation tasks in NLP? # Instruction: How well do state-of-the-art models perform
on these datasets?
# Category: asking for more information
# Explanation: This category of instruction ask for more information related to the question (e.g. example, limitation, evaluation results, background
information, citations, definition).

Example 2
# Original question: How has prior work study and evaluate robustness of multimodal models?
# Instruction: As first sentence of the text, add a very short one sentence definition of what are "multimodal models"
# Category: asking for more information
# Explanation: This category of instruction ask for more information related to the question (e.g. example, limitation, evaluation results, background
information, citations, definition).

Example 3
# Original question: How did prior work explore learning from human feedback for different NLP tasks?
# Instruction: Try to add very short information also from papers 0,1,3,5,6,7,8. Keep the rest of the text exactly as it is.
# Category: expand answer coverage
# Explanation: This category of instruction asks for more information directly answering the question, usually from multiple papers.

Example 4
# Original question: What are the existing approaches for the lip-reading task?
# Instruction: You mention that some methods use a network to predict phoneme probabilities and were trained using CTC loss and that it was trained
using YouTube videos. Does this mean that such methods require phoneme level labels for the data to be trained, or does word level transcriptions work?
# Category: asking for clarification
# Explanation: This category of instruction asks for clarification of a concept already in the answer.

Example 5
# Original question: What are the prior efforts that develop RL environments with language-informed tasks?
# Instruction: Organize the papers better in categories of what aspect of language-conditioned RL tasks they are tackling.
# Category: categorization
# Explanation: This category of instruction requests to categorize the content in the answer.

Example 6
# Original question: How can information stored in knowledge bases be injected into language models task-specific model fine-tuning?
# Instruction: Please shorten the answer to a maximum of 6 paragraphs.
# Category: condense
# Explanation: This category of instruction requests to shorten/summarize the answer.

Example 7
# Original question: How can I quantize the weights of a generative language model and still achieve reasonable model performance?
# Instruction: Without changing anything else, delete every instance of the string "(Feedback)", and delete the string "[1] “Compression of Generative
Pre-trained Language Models via Quantization”" at the end of the answer.
# Category: remove
# Explanation: This category of instruction requests to remove/delete certain part of the answer.

Example 8
# Original question: What techniques have been proposed to measure and evaluate the effectiveness of task-oriented dialogue systems?
# Instruction: Move the paragraph starting with "Finally, there are also various task-specific evaluation metrics" to after the discussion of user satisfaction
modeling, and make sure to cite paper [2] in that paragraph.
# Category: reorganize
# Explanation: This category of instruction requests to reorganize the answer(e.g. move things around, etc.).

Example 9
# Original question: What methods have been proposed to categorize the kinds of editing operations that occur during text simplification?
# Instruction: Immediately after this sentence: "In the process of text simplification, different text-editing operations are used. " add this sentence "The
editing operations that occur during text simplification can be usually categorized after doing literature review and reading previous publications on text
simplification."
# Category: direct verbatim edit
# Explanation: This category of instruction requests to directly add information that are provided in the instruction verbatim to the answer.

Example 10
# Original question: How have contrastive learning techniques been applied to learn dense sentence representations?
# Instruction: paragraph 3 does not describe another approach,
# Category: others
# Explanation: This category of instruction doesn’t belong to any of the category above.

Now, assign a category for the example below. ONLY ASSIGN ONE OF THE CATEGORY ABOVE. DONOT INVENT YOUR OWN CAT-
EGORY. DON’T PROVIDE AN EXPLANATION.

Table 11: Prompt for automatic instruction analysis.
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You are given an instruction for a model to improve an answer to a question and a comment on how the updated answer followed the instruction. Your job
is to assign the comment into one of the category below.

Example 1
# Instruction: Now add this information: ""[2] introduce a controllable summarization model that provides a mechanism for users to specify high level
attributes such as length, style, or entities of interest. This enables personalized generation.""
# Comment: It added the information, but in the wrong place, so it looks as an extension of another method. # Category: added information but made
answer less coherent/correct
# Explanation: This category of comment will mention that the instruction is followed, but the updated answer is less coherent (for example, become too
long; has a weird structure, or is not correct).
In the example, the comment mentioned that the updated answer has the information added but the updated answer is confusing.

Example 2
# Instruction: Remove the tenth sentence.
# Comment: The sentence was not removed as requested.
# Category: instruction is ignored
# Explanation: This category of comment will mention that the instruction is not followed at all. In this example, the comment mentioned that requested
change was not performed.

Example 3
# Instruction: As a next sentence after this one "These parameters include the weights and biases of the model’s layers, such as the embedding layer,
encoder, decoder, and attention mechanisms [0]." add a short sentence, which explains why parameters sharing is necessary in multilingual models used for
machine translation
# Comment: It added an explanation, but deleted a whole paragraph
# Category: introduced unrequested changes
# Explanation: This category of comment will mention that the instruction is followed but also there are unrequested changes performed. In this example,
the comment mentioned that the requested change (explanation) was incorporated but it also introduced unrequested change (a whole paragraph was deleted).

Example 4
# Instruction: Great answer! Without changing anything else, in the last paragraph, mention some tasks that benefit from using explanations, and other
tasks where it impedes performance.
# Comment: The answer is overall still good but the new material is too long, and the model disregarded the part of the prompt where it was asked to put
this material in the last paragraph. I will try to re-prompt.
# Category: failed to follow hard constraint
# Explanation: This category of comment will mention one ore more hard constraint in the instruction is not followed by the model.
The hard constraint can be a specific location (at the beginning of the answer), length of the added/final answer (a very short definition), or an action to
avoid ("do not...").
In this example, the comment mentioned that the updated answer didn’t follow the constraint in the instruction (which mention the added information
should be in the last paragraph).

Example 5
# Instruction: I notice a lot of redundant sentences, such as repeated mention of something like "compress the model while maintaining performance." Can
you make your answer more concise?
# Comment: model mostly just added paragraphs together without cutting actual content
# Category: others
# Explanation: This category of comment will mention that the model tried to follow the instruction (thus not completely ignore the instruction) but the
updated answer is not satisfactory.
The updated answer doesn’t has issue mentioned above (unrequested change or failed to follow hard constraint), but just in general has subpar quality.

Now, assign a category for the example below. ONLY ASSIGN ONE OF THE CATEGORY ABOVE. DONOT INVENT YOUR OWN CAT-
EGORY. DON’T PROVIDE AN EXPLANATION.

Table 12: Prompt for automatic comment analysis.

12990


