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Abstract

Hierarchical text classification aims at catego-
rizing texts into a multi-tiered tree-structured
hierarchy of labels. Existing methods pay more
attention to capture hierarchy-aware text fea-
ture by exploiting explicit parent-child relation-
ships, while interactions between peer labels
are rarely taken into account, resulting in severe
label confusion within each layer. In this work,
we propose a novel Dual Prompt Tuning (DPT)
method, which emphasizes identifying discrim-
ination among peer labels by performing con-
trastive learning on each hierarchical layer. We
design an innovative hand-crafted prompt con-
taining slots for both positive and negative la-
bel predictions to cooperate with contrastive
learning. In addition, we introduce a label hi-
erarchy self-sensing auxiliary task to ensure
cross-layer label consistency. Extensive exper-
iments demonstrate that DPT achieves signifi-
cant improvements and outperforms the current
state-of-the-art methods on BGC and RCV1-
V2 benchmark datasets. 1

1 Introduction

As a specialized sub-task of text classification, hier-
archical text classification (HTC) has a wide range
of applications in the realistic scenarios, such as
intent recognition in dialogue system, commodity
and book management (Cevahir and Murakami,
2016; Aly et al., 2019), where a large number of
categories are organized into a tree-structured hier-
archy. The ultimate goal of HTC is to categorize
texts or documents from the topmost level to the
finest granularity precisely. Due to the challenges
of large-scale, imbalanced and complex label hier-
archy (Mao et al., 2019), simply transferring flat
multi-label text classification algorithms to deal
with HTC tasks often fails to achieve sufficient
performance.

1Code is publicly available at https://github.com/
ccx06/Dual-Prompt-Tuning-for-HTC.

(a) Dual-Encoders (b) Prompt Tuning

(c) Dual Prompt Tuning (Ours)

Figure 1: Architecture comparisons among existing
methods and our proposed Dual Prompt Tuning.

Full use of the hierarchical structure of labels
is the key to achieving well-performing classifica-
tion in HTC tasks, which facilitates the model in
predicting labels that align with hierarchical rela-
tionship. As shown in Figure 1, current mainstream
methods (Zhou et al., 2020; Deng et al., 2021;
Chen et al., 2021; Zhu et al., 2023) apply a dual-
encoders framework to model the text and hierar-
chical structure separately, and then fuse them to
obtain hierarchy-enhanced text features. Wang et al.
(2022b) first proposes a hierarchy-aware prompt-
tuning method, which incorporates the label hierar-
chy encoded by the Graph Attention Network into
a soft prompt to bridge hierarchy and flat gap.

However, most studies pay close attention to
exploit relations that explicitly displayed in the hi-
erarchy, while internal interactions between "peer
labels", which refer to a group of labels at the same
hierarchical layer, are often neglected. PeerHTC
(Song et al., 2023) recently tries to explore latent
relevancy among peer labels with a complicated
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two-stage training procedure, in which peer and ad-
jacent level-wise features are separately extracted
by Graph Convolutional Neural Networks. Nev-
ertheless, alleviating confusion within peer labels,
especially fine-grained ones that share the same par-
ent node at lower level, still remains challenging
and highly valued.

To this end, we propose a novel Dual Prompt
Tuning (DPT) method, aimed at alleviating label
confusion between peer labels. We put forward
a Hierarchy-aware Peer-label Contrastive Learn-
ing (HierPCL) approach to extract discriminative
pair-wise representations. In detail, we create an
original dual prompt template containing both pos-
itive and negative label slots, and then perform
label-wise contrastive learning on the embeddings
of both two types of slots. Dual prompt is multi-
functional, targeted for predicting positive labels
and recognizing incorrect but confused negatives
at each hierarchical layer. We furthermore incorpo-
rate a rank loss component into the contrastive loss
function to enhance label consistency. Moreover,
we design an adaptive hard negative sampling strat-
egy and a hierarchy-injected label representation
encoding method to further boost the performance
of HierPCL.

Besides, we introduce a simple and effective la-
bel hierarchy self-sensing auxiliary task to keep
our model in the best sense of holistic hierarchical
structure. The basic idea is to internalize structural
hierarchy knowledge to ensure the cross-layer con-
sistency of the final path predictions. Instead of
directly injecting label hierarchy into text seman-
tics, we perform multi-task learning collaborating
with label prediction to identify the consistency and
correctness of each candidate label path.

The contributions are summarized as follows:

• We propose a Dual Prompt Tuning method for
HTC tasks to address label confusion between
peers at each hierarchical layer, magnifying
the power of prompt.

• We put forward a Hierarchy-aware Peer-label
Contrastive Learning approach based on the
dual prompt, which contributes to obtaining
aligned and discriminative features on prompt
slots.

• We evaluate our proposed methods on four
popular benchmark datasets against the strong
baselines. Experimental results demonstrate
the advantage of our proposal.

2 Related Work

2.1 Hierarchical Text Classification

The HTC algorithms can be generally divided into
local and global approaches (Zangari et al., 2023).
Local approaches (Wehrmann et al., 2018; Baner-
jee et al., 2019) construct multiple classifiers for
different partitions of the label hierarchy usually
in the "top-down" flow. Although there is a cer-
tain degree of connection between multiple classi-
fiers, it is inevitable to lose the holistic structure
information of label hierarchy. Global approaches
use a single classifier to classify all labels with
hierarchical dependencies simultaneously. Early
works simplify the HTC task into a flat multi-label
classification task, discarding the inherent hier-
archical information in taxonomic labels. Later
on, specialized hierarchy-aware methods are pro-
posed. HiAGM (Zhou et al., 2020), HTCInfo-
Max (Deng et al., 2021), HiMatch (Chen et al.,
2021), and HiTIN (Zhu et al., 2023) all employ
the dual-encoders framework, which utilizes a text
encoder and a structure encoder to learn the rep-
resentations of texts and labels respectively, and
then derives enhanced text embeddings based on
both textual and structural information. Great
progress has been made by leveraging advanced
algorithms from other domains, i.e., applying se-
quence generative manners (Zhao et al., 2022; Ning
et al., 2023; Huang et al., 2022) to mitigate la-
bel inconsistency phenomenon, data generation
strategies (Wang et al., 2023) to enrich text di-
versity, contrastive learning methods (Wang et al.,
2022a; Ji et al., 2023) to strengthen semantic ex-
pression, and prompt-tuning paradigm (Wang et al.,
2022b; Ji et al., 2023) to exploit the potential of
pre-trained language models (PLMs) (Devlin et al.,
2019; Brown et al., 2020; Raffel et al., 2023; Liu
et al., 2023b).

2.2 Prompt Tuning

Prompt Tuning (Schick and Schütze, 2021; Liu
et al., 2023a) refers to the technique of tuning pre-
trained language model by reconstructing down-
stream task into cloze test task, which bridges the
gap in goals between fine-tuning and pre-training
stages. It involves two main steps: (1) prompt
template construction which generates a template
containing special tokens, and (2) label word ver-
balizer design which defines a function from token
embedding to answer words. There are two types
of template construction methods. Hard prompt
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methods (Shin et al., 2020; Gao et al., 2021a; Han
et al., 2022) directly concatenate explicit discrete
tokens with the original text and maintain them un-
changed throughout entire training process, which
do not introduce any parameters. Soft prompt meth-
ods (Qin and Eisner, 2021; Lester et al., 2021; Gu
et al., 2022; Liu et al., 2023c) convert prompt words
into a group of continuous vectors as the template
and update the vector based on specific contextual
semantics and task objectives during training. The
prompt-based method HPT (Wang et al., 2022b)
adopts a soft prompt for HTC tasks, inserting a
fixed number of learnable virtual label words into
the input text. HierVerb (Ji et al., 2023) proposes
a Multi-verbalizer (Multi-Verb) framework which
integrates the hierarchical information, bringing
significant performance improvement under few-
shot settings.

2.3 Contrastive Learning

Contrastive learning (He et al., 2020; Chen et al.,
2020) aims to pull anchor sample close to its pos-
itive samples while push it apart from negative
samples, which has been proven to elevate the
alignment and uniformity of feature space. Con-
trastive learning has various forms, differing in
the construction of positive and negative pairs and
loss formulas. Under self-supervised settings, pos-
itive samples are usually obtained through data
augmentations or repeating dropout mask twice
(Gao et al., 2021b) operation. Under supervised
settings, positives are other samples of the same cat-
egory (Khosla et al., 2020). Negative samples are
selected from the remaining samples within a batch
in self-supervised learning or samples belonging
to distinct categories in supervised learning. Pro-
totypical Contrastive Learning (Li et al., 2021) is
proposed to enhance semantic discrimination and
balance. It encourages instances to be closer to
their assigned class prototypes, which can be es-
tablished as the label semantics (Ma et al., 2022),
the average embeddings of instances (Xiao et al.,
2021) as well as learnable parameters (Cui et al.,
2022).

3 Methodology

In this section, we present a detailed description of
our proposed DPT model to address HTC tasks. As
shown in Figure 2, our model is based on prompt-
tuning framework with Multi-verbalizer. The prin-
cipal innovations of DPT are twofold, including

(1) the implementation of Hierarchy-aware Peer-
label Contrastive Learning to obtain rich discrimi-
native features, and (2) the incorporation of Label
Hierarchy Self-sensing auxiliary task to enhance
encoder’s ability for an in-depth understanding of
label hierarchy structure.

3.1 Preliminary

Given a set of inputs D = {t1, t2, ..., tN} where
ti = {xj}nj=1 denotes a text composed of n words,
and a predefined hierarchical label set Y which is
commonly organized as a tree-like taxonomy struc-
ture G, the goal of HTC is to select labels for ti
at each layer starting from the root label node of
G. Assuming L is the maximum depth of G, the
labels {y1, y2, ...} of an input text correspond to
single or multiple paths of the label tree, each of
which typically consists of no more than L continu-
ous individual labels with hierarchical relationship
within G.

3.2 Dual Prompt Tuning

Prompt template is utilized to wrap the original text
to generate a new form of model input in prompt
tuning paradigm. For example, the given text ti is
converted to "[CLS] It was 1 level: [MASK] 2 level:
[MASK] ... L level: [MASK]. ti [SEP]" (Ji et al.,
2023). Different from vanilla prompt, we exploit a
dual prompt template to reserve two types of slot
positions, instead of only insert positive label slots.
For instance, a common dual prompt template is
formulated as follow:

T = {[CLS] ti [SEP] It belongs to [MASK] -...-[MASK]
rather than [MASK]-...-[MASK][SEP]}

(1)

The number of [MASK] repetitions of positive or
negative slots is equal to the depth of the label hier-
archy L. In this paper, we define the [MASK] token
inserted in the prompt template at the position of
label slot as "label mask token". In the above exam-
ple, positive label mask tokens locate between "It
belongs to" and "rather than", while negative label
mask tokens are behind "rather than". We’d like to
emphasize that the number of prompt words intro-
duced by dual prompt template is linearly related to
the maximum depth of label hierarchy rather than
the number of full labels.

Consistent with other competitive methods, we
employ BERT (Devlin et al., 2019) as the backbone
of our model to encode input texts and obtain all
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Figure 2: Model architecture of Dual Prompt Tuning (DPT). It consists of two innovative modules: Hierarchy-aware
Peer-label Contrastive Learning and Label Hierarchy Self-sensing Task. Label mask token embeddings and label
representations are encoded in the unified embedding space by the PLM, and contrastive loss is calculated according
to their affiliation and hierarchical relationship. Label Hierarchy Self-sensing task is used to simultaneously restrain
path predictions with correctness and consistency. Note that the figure only depicts the Hierarchy-aware Peer-label
Contrastive learning between the first and second levels.

token embeddings:

V = BERT(T (ti)) (2)

Let vpl and vnl respectively represent the embed-
dings of positive and negative label mask token
at the l-th layer. We inherit HierVerb (Ji et al.,
2023) to adopt a depth-oriented Multi-verbalizer
framework mapping label mask token embeddings
{vpl }Ll=1 to label words. Probability distribution of
ti can be expressed as:

Z = {zl}Ll=1

= {V er1(v
p
1), ..., V erL(v

p
L)}

(3)

where the l-th verbalizer V erl acts in predicting
l-level labels. More details about Multi-verbalizer
framework can be found in Ji et al. (2023).

3.3 Hierarchy-aware Peer-label Contrastive
Learning

To extract hierarchy-aware dicriminative feature
on the basic of dual prompt tuning, the ideal em-
beddings at label mask tokens should satisfy the
following intents: (1) Token embeddings of the pos-
itive label mask tokens should be close to represen-
tations of their positive labels, and far away from
negative labels in the feature space. The same de-
sire applies to token embeddings of negative label
mask tokens. (2) The semantic similarity between
high-level label and its ground truth sub-label is ex-
pected to be greater than that with other sub-labels,

further greater than that with sub-labels of other
nodes at the same hierarchical layer. Based on the
above, we propose a Hierarchy-aware Peer-label
Contrastive Learning (HierPCL) method to capture
latent semantic relevancy between peer labels as
well as parent-child labels.

Objective of HierPCL The basic idea of Hi-
erPCL is to encourage the embeddings of the label
mask tokens encoded by PLM closer to the repre-
sentations of their positive labels which should be
filled in the label slots of the template. The objec-
tive function of HierPCL consists of three compo-
nents: positive label contrastive learning, negative
label contrastive learning and cross-hierarchical
rank loss.

(1) Positive label contrastive learning is per-
formed on positive label mask tokens. The tar-
get positives are M ground truth labels while the
negatives are the sampled K negative labels and
negative label mask token. The loss function is
formulated as:

Lp
CL = − 1

L

L∑

l=1

log

∑M
m=1 exp(s(v

p
l , r

p
l,m)/τ)∑

u∈Ap
l
exp(s(vpl , u)/τ)

(4)

where rpl,m and rnl,k respectively denote the repre-
sentation vectors of the m-th positive labels and the
k-th negative label in the l-th layer of sentence ti.
s(·) represents cosine similarity function, and τ is
the temperature coefficient. All participants above
are denoted as Ap

l := {{rpl,m}Mm=1, {rnl,k}Kk=1, v
n
l },
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including representation vectors of positive and
negative labels, and embeddings on negative label
mask token at the same hierarchical layer.

(2) Negative label contrastive learning is per-
formed on negative label mask tokens. Opposite
to Lp

LC , the target positives are negative labels
of this instance while the negatives are ground
truth labels and positive label mask token. Let
An

l := {{rpl,m}Mm=1, {rnl,k}Kk=1, v
p
l }, the loss func-

tion is formulated as:

Ln
CL = − 1

L

L∑

l=1

log

∑K
k=1 exp(s(v

n
l , r

n
l,k)/τ)∑

u∈An
l
exp(s(vnl , u)/τ)

(5)

(3) Cross-hierarchical rank loss aims to align
label token embeddings with the representations
of their sub-labels. In other words, high-level la-
bels tend to have higher semantic similarities with
positive child-labels compared to negative child-
labels and other peer labels. The loss function is
formulated as:

LR =

L−1∑

l=1

( M∑

m=1

K∑

k=1

max(0, s(vpl , r
n
l+1,k)− s(vpl , r

p
l+1,m))

+
∑

k

∑

k̂

max(0, s(vpl , r
n
l+1,k̂)− s(vpl , r

n
l+1,k))

)

(6)

where rn
l+1,k

denotes the representation vector of
the negative label at (l + 1)-th layer whose parent
label is positive at layer l, while rn

l+1,k̂
denotes that

of other negative label that does not belong to a
positive label at the next higher level.

Finally, the loss function of HierPCL is formu-
lated as follow:

L1 = αLp
CL + (1− α)Ln

CL + βLR (7)

where α and β are hyper-parameters used for
balancing relative weights of the three components.

Top-K Hard Negative Sampling The selec-
tion strategy of negative samples is critical to con-
trastive learning. Since the estimation of label pre-
dictions can be considered as a reliable source for
generating hard negatives, we devise an adaptive
self-produced hard negative sampling strategy un-
der the guidance of the model’s own predictions
during training. It adopts the top K hard nega-
tive labels according to confidence scores ranked
in descending order at each hierarchical layer. In
our experiments, K is set to 10% of the number
of labels at each layer, which achieves a balance
between performance and memory consumption.

The effects of different settings of K are described
in Appendix B in detail.

Hierarchy-injected Label Representation
Label representation vectors are learned through
the shared PLM without prior statistics. To avoid
the side impact of the overlapping interaction be-
tween label names and text words, we assign an
unique fabricated symbol for each label, like "L0",
and add these symbols to the vocabulary list used
in model training. To incorporate hierarchy in-
formation to label representation, we flatten the
parent-child hierarchy of a label to form a label
sequence, as follow:

Q = {[CLS] W [SEP] W f [SEP] {W c} [SEP]} (8)

Assuming W is the symbol of current label, then
W f means the parent label symbol of current label
W , and {W c} is on behalf of symbols of all child
labels. "Root" and "None" are used as fictitious
tokens when the parent label or child label doesn’t
exist. We use the embedding on W enriched with
hierarchical dependencies as the label representa-
tion r.

3.4 Label Hierarchy Self-sensing Task
For the purpose of elevating the model’s percep-
tual ability of holistic hierarchical structure, we
introduce a Label Hierarchy Self-sensing auxiliary
task, consisting of two sub-tasks: (1) determining
whether the predicted label nodes at each level can
form valid label paths, and (2) determining whether
the predicted label paths are completely correct. A
simple base unit of feed-forward neural network is
utilized on the top of [CLS] token following PLM
to execute the auxiliary task. The consistency and
correction loss functions are respectively defined
based on the Binary Cross Entropy (BCE) (De Boer
et al., 2005) function:

Lcon = BCE(ȳcon, p̄con) (9)

Lcor = BCE(ȳcor, p̄cor) (10)

where p̄con represents the probability of that the
predictions can fully correspond to label paths in
the label tree, and p̄cor represents the probability
of that predictions are all right. We retrieve all
label paths from the predicted label nodes output
by verbalizers. ȳcon = 1 if all predicted label
nodes can exactly form label paths. ȳcor = 1 if all
combined label paths are the positive labels of the
sentence. Otherwise, the value of ȳcon or ȳcor is 0.
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Finally, the loss function of the auxiliary task is
formulated as:

L2 = Lcon + Lcor (11)

3.5 Multi-task Training
Overall, multi-task training objective is to mini-
mize the weighted combination of classification
loss, peer-label contrastive learning loss, label hi-
erarchy self-sensing loss and MLM loss retaining
from BERT pre-training. The classification loss
function can be contingent upon specific circum-
stances. For the sake of universality, the standard
Binary Cross-Entropy function is employed:

LCLS =

L∑

l=1

BCE(yl, zl) (12)

Final joint loss can be formulated as:

L = LMLM + LCLS

+ λ1L1 + λ2L2
(13)

where λ1 and λ2 are hyper-parameters.

4 Experiment

4.1 Experiment Setup
Datasets We conduct experiments on 4 bench-
mark datasets: Web-of-Science (WoS) (Kowsari
et al., 2017), NYTimes (NYT) (Sandhaus, 2008),
RCV1-V2 (Lewis et al., 2004) and Blurb Genre
Collection (BGC) 2 (Aly et al., 2019) . The la-
bel taxonomy of WoS is single-path whereas the
remaining three datasets are for multi-path HTC.
The detailed statistics of these datasets are listed in
Table 1.

Evaluation Metrics The performance of our
methods is evaluated by popular Micro-F1 and
Macro-F1 metrics. In addition, path-constrained
C-MicroF1 and C-MacroF1 metrics proposed by
Yu et al. (2022) are used to measure the hierarchi-
cal path consistency for comprehensive evaluation,
in which an output label is considered as correct
only when all its ancestor nodes are accurately pre-
dicted.

Implementation Details The backbone of our
model is initialized with bert-base-uncased3. The
batch size is set to 32 for BGC and 16 for other
datasets. The AdamW optimizer is used with the

2https://www.inf.uni-hamburg.de/en/inst/ab/lt/
resources/data/blurb-genre-collection.html

3https://huggingface.co/bert-base-uncased

Dataset WoS RCV1-V2 BGC NYT
L 2 4 4 8
|Y | 141 103 146 166
Avg(|Yi|) 2.0 3.24 3.01 7.6
#Train 30070 20833 58715 23345
#Val 7518 2316 14785 5834
#Test 9397 781265 18394 7292

Table 1: Datasets statistics. L, |Y | and Avg(|Yi|) repre-
sent the maximum depth, total number of categories and
the average number of labels per sample, respectively.

learning rate of 2e-5 for WoS and 3e-5 for others.
We apply early stopping strategy with 5 patient
epochs. For fair comparison, we perform the same
data processing and spliting methods as HPT. The
reported results of our main experiments are the
average score of 5 runs over different random seeds.
Experimental settings of hyper-parameters are de-
scribed in Appendix A.

Baselines We compare our methods with the
following advanced HTC methods:

• HiAGM, HTCInfoMax and HiMatch are
dual-encoders based classic methods. They
derive joint embeddings on text and labels
from interactive fusion or matching mecha-
nisms.

• HGCLR incorporates label hierarchy into text
encoder through hierarchy-guided contrastive
learning between texts and their generated pos-
itive samples with the most closest label paths.

• Seq2Tree and PAAM-HiA-T5 treat HTC as
a sequence generation task. Seq2Tree de-
signs a constrained decoding strategy with
dynamic vocabulary to ensure label consis-
tency. PAAM-HiA-T5 proposes a multi-level
sequential label generative T5 model with a
path-adaptive attention mechanism to focus
on label dependency prediction.

• HPT exploits the effects of prompt-tuning
by a dynamic virtual template and a zero-
bounded multi-label cross entropy loss. It
achieves the current state-of-the-art perfor-
mance on most datasets.

• HiTIN introduces the structural entropy to
construct a coding tree for the label hierarchy
and then builds a novel structure encoder to
enhance text representations.
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Model
WoS RCV1-V2 BGC NYT

Micro-F1 Macro-F1 Micro-F1 Macro-F1 Micro-F1 Macro-F1 Micro-F1 Macro-F1

BERT(Wang et al., 2022a) 85.63 79.07 85.65 67.02 - - 78.24 66.08
BERT+HiMatch(Chen et al., 2021) 86.70 81.06 86.33 68.66 78.89 63.19 76.79 63.89
BERT+HiAGM(Wang et al., 2022a) 86.04 80.19 85.58 67.93 - - 78.64 66.76
BERT+HTCInfoMax(Wang et al., 2022a) 86.30 79.97 85.53 67.09 - - 78.75 67.31

HGCLR(Wang et al., 2022a) 87.11 81.20 86.49 68.31 - - 78.86 67.96
Seq2Tree(Yu et al., 2022) 87.20 82.50 86.88 70.01 79.72 63.96 - -
PAAM-HiA-T5(Huang et al., 2022) 90.36 81.64 87.22 70.02 - - 77.52 65.97
HPT(Wang et al., 2022b) 87.16 81.93 87.26 69.53 81.32† 66.69† 80.42 70.42
HiTIN(Zhu et al., 2023) 87.19 81.57 86.71 69.95 - - 79.65 69.31

DPT (Ours) 87.25 81.51 87.76 70.78 81.85 68.21 80.56 70.28

Table 2: Experimental results on four HTC datasets. The best results are in bold format, and the second-best results
are in underlined format. The results of BERT+HiMatch on NYT dataset are reported by Huang et al. (2022). The
results of BERT+HiMatch on BGC are reported by Yu et al. (2022). † means the results are reproduced upon the
release project by ourselves.

4.2 Main Result
Experimental results are shown in Tabel 2. Our
model consistently outperforms previous advanced
approaches across 3 datasets except for WoS. On
WoS dataset with label depth of 2, our proposed
DPT achieves comparable results with HPT but de-
creased performance compared to PAAM-HiA-T5
model. Our model establishes the state-of-the-art
results on RCV1-V2 and BGC datasets. It improves
0.5% and 0.76% absolute Micro-F1 and Macro-
F1 on RCV1-V2 dataset compared to the current
best results. The performance boost of Micro-F1
and Macro-F1 on BGC reaches 0.53% and 1.52%
over HPT model. The significant improvements
on Macro-F1 metric suggest that our model excels
in identifying sparse labels. On NYT dataset, our
model surpasses HPT on Micro-F1 by 0.14% but
slightly lower on Macro-F1.

Without introducing any additional network pa-
rameters to extract the semantics of labels and
their hierarchical structures, our model surprisingly
outperforms previous methods of encoding label
names and label hierarchies using GNNs. Com-
pared to HGCLR, which employs instance-level
contrastive learning with complex positive sample
generation operation, DPT achieves performance
gains across all datasets.

4.3 Results on Label Consistency
For HTC tasks, cross-layer label consistency is an
essential evaluation factor, which signifies that mul-
tiple labels predicted by the model at each layer
should conform to the predefined hierarchical struc-
ture. Table 3 illustrates the label consistency perfor-
mance of our proposed DPT and the state-of-the-art
HPT model. DPT improves consistency of label hi-

Model
RCV1-V2 BGC NYT

C-MiF1 C-MaF1 C-MiF1 C-MaF1 C-MiF1 C-MaF1

HPT 86.80 68.71 80.88 65.36 79.33 68.80
DPT (Ours) 87.47 70.20 81.43 66.97 79.77 68.70

Table 3: Evaluation results of label consistency. C-MiF1
and C-MaF1 are the abbreviations for C-MicroF1 and
C-MacroF1.

erarchy on RCV1-V2 and BGC by a large margin,
respectively exceeding HPT by 1.49% and 1.61%
on C-MacroF1 metric. Although our model fo-
cuses more on the interaction between peer labels
at the same layer, the knowledge of label hierar-
chy has also been internalized. The accuracy of
both individual label nodes and united label paths
has been improved, indicating that our methods are
reasonable and efficient.

4.4 Results on Imbalanced Hierarchy

To further clarify the superiority of our methods,
we explore the performance on the imbalanced hi-
erarchy. Following long-tailed learning setting, we
sort the training set in descending order based on
the quantity of class instances and evenly cluster all
categories into head, middle, and tail groups. The
visualization results on Macro-F1 metric of differ-
ent groups are shown in Figure 3. It’s evident that
the performance of DPT is better than that of HPT
on imbalanced hierarchy in RCV1-V2 and BGC
datasets. DPT shows significant improvements on
tail classes with few training samples, demonstrat-
ing the effectiveness of our methods in eliminating
the impact resulting from imbalanced distribution.
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(a) RCV1-V2 (b) BGC

Figure 3: Macro-F1 score on head, medium and tail
class groups.

Ablation Models
BGC

MiF1 MaF1 C-MiF1 C-MaF1

Multi-Verb(Baseline) 81.38 66.74 80.92 65.58

DPT(Ours) 81.85 68.21 81.43 66.97
r.m. L2 81.71 68.09 81.27 66.56
r.m. Ln

LC 81.62 67.35 81.35 66.11
r.m. LR 81.83 67.99 81.40 66.50
r.m. LR & Ln

LC 81.36 67.41 80.97 66.26
r.p. Random Sampling 81.48 67.46 81.03 66.59

Table 4: Ablation study on BGC dataset.

4.5 Ablation Study

To investigate the effects of each component of our
proposed model, we implement different variants
and conduct experiments on BGC and RCV1-V2
dataset. The Results are shown in Table 4 and
Tabel 5 respectively. Upon only employing the Hi-
erPCL module, the performance in all metrics real-
izes considerable enhancement and are superior to
the current state-of-the-art models, confirming its
significant effectiveness and reliability. By remov-
ing negative contrastive part, the scores undergo
sharp declines, which demonstrates that negative
label contrastive learning plays a prominent role
in HierPCL. As a strong contrast, we replace our
self-produced hard negative sampling with random
sampling, resulting in decrease in metrics, which
validates the advantage of our negative sampling
strategy. The cross-hierarchical rank loss in Hier-
PCL and label hierarchy self-sensing auxiliary task
are evidenced to improve the model’s performance,
specifically with regard to the Macro-F1 metric.

4.6 Insight into Case Effects

In order to gain insight into practical effects of
our model, we conduct detailed case studies on the
test set. We define 3 types of label errors from the
perspective of multi-label classification, as follows:

Ablation Models
RCV1-V2

MiF1 MaF1 C-MiF1 C-MaF1

Multi-Verb(Baseline) 87.19 69.16 86.68 68.31

DPT(Ours) 87.76 70.78 87.47 70.20
r.m. L2 87.34 70.28 87.01 69.45
r.m. Ln

LC 87.14 70.05 86.61 69.32
r.m. LR 87.47 70.35 87.11 69.52
r.m. LR & Ln

LC 87.22 69.52 86.79 68.73
r.p. Random Sampling 87.26 69.55 86.94 68.93

Table 5: Ablation study on RCV1-V2 dataset.

Figure 4: Three types of errors corrected by our model.

• Excessive, refers to the label which is unnec-
essarily identified as one of the positive labels
for the instance.

• Misjudged, refers to the label which is mis-
takenly identified as a positive label while the
instance actually belongs to another peer la-
bel.

• Missed, refers to the label that the model has
failed to recall.

We separately calculate the distribution of la-
bel error types for baseline model (typical prompt-
tuning with Multi-Verb framework) and our im-
proved model on the test set. As shown in Figure 4,
we find that the optimization effects of our model
are manifested in recalling missed labels, correct-
ing misjudged labels and removing excessive la-
bels, respectively accounting for 44.69%, 40.21%
and 15.10% of the proportion. It demonstrates
the strong power of DPT to capture discriminative
representation and further relieve label confusion.
Some specific cases are illustrated in Appendix D.

4.7 Analysis of Computational Complexity

We conduct experiments with an NVIDIA Tesla
V100 on time efficiency and computational re-
sources on RCV1-V2 dataset. The quantitative re-
sults are listed in Appendix C. Compared to prompt-
based HPT model, our approach necessitates longer
training time, primarily attributed to contrastive
learning, which inherently possesses a high time
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complexity and slightly elevates computational re-
sources requirements. Despite all this, both fac-
tors remain within acceptable range. Furthermore,
label-wise contrastive learning has superior time
efficiency than instance-level contrastive learning.
We devise an effective negative sampling strategy
to reduce computational costs. When performing
model inference, our methods do not involve any
additional time-consuming steps, such as loss cal-
culations, and exhibit faster speed compared to
models that employ GNN as the structure encoder.

5 Conclusion

In this paper, we present a novel Dual Prompt Tun-
ing method for HTC tasks. Firstly, we propose
a Hierarchy-aware Peer-label Contrastive Learn-
ing approach to alleviate confusion between peer
labels. An original dual prompt template is cre-
ated with slots for both positive and negative la-
bel, on which contrastive learning is performed at
each layer. Secondly, to further strengthen knowl-
edge understanding of label hierarchy structure,
we design a Label Hierarchy Self-sensing auxil-
iary task to identify consistency and correctness of
model predictions. Experimental results illustrate
that our proposed DPT method achieves signifi-
cant improvements on popular HTC datasets. It
excels in precisely recognizing negative labels and
contributes to obtaining hierarchy-aware discrimi-
native features. Notably, DPT exhibits remarkable
effectiveness in preserving label path consistency
and addressing imbalanced hierarchy challenge.

6 Limitations

In our work, the applicability of DPT is restricted
by the scale of hierarchical labels, considering the
following two factors: (1) The sequence length of
input text for PLMs is constrained to a maximum
value, and adding prompts consumes some tokens.
However, the number of prompt words introduced
by DPT is only linearly related to the depth of the la-
bel tree rather than the number of full labels, which
has minimal impact. (2) As outlined in Section 3.3,
when computing label representation vector, the
maximum allowed number of child labels {W c}
is close to the maximum sequence length of the
PLM. Although DPT applies to most scenarios, it
is recognized that our methods may require further
improvement to accommodate huge-scale hierar-
chical label systems.
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A Hyper-parameter Settings

We list the hyper-parameter settings of four datasets
in Table 6 for reproducibility.

Parameter WoS RCV1-V2 BGC NYT
α 0.2 0.6 0.6 0.2
β 0.1 0.2 0.1 0.1
λ1 0.5 1.0 0.5 0.1
λ2 0.6 0.5 0.2 0.2

Table 6: Hyper-parameter settings.

B Performance of Different Negative
Sampling Ratio

To elaborate on the rationality behind selecting a
K value as 10% of the label count at each layer,
we compare the performance when the negative
sampling rate is set at 10% and 100%. From Ta-
ble 7 and Table 8, it’s obvious that 10% negative
labels are sufficient, retaining the vast majority of
accuracy on RCV1-V2 and even surpassing the per-
formance of using all negatives on BGC dataset.
It indicates that blindly increasing the number of
negative samples is not always effective. We will
explore the impact of positive and negative label
ratio in the future work.

Ratio MiF1 MaF1 C-MiF1 C-MaF1
0.1 87.76 70.78 87.47 70.20
1 87.81 70.01 87.50 69.24

Table 7: Results of different negative sampling ratio on
RCV1-V2 dataset.

Ratio MiF1 MaF1 C-MiF1 C-MaF1
0.1 81.85 68.21 81.43 66.97
1 81.75 67.95 81.41 66.62

Table 8: Results of different negative sampling ratio on
BGC dataset.

C Computational Complexity of DPT

Table 9 compares computational complexity be-
tween our DPT model and the current state-of-
the-art prompt-based HPT model on RCV1-V2
dataset.The results show that our model has faster
inference speed and acceptable training computa-
tional costs.

Model
#Params

(M)
Training time
(min/epoch)

Training memory
usage(G)

Inference
(ms/sample)

HPT 114.92 16.06 24.8 23.1
DPT(Ours) 112.67 28.19 26.9 20.7

Table 9: Computational complexities of HPT and DPT.

D Case Study

DPT performs Peer-label Contrastive Learning at
each level, which enhances the model’s represen-
tation abilities. Introduction of cross-hierarchical
rank loss and label hierarchy self-sensing auxiliary
task improves label consistency. To look into the
practical effects, we conduct adequate case stud-
ies on the BGC dataset. Compared to the strong
baseline HPT model, improvements of DPT are
mainly reflected in recalling missed labels, correct-
ing misjudged labels, removing excessive labels,
and further correcting label inconsistencies. Table
10 provides some examples. Note that labels pre-
dicted by DPT model in the Table 10 are consistent
with the ground truth labels.
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Text Secret, Silent Screams: For fans of Gillian Flynn, Caroline Cooney, and R.L. Stine comes Secret, Silent Screams from
four-time Edgar Allen Poe Young Adult Mystery Award winner Joan Lowery Nixon. Is Barry’s death the latest tragedy
in a string of suicides at Farrington Park High School? Or is it murder? Marti is sure her friend Barry didn’t take his
own life, but no one will believe her except Police Officer Prescott. But opening an investigation takes time, and Marti
is determined to find her friend’s killer soon. Because even now he could be planning his next crime. . . “Enthralling
suspense. . . satisfying[,]. . . [and an] intricate plot.” –Publishers WeeklyFrom the Paperback edition.

DPT (Ours) Teen & Young Adult-Teen & Young Adult Mystery & Suspense, Teen & Young
Adult-Teen & Young Adult Fiction, Teen & Young Adult-Teen & Young Adult
Social Issues

Multi-Verb (Baseline) Teen & Young Adult-Teen & Young Adult Mystery & Suspense, Teen & Young
Adult-Teen & Young Adult Fiction

Text Summer in Eclipse Bay: A special message from Jayne Ann KrentzDear Reader:Summer has arrived in Eclipse Bay and
things are definitely heating up between the Hartes and the Madisons. It seems that the mysterious new gallery owner,
Octavia Brightwell, is thinking about having a scandalous fling with that rogue Nick Harte before she leaves town. As
far as Nick is concerned, a short-term affair sounds perfect. But it isn’t going to be easy.One big obstacle is Mitchell
Madison. For reasons of his own, Mitchell has taken it upon himself to play guardian to Octavia. He’s made it clear that
if Nick fools around with her, there will be a price to pay. And then there’s Nick’s young son, Carson, who has his own
agenda where Octavia is concerned. He doesn’t want his father messing up his plans.Summer in Eclipse Bay is going to
be eventful this year. Some long-buried secrets from the infamous Harte-Madison feud are about to surface. The past and
the present are on a collision course. I hope you’ll join me to watch the fireworks.Happy reading . . .Jayne Ann Krentz.

DPT (Ours) Fiction-Romance-Contemporary Romance, Fiction-Romance-Suspense Ro-
mance, Fiction-Women’s Fiction

Multi-Verb (baseline) Fiction-Romance-Contemporary Romance

Text Corto Maltese: Beyond The Windy Isles: The second volume in the definitive English language edition of Hugo Pratt’s
masterpiece, Corto Maltese, presented in the original oversized B&amp;W format and with new translations made from
Pratt’s original Italian scripts. “Mushroom Heads” begins in Maracaibo, Venezuela, where Corto Maltese and Professor
Steiner lead an expedition on the trail of the legendary El Dorado, financed by the antiquarian Levi Colombia. In “Banana
Conga,” Corto has his first and nearly fatal encounter with the beautiful yet dangerous mercenary Venexiana Stevenson.
Within this framework of adventure, Hugo Pratt weaves themes dealing with the exploitation of indigenous people, the
noble struggle to gain freedom and independence, and how cowardice can poison men of all classes. The action, set in
1917, takes Corto Maltese from the Mosquito Coast to Barbados to a deadly struggle among Jivaro head-hunters in the
Peruvian Amazon

DPT (Ours) Fiction-Graphic Novels & Manga

Multi-Verb (Baseline) Fiction-Mystery & Suspense

Text Nappily Ever After: SOON TO BE A NETFLIX ORIGINAL FILM STARRING SANAA LATHANWhat happens when
you toss tradition out the window and really start living for yourself? Venus Johnston has a great job, a beautiful home,
and a loving live-in boyfriend named Clint, who happens to be a drop-dead gorgeous doctor. She also has a weekly
beauty-parlor date with Tina, who keeps Venus’s long, processed hair slick and straight. But when Clint–who’s been
reluctant to commit over the past four years–brings home a puppy instead of an engagement ring, Venus decides to give
it all up. She trades in her long hair for a dramatically short, natural cut and sends Clint packing. It’s a bold declaration
of independence–one that has effects she never could have imagined. Reactions from friends and coworkers range from
concern to contempt to outright condemnation. And when Clint moves on and starts dating a voluptuous, long-haired
beauty, Venus is forced to question what she really wants out of life. With wit, resilience, and a lot of determination, she
finally learns what true happiness is–on her own terms. Told with style, savvy, and humor, Nappily Ever After is a novel
that marks the debut of a fresh new voice in fiction.

DPTL (Ours) Fiction-Women’s Fiction

Multi-Verb (Baseline) Fiction-Romance

Text Malice: Despite our tendencies to separate the mind and body, good and evil, Flahault argues that both stem from
the same source within us. This knot, inherent to the human condition, is the tension between our desire for absolute
self-affirmation and the fact that each of us can only exist through mediation by others. The dependence on others weighs
heavy on our shoulders, hampering our very existence.Malice, then, is not merely a result of our biological constitution,
but is also a response to our feelings. These can often resemble those of Milton’s and Shelley’s monsters, stories the
author calls upon to understand features of the nature of evil that reason alone cannot grasp.From the Preface:‘By
combining several disciplines—philosophy, anthropology and literary criticism, as well as psychoanalysis—Flahault
scrutinizes the origin of malevolence and reveals that, contrary to the view presented by moral philosophy, it is within us
that the roots of wickedness are to be found . . . Taking issue with the widely accepted view that monotheism constitutes
moral progress, he argues that by instigating a dualism between good and evil, monotheism has in fact foreclosed the
possibility of acknowledging the ambivalence of our fascination with the limitless and infinity.’ Chantal Mouffe.

DPT (Ours) Nonfiction-Religion & Philosophy-Philosophy

Multi-Verb (Baseline) Nonfiction-Religion & Philosophy-Philosophy,
Nonfiction-Religion & Philosophy- Religion

Text Garfield Caution: Wide Load: Indulge the Bulge Garfield believes that a full belly is a happy belly—and he intends to
keep his stomach ecstatic. Fans of the fat cat will gleefully fill up on this latest smorgasbord of fun!

DPT (Ours) Humor

Multi-Verb (Baseline) Humor-Graphic Novels & Manga (Label inconsistency)
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