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Abstract

Sparse models, including sparse Mixture-of-
Experts (MoE) models, have emerged as an ef-
fective approach for scaling Transformer mod-
els. However, they often suffer from compu-
tational inefficiency since a significant num-
ber of parameters are unnecessarily involved
in computations via multiplying values by zero
or low activation values. To address this is-
sue, we present XMoE, a novel MoE designed
to enhance both the efficacy and efficiency of
sparse MoE models. XMoE leverages small
experts and a threshold-based router to enable
tokens to selectively engage only essential pa-
rameters. Our extensive experiments on lan-
guage modeling and machine translation tasks
demonstrate that XMoE can enhance model
performance while decreasing the computa-
tion load at MoE layers by over 50% with-
out sacrificing performance. Furthermore, we
present the versatility of XMoE by applying it
to dense models, enabling sparse computation
during inference. We provide a comprehen-
sive analysis and make our code available at
https://github.com/ysngki/XMoE.

1 Introduction

Recently, remarkable advancements in large lan-
guage models have been achieved through scaling
up their sizes (Brown et al., 2020; Chung et al.,
2022; Touvron et al., 2023). However, this progress
has come with a significant increase in training
costs, posing a challenge to further scaling. To
address this issue, sparse models, such as sparse
Mixture-of-Experts (MoE) models, have emerged
as an alternative approach. These models allow
for scaling the model size without a correspond-
ing increase in computational cost (Lepikhin et al.,
2021; Jaszczur et al., 2021; Fedus et al., 2022; Ra-
jbhandari et al., 2022; Xue et al., 2024; Jiang et al.,
2024). The key to this ability lies in sparsely acti-
vated MoE layers. These layers comprise multiple
sub-networks, or “experts”, typically implemented
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Figure 1: Average percentage of positive values in the
FFN layers after the activation function. All models are
decoder-only Transformers with 12 layers.

as Feed-Forward Networks (FFNs) (Vaswani et al.,
2017). Unlike traditional models that utilize all
parameters for each input token, MoE models se-
lectively activate a subset of experts. This ap-
proach effectively decouples computational costs
from model size, paving the way for more efficient
scaling.

While MoE models are effective for scaling, this
paper argues that MoE models exacerbate the issue
of computational inefficiencies. Initially identified
in the dense model T5 (Raffel et al., 2020), this
issue is characterized by a significant portion of
computations in the FFN layer being wasted on
multiplying values by zero (Zhang et al., 2022; Li
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Figure 2: Overview of an MoE layer in XMoE, where
tokens are routed to small experts by an adaptive router.

et al., 2023b). As illustrated in Figure 1, the compu-
tational inefficiency issue is also prevalent in sparse
models and even worsens as the number of experts
increases. This observation suggests that only a
small portion of the parameters in an expert is use-
ful for the input, while others are unnecessarily
involved in the computation. Consequently, select-
ing one expert for each input can already lead to a
significant waste of computation. In order to allevi-
ate this problem, a more fine-grained and adaptive
strategy for parameter selection is necessary.

Figure 2 shows the overview of a novel MoE
design, named XMoE, which allows tokens to se-
lect fewer parameters to improve the efficiency
without hindering model performance. To achieve
this, XMoE proposes to exploit small experts and
a threshold-based router. First, considering that
expert is the smallest unit of parameter selection in
MoE models, utilizing small experts is the prereq-
uisite for the more fine-grained selection. It allows
models to choose the useful parameters precisely
without activating the redundant parameters.

In order to ensure the effectiveness, a novel
adaptive router is further exploited by XMoE. Dif-
ferent from the widely-used top-k router that dis-
patches each input to a fixed number of experts, this
adaptive router allows tokens to self-determine the
number of required experts based on a pre-defined
threshold. Intuitively, an easily processed token can
be routed to a single small expert, while a critical to-
ken may require multiple experts (Zhou et al., 2022;
Li et al., 2023a). An adaptive router allows models
to leverage the difference of the input complexity
to dynamically allocate computational resources.
This not only enhances model efficiency but also
yields potential quality improvements when com-
putational resources are constrained.

In conjunction with the aforementioned design,
XMoE aims to enhance the efficiency of MoE mod-

els, with a focus on improving quality with a fixed
computational budget or reducing computational
costs without compromising performance. Exten-
sive experiments in language modeling and ma-
chine translation demonstrate performance gains
over existing MoE methods. XMoE also enables
a reduction in Floating Point Operations (FLOPs)
by over 50% with minimal impact on performance.
Additionally, our investigation extends to training
dense models using XMoE to facilitate sparse com-
putation during inference. This approach not only
matches the performance of dense counterparts but
also facilitates a substantial reduction in FLOPs.

Our contributions can be summarized as: (1) We
identify a computational inefficiency issue in cur-
rent sparse MoE models. (2) We propose XMoE to
improve the efficiency of MoE models with small
experts and a novel routing strategy. (3) Extensive
experiments in language modeling and machine
translation demonstrate XMoE as a promising al-
ternative to existing sparse and dense models.

2 Background

2.1 Mixture-of-Experts (MoE)

MoE is a family of neural network architecture
that enables conditional computation by sparsely
activating small sub-networks, so-called experts,
based on a pre-defined router. The core component
of MoE models is the MoE layer, which consists
of a set of experts {E1, · · · , EN} and a routing
function (Shazeer et al., 2017; Zoph et al., 2022;
Dai et al., 2024). Each expert E is a parameter-
ized function. The routing function is utilized to
route individual tokens to their assigned experts.
In this work, we consider MoE for Transformer,
where FFN layers within Transformer are substi-
tuted with large MoE layers, in which each expert
is an independent FFN.

Trainable Router. A commonly used router is
based on a gating network consisting of a trainable
weight matrix followed by a softmax function. For
the input token x with its intermediate representa-
tion denoted as h ∈ Rd, the router computes the
probability distribution over experts as:

p = Softmax(W · h), (1)

where W ∈ RN×d, N denotes the total number
of experts and d denotes the hidden size of the
model. The set of top-k experts E is decided based
on p, where |E| = k. Each expert processes tokens
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independently. Then, the final output of the token
is the weighted sum of the output of its k experts:

y =
∑

i∈E
piEi(h). (2)

Load Imbalance. Learnable routers can eas-
ily cause the load imbalance issue, as shown in
Shazeer et al. (2017). If there is no constraint em-
ployed during training, most tokens would be dis-
patched to a small number of experts, leading to a
large portion of experts being insufficiently trained
(Lepikhin et al., 2021). In addition, if experts are
distributed across different nodes, most nodes must
wait for others to finish the computation, thus hin-
dering the training efficiency.

Capacity. Expert capacity is introduced to MoE
models to avoid the severe load imbalance issue
by limiting the maximum number of tokens routed
to each expert (Lepikhin et al., 2021; Fedus et al.,
2022; Rajbhandari et al., 2022; Puigcerver et al.,
2024). Suppose a given batch’s token number is T ,
and the expert number is N . The expert capacity
C is:

C =
T

N
· γ (3)

where γ refers to the preset capacity factor. If an
expert is underutilized, the unused capacity buffers
are filled with padding tokens. Once an expert is
at capacity, additional tokens are dropped, which
means being passed to the subsequent Transformer
block directly.

MoE for Dense Models. Although MoE models
are proposed for training large-scale sparse mod-
els, recent studies bring the concept of MoE for
either pruning or training dense models. Zhang
et al. (2022) propose to divide the feed-forward net-
work layers in a pretrained dense Transformer into
several small experts based on heuristic strategies.
Each input token selectively activates top-k experts
instead of utilizing the whole FFNs. Chen et al.
(2023) propose to view MoE as a regularization
method for training dense Transformers. Although
our work proposes XMoE for sparse model train-
ing, it can also be utilized for training dense models
to enable sparse computation during inference.

2.2 FFN as Memory

Recent studies suggest that an FFN layer can be
conceptualized as a memory layer composed of

numerous key-value memory pairs (Lample et al.,
2019; Geva et al., 2021). In this view, each column
in the first matrix of an FFN layer is a key vector,
and the corresponding row in the second matrix
is the value vector. It is observed that only some
memory values benefit an input token (Dai et al.,
2022), leading to most memory pairs contributing
to redundant computations. We hypothesize that in
MoE models, which incorporate multiple FFNs, the
beneficial memories tend to be distributed across
different FFNs. This dispersion of useful memories
diminish overall efficiency.

3 Method

3.1 FFN Decomposition
Considering that widely-used activation functions
such as ReLU and GELU operate on an element-
wise basis, it is reasonable to conceptualize an FFN
layer as a composition of several smaller FFN lay-
ers

y = W2 σ(W1 · x) =
∑

i

W i
2 σ(W

i
1 · x), (4)

where W i
j is the parameters of i-th small FFN layer

and σ denotes the activation function. Instead of
maintaining a single large FFN, XMoE trains mul-
tiple small FFNs and compose them to produce
an output. In subsequent discussions, we assume
that the dimensions are identical for each experts
unless stated otherwise. Our preliminary experi-
ments showed that the GELU activation function
performed slightly better. Therefore, we will use
GELU by default.

3.2 Threshold-based Router
XMoE’s router consists of a trainable weight matrix
W ∈ Rd×N , where each column of W serves as
a centroid representing an expert. Given an input
token x and its intermediate representation h ∈ Rd,
the probability of choosing the i-th experts is pi,
according to the Eq (1).

Considering the distribution p varies with layers,
tokens and model configurations, manual selection
of an optimal value for the top-k parameter k can
be challenging (Yang et al., 2021; Li et al., 2023a).
A higher value of k can ensure effectiveness but at
the cost of increased computational overhead per
token, potentially impacting efficiency. Conversely,
a lower value of k may reduce computational load
but restrict the model’s capacity to handle complex
tokens. To navigate this trade-off, XMoE employs
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a threshold-based selection mechanism, enabling
tokens to self-determine the number of experts they
should be routed to based on a predefined threshold
parameter t, which ranges from 0 to 1.

The overview of the selection procedure is illus-
trated in Figure 3. Initially, the probabilities p are
sorted in descending order: p = [pi1 , pi2 , ..., piN ],
where pi1 ≥ pi2 ≥ ... ≥ piN and ij indicates the
index of top-j expert. The router then identifies the
smallest index m such that the cumulative sum of
probabilities up to index m is greater than or equal
to the threshold t:

argmin
m

m∑

j=1

pij ≥ t. (5)

The input tokens are dispatched to their first m
experts. According to the Eq (2), an expert’s con-
tribution to the output is directly proportional to its
assigned probability p. Thus a high cumulative sum
of probabilities indicates that tokens are routed to
the most relevant experts, while other experts with
lower probabilities have minimal influence and can
be ignored.

Priority. The threshold-based router in MoE mod-
els permits a token to select multiple experts, poten-
tially overwhelming certain experts and leading to
dropped tokens due to limited expert capacities. To
mitigate this, XMoE assigns a priority r to a token
dispatched to a specific expert. The experts process
tokens with higher priorities first. Specifically, the
prioritization is based on the likelihood of a token
considering the expert as its preferred choice, de-
termined by a heuristic rule. If a token views an
expert as its top-i choice with probability p, the
priority r is set heuristically as (p− i). Appendix
A.1 presents the algorithmic implementation.

3.3 Auxiliary Loss

Following Fedus et al. (2022), we utilize an auxil-
iary loss as a part of the training objective. It en-
courages input tokens to be uniformly dispatched
to the experts. We only impose this constraint on
the top-1 assignment. The details are provided in
Appendix A.2.

3.4 Complexity

Within an MoE layer, a total of C · N tokens are
processed by the experts, where C denotes the ca-
pacity and N is the number of experts. Let O(E)
represents the computational complexity associated
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Figure 3: Overview of the threshold-based router. The
number of tokens processed per expert is determined ac-
cording to both the total token number and the capacity
factor.

with an expert handling a single token. The compu-
tational complexity of an MoE layer, as indicated
by Eq. 3, can be expressed as:

O(MoE) ∝ γ · T ·O(E). (6)

A small γ can reduce the computational cost but
aggravate token dropping since experts may not
have enough capacity to process received tokens.
On the contrary, increasing γ could lead to addi-
tional computational overhead and tend to waste
computing resources on padding tokens. XMoE
allows to trade off the efficacy and efficiency by
concurrently increasing γ and diminishing O(E).

3.5 Comparison with Top-k Router

Top-1 Router. The top-1 router exclusively assigns
each token to a single expert. It potentially leads
to inefficiencies when experts receive fewer tokens
than their capacity, resulting in wasted computa-
tions processing padding tokens. In contrast, the
threshold-based router dispatch each token to at
least one expert. Consequently, the token assign-
ment of the top-1 router is a subset of that produced
by the threshold-based router. This enables models
with the threshold-based router to implicitly reduce
computational inefficiencies.
Top-k Router. Top-k router allows each token to
choose multiple experts, thus unlikely leading to
computation waste, especially when the capacity
is limited. However, this router processes tokens
with the same amount of computation, regardless
of the difference in complexity between tokens. In
contrast, an adaptive router allows the model to
dynamically allocate computational resources to
important tokens while reducing unnecessary com-
putations, leading to better utilization of training
computation.
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The threshold-based router and the top-k router
share parameters of the same shape, with their only
distinction lying in their respective selection strate-
gies. This structural similarity indicates that the
threshold-based routing strategy and the top-k strat-
egy can be seamlessly interchanged without neces-
sitating any modifications.

3.6 Dense Model Applications

A dense model can be treated as an MoE model
with only one expert per layer. XMoE can be ap-
plied by decomposing FFN layers in the dense
model into multiple smaller ones. In contrast to
training a sparse model, we densely train this model
by setting the threshold t = 1.0 and γ as N . This
setup ensures that each token is processed by all
experts without token dropping. It is expected that
the router can learn to measure the importance of
different experts. During inference, both t and γ
can be adjusted to enable sparse computation.

4 Experiments

4.1 Tasks and Datasets

Language Modeling. We pretrain models on
two English-language datasets, OpenWebText
(Gokaslan and Cohen, 2019) and Wikitext-103
(Merity et al., 2017). The former is a public repro-
duction of WebText used for GPT-2 training (Rad-
ford et al., 2019). The latter is a smaller language
modeling corpus containing Wikipedia articles.

Machine Translation. We have collected 5 lan-
guage pairs from WMT23 datasets. Each language
pair is trained independently. The detailed statistics
for these language pairs can be found in Table 4.

4.2 Model Configuration

Language Modeling. We adopt the Transformer
decoder with 12 layers. Our implementation is
based on Megatron-LM (Shoeybi et al., 2019). We
use the tokenizer of GPT-2 of which the vocabulary
size is 50, 257. The model is trained for 60K steps
in total on OpenWebText and 4k steps on Wikitext-
103. The learning rate is 4.5× 10−4 and the cosine
learning rate decay is exploited. During training,
we use float16 for acceleration. The threshold t is
set to 0.90 based on the results of pilot experiments.

Machine Translation. We adopt the Transformer-
based architecture with 12 encoder layers and 6
decoder layers. Our implementation is based on

fairseq (Ott et al., 2019). The vocabulary is learned
from the training data for each language pair using
byte-pair encoding. The threshold t is set to 0.90.
Automatic mixed precision is enabled to accelerate
training. We report the detokenized BLEU and
chrF2++ using sacreBLEU1.

For sparse models, an MoE layer is utilized to re-
place the dense FFN layer in every alternate Trans-
former block, following previous practice (Zhou
et al., 2022) . The capacity factor γ is set to 1.0 for
models with top-1 routers. For models with smaller
experts, we increase the capacity factor according
to Eq (6) to ensure the consumed training compute
identical. We run our experiments on one node
with 4 NVIDIA A100 GPUs.

4.3 Baselines

Top-1 routing, which assigns each token to one ex-
pert, is widely used in MoE models, such as Switch
Transformers (Fedus et al., 2022), BASE Layers
(Lewis et al., 2021) and Hash Layers (Roller et al.,
2021). Switch Transformer utilizes a learnable top-
1 router with an auxiliary loss to alleviate the load
imbalance issue. BASE Layer proposes to view the
token assignment as a linear assignment problem.
They force each expert to process an equal num-
ber of tokens during training while using greedy
assignments at test time. Hash Layers replace the
learnable router with simple hash functions. We
implement Hash Layers with a random hash func-
tion, which is suggested to have strong performance
(Roller et al., 2021). We extend the top-1 router of
Switch Transformer to the top-k (k > 1) router.

5 Results

5.1 Language Modeling

Table 1 reports the perplexity results of models
with equivalent computational complexity in MoE
layers. A consistent performance gain is observed
across both the OpenWebText and WikiText-103
datasets when reducing the expert size. Specifically,
when the expert size decreases to 384, XMoE with
323M parameters achieves the best performance. It
surpasses top-k routing and Switch Transformer by
0.33 and 0.65 perplexity points on OpenWebText,
respectively. The difference between XMoE and
top-k routing lies in the routing strategy, while
the difference between top-k routing and Switch

1BLEU:nrefs:1 | case:mixed | eff:no | tok:13a | smooth:exp
| version:2.3.2. chrF2:nrefs:1 | case:mixed | eff:yes | nc:6 |
nw:2 | space:no | version:2.3.2
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Params Method Top-k # Experts Expert Size OpenWebText WikiText-103

124M Dense Transformer 1 1 3072 22.61 22.24

323M

Switch Transformer 1 8 3072 20.11 20.60
Hash Layer 1 8 3072 21.27 21.63
BASE Layer 1 8 3072 20.49 21.13

Top-k Gating
2 16 1536 19.81 20.24
4 32 768 19.75 20.14
8 64 384 19.79 20.10

XMoE -
16 1536 19.57 20.16
32 768 19.49 20.00
64 384 19.46 19.97

556M

Switch Transformer 1 8 4096 19.17 19.72
Hash Layer 1 8 4096 20.25 22.01
BASE Layer 1 8 4096 19.72 21.03

Top-k Gating
2 16 2048 18.94 19.47
4 32 1024 18.94 19.36
8 64 512 18.99 19.15

XMoE -
16 2048 18.72 19.41
32 1024 18.68 19.26
64 512 18.72 19.10

Table 1: Test perplexity↓ on OpenWebText and WikiText-103. Models consume approximately the same training
and inference FLOPs through the adjustment of γ according to Eq. 6. The “Top-k” column denotes the number of
selected experts per token, and “-” denotes not applicable.

Transformer lies in the expert size. This suggests
that a threshold-based router can assist models in
leveraging expert capacities, and smaller experts
can enhance model quality. There are intriguing
outcomes when we increases the parameter count
to 556M by expanding the intermediate dimension
of experts. It is shown that top-k routing with a
size of 1024 outperforms that with a size of 512
on OpenWebText, as does XMoE. We attribute this
to the optimization of sparse models and leave this
for future investigation.
Efficiency. Figure 4 illustrates the impact of the
number of floating point operations (FLOPs) within
MoE layers on perplexity score. We see that mod-
els exhibit poorer performance as FLOPs decrease.
This trend is expected, as limited expert capacity
can lead to more dropped tokens, thereby increas-
ing the number of inadequately processed tokens.

It is observed that XMoE with small expert size
is robust to the reductions in FLOPs. Notably,
XMoE with an expert size of 384 outperforms
Switch Transformer (referred to as Exp8-Size3072)
on WikiText-103, while consuming only 25% of
the FLOPs of the latter. This finding suggests that

a significant portion of parameters in models with
large expert sizes are unnecessarily engaged in
computations. By replacing these large experts
with smaller ones, XMoE not only improves per-
formance but also saves computational resources.

Method # Experts Size FLOPs OpenWeb Wiki

Dense 1 3072 1.00x 22.61 22.24

XMoE

8 384

1.00x 22.89 21.93
0.75x 22.89 21.93
0.50x 22.90 21.93
0.25x 23.07 21.97

16 192

1.00x 22.94 21.92
0.75x 22.97 21.92
0.50x 23.02 21.92
0.25x 23.27 21.93

Table 2: Test perplexity on OpenWebText and WikiText-
103.

Dense Model. Dense models can be trained as
XMoE by partitioning their FFN layers into smaller
ones. As shown in Table 2, these modified mod-
els exhibit a remarkable reduction of over 50% in
computational complexity with only a marginal de-
crease in performance across both datasets. On the
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Figure 4: Test perplexity (PPL) with regard to the the
normalized FLOPs in the MoE layer during inference.
We adjust FLOPs by modifying the capacity factor γ.

WikiText-103 dataset, XMoE can outperform the
dense model while achieving a 75% reduction in
Floating Point Operations (FLOPs). These find-
ings underscore the potential of sparse models as
promising alternatives to their dense counterparts.

5.2 Machine Translation
We compare XMoE with Switch Transformer and
Top-k routing. Models are trained to translate other
languages to English. All models have the same
number of shared parameters and have the same
FLOPs. The results are detailed in Table 3, reveal-
ing that XMoE outperforms its counterparts. The
observations generally align with the finding on
language modeling that a reduction in expert size
can always lead to better performance. However,
the extent of the improvement depends upon fac-
tors such as the specific language being translated,
and the evaluation metrics employed.

5.3 Analysis
Efficiency. Figure 5 shows the number of ex-
perts that tokens require to satisfy the threshold
vs. training step. Initially, a substantial portion
of experts is required to satisfy the threshold, but
as training progresses, a significant reduction in
the required number of experts is observed. This
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Figure 5: Average number of required experts with
regards to training steps across different layers.

phenomenon is consistent with existing research
indicating that dense models exhibit sparse acti-
vation once trained (Li et al., 2023b). Our pro-
posed XMoE leverages this emergent sparsity to
to enhance computational efficiency by employing
small experts and a threshold-based router. The use
of small-scale experts facilitates fine-grained ex-
pert selection, thereby mitigating the activation of
redundant parameters. Concurrently, the threshold-
based router encourages tokens to select the fewest
experts. While the threshold-based routing may
initially lead to an excessive selection of experts,
the computations is supposed to exhibit sparsity
after training.

Effectiveness. The visualization in Figure 6 il-
lustrates the average percentage of positive values
after the activation function across different config-
urations. It can be seen that a reduction in expert
size consistently correlates with an increase in this
percentage. This trend suggests that models with
small experts can more effectively leverage the pa-
rameters within selected experts, thereby yielding
performance improvements.

5.4 Hyperparameters

Threshold. We investigate the effect of thresh-
old t on the perplexity score during both training
and inference stages. From Figure 7, we see that
increasing the threshold generally improves perfor-
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Uk-En De-En Ru-En He-En Zh-En Avg
Method #Experts Size BLEU ChrF BLEU ChrF BLEU ChrF BLEU ChrF BLEU ChrF BLEU ChrF

Dense 1 2048 29.2 53.0 28.2 52.2 25.3 50.9 32.8 58.0 16.7 43.4 26.4 51.5
Switch 32 2048 29.9 53.9 29.2 53.1 26.7 52.0 34.9 59.7 17.4 44.8 27.6 52.7

Top-k
64 1024 30.7 54.6 29.2 53.1 27.4 53.5 35.9 60.9 17.6 44.9 28.2 53.4
128 512 30.9 54.9 29.3 53.1 27.8 53.5 36.3 60.9 17.7 45.1 28.4 53.5

XMoE
64 1024 31.7 55.7 29.4 53.3 28.4 54.0 36.1 60.5 18.1 45.6 28.7 53.8
128 512 32.0 55.7 29.2 53.2 28.5 53.9 35.5 60.1 18.0 45.4 28.7 53.7

Table 3: Machine translation on WMT23 datasets. ChrF is the abbreviation of ChrF2++
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Figure 6: Average percentage of positive values in the
FFN layers after the activation function.
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Figure 7: Effect of threshold on perplexity↓ during the
training and inference stages. The models are trained
on the WikiText-103 dataset utilizing 32 experts, each
with a size of 768.

mance. However, XMoE with a threshold of 0.9
slightly outperforms the model with a threshold
of 1.0. It is noteworthy that at a threshold of 1.0,
each token is sent to all experts by the threshold-
based router. In contrast, at a threshold of 0.0, the
router behaves like a top-1 router. Hence, replacing
the top-1 router with the top-N router, where N
represents the number of experts, is also a simple
approach to enhance performance.

Wall Time. Figure 8 illustrates the per-batch wall
time during inference. We observe that a reduc-
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Figure 8: Per-batch wall time vs. FLOPs at MoE layers.

tion in FLOPs at the Mixture of Experts (MoE)
layers correlates with a decrease in overall wall
time. However, XMoE with smaller experts exhibit
significantly higher latency compared to those with
larger experts. The reason is that smaller experts
require more sparse computation, which is not well
supported on computation hardware such as TPUs
and GPUs (Li et al., 2023b). In addition, the in-
creased number of experts introduces additional
computational overhead to the routing process due
to operations like sorting and ranking across the
expert pool. These observations highlight the limi-
tations associated with further reducing expert di-
mensions. The size of experts should be properly
chosen in order to fully utilize the advantages of-
fered by XMoE.

6 Conclusion

This paper proposes a novel MoE design, XMoE,
with the primary objective of improving the effi-
cacy and efficiency of sparse MoE models. By em-
ploying small experts and a threshold-based router,
XMoE demonstrates performance enhancements
while significantly reducing FLOPs, leveraging the
inherent sparsity of the model. Our research sheds
light on the utilization of sparsity to improve model
quality. As for future directions, we aim to further
harness the advantages of sparse computation, fo-
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cusing on enhancements from both hardware and
algorithmic perspectives.

7 Limitations

Our experiments were conducted on language mod-
eling and machine translation tasks. To ascertain
the effectiveness of XMoE across a broader spec-
trum of NLP tasks, additional experiments are nec-
essary. Additionally, due to the limited compu-
tational resources in our experiments, the largest
model explored in this paper comprises 556 mil-
lion parameters, notably smaller than the parameter
counts in prevalent large-scale language models,
which often exceed billions. To substantiate the
claims made in this paper, further investigations
in larger-scale configurations are needed. The ex-
pert size is also an important factor to XMoE, and
setting it to 1 could yield valuable insights. Re-
grettably, our current implementation makes this
model unfeasible. We will leave these further in-
vestigation as our future work.
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A Appendix

A.1 Expert Selection

The process for expert selection concerning a given
token is presented in Algorithm 1. Tokens are dis-
patched to experts according to I . Subsequent to
the routing phase, each expert independently han-
dles the tokens assigned to them. Given that the
capacity of each expert is restricted to C, only the
top C tokens, as per the priority R, are processed
by each expert. Any tokens beyond capacity are
disregarded.

Algorithm 1 Expert Selection Procedure

Require: Probability distribution p =
[p1, p2, ..., pn], Threshold t

Ensure: Indices of selected experts I , correspond-
ing priorities R

1: Sort p in descending order
2: Initialize I = [], R = [] and sum = 0
3: for i = 1 to N do
4: sum = sum+ pi
5: Append i to I
6: Append pi − i to R
7: if sum ≥ t then
8: Break
9: end if

10: end for
11: return I , R

A.2 Load Balancing Loss

Let N represent the total number of experts in-
volved in the evaluation process. The auxiliary loss
function is formulated as follows:

loss = N ·
N∑

i=1

fi · pi, (7)

Code Language #Bitext Test

Uk Ukrainian 10M flores200
De German 30M WMT22
Ru Russian 10M WMT22
He Hebrew 10M flores200
Zh Chinese 30M WMT22

Table 4: Statistics of the training resources X→En from
WMT23.

where fi denotes the fraction of tokens that rank
the i-th expert as their top choice, and pi represents
the sum of probabilities assigned to the top-ranked
selection by these tokens.
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