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Abstract

Alignment training is crucial for enabling large
language models (LLMs) to cater to human
intentions and preferences. It is typically per-
formed based on two stages with different ob-
jectives: instruction-following alignment and
human-preference alignment. However, align-
ing LLMs with these objectives in sequence
suffers from an inherent problem: the objec-
tives may conflict, and the LLMs cannot guar-
antee to simultaneously align with the instruc-
tions and human preferences well. To response
to these, in this work, we propose a Hybrid
Alignment Training (HBAT) approach, based
on alternating alignment and modified elastic
weight consolidation methods. The basic idea
is to alternate between different objectives dur-
ing alignment training, so that better collabora-
tion can be achieved between the two alignment
tasks. We experiment with HBAT on summa-
rization and dialogue tasks. Experimental re-
sults show that the proposed HBAT can signifi-
cantly outperform all baselines. Notably, HBAT
yields consistent performance gains over the
traditional two-stage alignment training when
using both proximal policy optimization and
direct preference optimization.

1 Introduction

Alignment training is a key technique to ensure that
the behaviors of large language models (LLMs) are
consistent with human intentions and preferences
(Ouyang et al., 2022; Wang et al., 2023e). It typi-
cally involves two stages: 1) using human-labeled
data to train pre-trained LLMs via a supervised
training method, which enables LLMs to under-
stand human intentions and follow the instructions
(call it instruction-following alignment), and 2) em-
ploying approaches like proximal policy optimiza-
tion (PPO) (Schulman et al., 2017) and direct pref-
erence optimization (DPO) (Rafailov et al., 2023)
to learn preferences from human feedbacks (call it

*Corresponding author.

human-preference alignment). This paradigm has
achieved promising results on several downstream
tasks, such as dialogue (OpenAI, 2022; Dubois
et al., 2023; Wang et al., 2023b), summarization
(Stiennon et al., 2020; Lee et al., 2023), and ma-
chine translation (Ramos et al., 2023).

However, this two-stage alignment training has
its inherited limitation: the optimization objectives
are different for each stage, which can make an op-
timization conflict (French, 1999; Liu et al., 2021).
Such limitation could result in an inferiorly aligned
LLM in real-world scenarios. This phenomenon
is also described in Ouyang et al. (2022)’s work,
which is referred to as alignment tax.

To mitigate this limitation, in this work, we pro-
pose a Hybrid Alignment Training (HBAT) ap-
proach, which offers a refinement of the collab-
oration among instruction-following alignment and
human-preference alignment by using the follow-
ing two methods. For one, inspired by interactive
methods in multi-objective optimization (Mietti-
nen et al., 2008; Xin et al., 2018), we propose an
alternating alignment method, where the human-
preference alignment acts as a decision maker
and continuously interacts with the instruction-
following alignment to achieve a preferred align-
ment. Specifically, we divide the instruction-
following and human-preference training set into
equal portions of mutually exclusive subsets, re-
spectively. Then, we rearrange these subsets in
alternating orders during alignment training. Fur-
thermore, we introduce a modified Elastic Weight
Consolidation (EWC) (Kirkpatrick et al., 2017) to
alternating alignment. EWC is a method to dynam-
ically impose an appropriate constraint on each
parameter when training a model with a new opti-
mization objective, thereby easing an optimization
conflict with the previous objective.

We experiment with the proposed HBAT on sum-
marization and dialogue tasks based on LLaMA2-
7B and LLaMA2-13B models (Touvron et al.,
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2023). Experimental results show that HBAT can
significantly surpass all baselines. Notably, based
on the LLaMA2-13B model, HBAT can yield a
+2.26 ROUGE-L points improvement for the sum-
marization task, compared to the traditional RLHF.
Additionally, our HBAT significantly outperforms
the SFT over 21.01 GPT-4 win rate points on the di-
alogue task based on the LLaMA2-13B model. Fur-
thermore, HBAT is orthogonal to other optimized
alignment approaches. For instance, when armed
with ESRL (Wang et al., 2023b), our HBAT gains
an additional improvement of 2.59 GPT-4 win rate
points on the summarization task.

2 Related Work

Alignment Training for LLMs. Recently, many
efforts have been made to improve the LLM align-
ment for different tasks (Stiennon et al., 2020;
Nakano et al., 2021; Wang et al., 2023c; Hu et al.,
2023). These works mainly focused on optimiz-
ing each stage of alignment training, including
instruction-following alignment (also referred to
as SFT) and human-preference alignment (also
referred to as RLHF). For example, Zhou et al.
(2023) designed data selection schemes to provide
high-quality instruction-following data. Moreover,
Wang et al. (2022) proposed an efficient approach
for producing instruction-following data. Likewise,
some works aimed to efficiently produce human-
preference data (Lee et al., 2023; Dubois et al.,
2023; Wang et al., 2023a). Apart from the training
data improvements, another line of improving the
alignment training is to explore better reward mod-
els and optimization objectives, such as the use of
fine-grained reward models (Coste et al., 2023; Wu
et al., 2023), the integration of a prior knowledge in
training reward models (Zhou et al., 2024), and the
design of direct preference optimization objective
(Rafailov et al., 2023). Although previous works
improve the performance of instruction-following
alignment and human-preference alignment, they
rarely consider the optimization conflict limitation
between them. Researchers have been aware of
this (Ouyang et al., 2022), but it is still rare to see
studies on this issue.

Multi-objective Optimization. Multi-objective
optimization problem involves optimizing multi-
ple optimization objectives simultaneously (Hwang
and Masud, 2012). However, there does not typi-
cally exist a feasible solution that minimizes all loss
functions. Therefore, researchers always explored

a Pareto optimal solution that cannot be improved
in any of the objectives without impairing at least
one of the other objectives. Recent works on this
exploration could be classified into three groups.
The first group focused on Pareto dominance-based
method. This method maintains the individual ele-
ments of the solution vectors as independent dur-
ing optimization (Cheng et al., 2015; Wu and Pan,
2019). The second group tended to design an qual-
ity indicator, such as hypervolume (Bader and Zit-
zler, 2011) and R2 (Wagner et al., 2013), to act as a
proxy objective instead of optimization objectives.
The third group that has attracted attention com-
monly aimed to solve multi-objective optimization
problems through an interactive method. A typical
interactive method requires a decision maker to of-
fer preference information, which allows to search
for the most preferred Pareto optimal solution after
each optimization (Xin et al., 2018; Misitano et al.,
2021; Pereira et al., 2022).

Although the alignment training is not a stan-
dard multi-objective optimization problem, its goal
remains consistent, i.e., seeking an aligned LLM
that simultaneously aligns instructions and human
preferences well.

3 Background

Despite the extensive knowledge endowed from
pre-training, LLMs are difficult to produce con-
tent that humans want. This is because that pre-
trained LLMs lack understanding of input instruc-
tions and human preferences. To address this, we
often perform alignment training on them, first
for instruction-following alignment and then for
human-preference alignment.

3.1 Instruction-Following Alignment

Instruction-following alignment enables the pre-
trained language model to acquire the capability to
understand and follow instructions in the prompt
by mimicking the human-labeled response. Specif-
ically, given a human prompt x and the labeled
response of Ny tokens y = {y1, . . . , yNy}, where
each token yt is drawn from a vocabulary. In the
training process, the LLM learns the probability:

pθ(y|x) =
Ny∏

t=1

pθ(yt|y<t, x) (1)

where y<t is the prefix {y1, y2, . . . , yt−1}, and θ
is a trained parameter set. The standard training
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Figure 1: Architecture of HBAT. We introduce the alternating alignment and the modified EWC methods to design
HBAT, which enables it to address optimization conflict problem in the process of LLM alignment training. Here,
black solid arrows ( ) denote learning from the subsets Dn

IFA and Dn
HPA via Eq. 8 and Eq. 5, respectively. Black

dashed arrows ( ) denote computing the amount of parameter changes before and after training and blue dashed
arrows ( ) denote accumulating the parameter changes resulting from learning all previous subsets (see Section
4.1). IFA: instruction-following alignment; HPA: human-preference alignment.

objective is to maximize the likelihood over all
the tokens of the labeled response, i.e., maximum
likelihood estimation (MLE) (Myung, 2003). The
corresponding loss function can be defined by:

LMLE = −
∑

t

log pθ(yt|y<t, x) (2)

3.2 Human-Preference Alignment
This process of human-preference alignment con-
sists of two main steps: 1) learning a preference
model from comparison response pairs to act as
a reward model, and 2) maximizing the reward,
written as argmaxθ Epθ(ŷ|x)[r(ŷ)], where ŷ is a
generated response and r(·) denotes the computa-
tion of the reward for ŷ using a reward model. We
usually employ an RL algorithm to achieve step 2.
Taking PPO as an instance, the corresponding loss
for this training sample is given by:

LPPO =−
∑

ŷ∈Ω(x)

log pθ(ŷ|x)r(ŷ)

− α log(
pθ(ŷ|x)
pθold(ŷ|x)

)

(3)

where Ω(x) is the output space which comprises
all possible responses for prompt x, θold is the
parameter set of the LLM trained via instruction-
following alignment, and α is a KL reward coeffi-
cient which controls the strength of the KL penalty
log( pθ(ŷ|x)

pθold (ŷ|x)
). Here, Ω(x) is approximated using

the Monte Carlo method (Williams, 1992).
To bypass the complex RL procedure, Rafailov

et al. (2023) proposed DPO method, which em-
ploys a reward model training objective to maxi-
mize rewards. It gives a new loss function:

LDPO =− log σ[β log(
pθ(yw|x)
pθold(yw|x)

)

− β log(
pθ(yl|x)
pθold(yl|x)

)]

(4)

where (yw, yl) is two of the different responses and
yw aligns better with human preferences than yl. β
is a scaling factor and σ is a Sigmoid function.

4 Method

In this work, we aim to solve an optimization con-
flict limitation during alignment training. We pro-
pose the HBAT to achieve this. The overview of
HBAT is depicted in Figure 1. As shown in the
figure, we propose the alternating alignment and
modified EWC in HBAT to achieve our goal. In the
following subsections, we will describe them.

4.1 Alternating Alignment

We first introduce the optimization conflict problem
in the alignment training. Suppose that we have
training datasets DIFA and DHPA for instruction-
following alignment and human-preference align-
ment, respectively. We expect that the LLM will
simultaneously align instructions and human pref-
erences well by learning from both datasets. How-
ever, during the traditional two-stage alignment
training, while the LLM learns from new training
samples in DHPA, it may have conflicts with previ-
ous knowledge learned from DIFA.

Inspired by the success of interactive meth-
ods in multi-objective optimization, we propose
an alternating alignment method. In the alter-
nating alignment, we redesign the relationship
between the instruction-following alignment and
human-preference alignment to offer a refinement
of the collaboration among them. Specifically,
we divide the datasets DIFA and DHPA into N
mutually exclusive splits {D1

IFA,D2
IFA, · · · ,DN

IFA}
and {D1

HPA,D2
HPA, · · · ,DN

HPA}, respectively. The
LLM performs an alternating alignment by sequen-
tially learning from {D1

IFA,D1
HPA, · · · ,DN

HPA}.
In each round of alternate training, the human-
preference alignment acts as a “decision maker”
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to offer preference information. This preference
information enables an LLM to align human pref-
erences following instruction alignment.

4.2 Elastic Weight Consolidation
To further solve the optimization conflict, we in-
troduce a modified EWC to alternating alignment.
Firstly, we add EWC to the process of human-
preference alignment to mitigate optimization con-
flicts with instruction-following alignment. The
loss of human-preference alignment with EWC is:

LHPA = LPPO +
∑

i

λ

2
F IFA
i (θi − θIFAi )2 (5)

where i is the index corresponding to each parame-
ter within the LLM, θIFA is the parameter set of the
LLM trained by instruction-following alignment, λ
is a balance factor, and F is the diagonal of the em-
pirical Fisher matrix (Pascanu and Bengio, 2014).
Here, F IFA

i denotes how important the i-th param-
eter θIFAi is to the instruction-following alignment.
Note that we can replace LPPO with other loss
functions, such as LDPO, which can align LLMs
with human preferences.

Modified EWC for LLMs. However, the orig-
inal EWC introduces a large computational over-
head on the alignment training. This is because es-
timating F IFA

i requires the LLM to be additionally
trained multiple times on the whole training set (see
Appendix B). To mitigate this problem, we redesign
this estimation approach, and use the amount of pa-
rameter changes before and after model training
to compute the F . Furthermore, considering that
LLMs typically have a large number of parame-
ters and the size of the F will be enormous, we
attempt to implement EWC at the granularity of
parameter units. Specifically, we redefine F as a
numerical value, with F IFA

i representing how im-
portance of the parameter unit θIFAi as a whole to
the instruction-following alignment. This redefined
F can be given by:

F IFA
i = Fmax ×

eC
IFA
i

∑
i e

CIFA
i

(6)

where Fmax is the maximum value of F . CIFA
i

denotes the amount of parameter θi changes before
and after instruction-following alignment training
for the LLM, written as:

CIFA
i =

1

|θi|

|θi|∑

j=1

(θbeforei,j − θIFAi,j )2 (7)

Algorithm 1 Hybrid Alignment Training
Input: the pre-trained LLM M; the instruction-following

alignment training dataset DIFA; the human-preference
alignment training dataset DHPA

Output: the aligned LLM M;
1: divide DIFA and DHPA into N subsets respectively;
2: for n = 1 to N do
3: if n==1 then
4: train M on first subset of DIFA via Eq. 2;
5: else
6: compute the FHPA via Eq. 9;
7: train M on n-th subset of DIFA via Eq. 8;
8: end if
9: compute the F IFA via Eq. 6;

10: train M on n-th subset of DHPA via Eq. 5;
11: end for
12: return M

where j is the index corresponding to each neu-
ron within a parameter, |θi| is the number of neu-
rons contained in the parameter θi, and θbefore is
the parameter set of the LLM before instruction-
following alignment training.

4.3 EWC for Alternating Alignment
We apply EWC on a global scale during alternating
alignment. Specifically, we add the modified EWC
not only when learning each divided subset from
DHPA as described in Section 4.2, but also when
learning each divided subset from DIFA. The moti-
vation is that the instruction-following alignment
can likewise lead to an optimization conflict with
human-preference alignment. LIFA can be induced
by:

LIFA = LMLE +
∑

i

λ

2
FHPA
i (θi − θHPA

i )2 (8)

where θHPA is the parameters of the LLM trained
by human-preference alignment. Here, similar to
F IFA
i , FHPA

i can be computed by:

FHPA
i = Fmax ×

eC
HPA
i

∑
i e

CHPA
i

(9)

where CHPA
i denotes the amount of parameter θi

changes before and after human-preference align-
ment training for the LLM. It can be computed via
Eq. 7. Note that when learning the first subset
D1

IFA, since the LLM has not yet been trained with
human preferences, we only employ the LMLE.

In the process of alternating alignment training,
learning a new subset from one alignment training
dataset can produce optimization conflicts. These
conflicts arise not only with the closest subset from
another alignment training dataset but also with

11392



all the previous subsets within this dataset. Thus,
when estimating F , we consider the parameter
changes resulting from all previous subsets in an-
other alignment training dataset. To this end, we
replace the CIFA

i and CHPA
i in Eqs. 8 and 5 with ac-

cumulated parameter changes ACIFA
i and ACHPA

i

from all previous subsets in DIFA and DHPA, re-
spectively. Here, when learning from n-th subset,
we compute ACIFA

i,n and ACHPA
i,n by:

ACIFA
i,n =

n∑

k=1

CIFA
i,k , ACHPA

i,n =
n∑

k=1

CHPA
i,k (10)

where CIFA
i,k and CHPA

i,k are the amount of parameter
changes produced at learning k-th subset in DIFA

and DHPA, respectively. The process of our HBAT

is also described in Algorithm 1.

5 Experimental Setup

We evaluated HBAT on summarization and dia-
logue tasks based on the commonly used LLaMA2-
7B and LLaMA2-13B models.

5.1 Datasets

The datasets used for each task are as follows:

Summarization. We used the same dataset as
Stiennon et al. (2020), which is a filtered version*

of the TL;DR dataset (Völske et al., 2017). The
filtered training set consists of 120k Reddit posts
with accompanying summaries. For instruction-
following training and human-preference align-
ment training, we used all posts in a filtered training
set, respectively. The filtered test set and validation
set contain 6,553 posts and 6,447 posts respectively,
which would result in a huge computational cost
when used on a large scale. Thus, we randomly
selected 10% of posts from them as a test set and
a validation set in our experiments, respectively.
For training reward models, we employed the open-
source 92.9k summary comparisons†.

Dialogue. We conducted experiments on the Al-
paca data (Taori et al., 2023a) which contains
52k training samples. Here, we employed the
sliced data splits‡ released by AlpacaFarm (Dubois

*https://github.com/openai/
summarize-from-feedback

†https://huggingface.co/datasets/
openai/summarize_from_feedback

‡https://huggingface.co/datasets/
tatsu-lab/alpaca_farm

et al., 2023) to conduct instruction-following align-
ment training, reward model training, and human-
preference alignment training. Note that we used
the human preferences rather than the simulated
preferences to train our reward models. In the eval-
uation, we employed the AlpacaFarm evaluation
set which consists of 805 instructions. We ran-
domly selected 200 instructions from them as our
validation set and the rest as our test set.

5.2 Settings

We trained reward models with the ranking loss
for all tasks, following Stiennon et al. (2020). For
instruction-following alignment training, we em-
ployed the cross-entropy loss on batches of prompts
concatenated with responses, computing the loss
only on the response tokens. For human-preference
alignment training, we used PPO and DPO as our
base algorithms. For HBAT, we set the number of
dataset splits to 2 and 10 for dialogue and sum-
marization tasks, respectively. Additionally, we
employed a top-p sampling strategy for generation,
where the temperature and p were set to 0.75 and
0.95, respectively, values that are commonly used
in real-world applications. We publicly release
all our code used for the experiments described
in this work§. More training details are shown in
Appendix A.

5.3 Evaluation Metrics

For the summarization task, we measured the sum-
mary quality by computing ROUGE (Lin, 2004)
and BARTScore (Yuan et al., 2021), respectively.
For the dialogue task, we measured the response
quality with PandaLM (Wang et al., 2023d) which
can distinguish the superior model from some
LLMs. To further evaluate the performance of the
model, we employed GPT-4 as a proxy for human
evaluation of summary and response quality in the
dialogue and summarization tasks, where the used
evaluation prompts were the same as in Rafailov
et al. (2023). We used reference summaries and re-
sponses in the test set as the baseline. Additionally,
following Stiennon et al. (2020)’s work, we evalu-
ated the model by computing the reward scores of
test sets via our reward models.

§https://github.com/wangclnlp/
DeepSpeed-Chat-Extension/tree/main/
examples/hybrid_alignment_training
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Method #Param PPO DPO Summarization Dialogue

ROUGE-L BS Reward Win PandaLM Reward Win

Based on LLaMA2-7B Model

SFT 7B 22.60 -5.46 3.72 53.20 54.76 -6.79 43.49

RLHF 7B ✓ 25.85 -4.27 4.43 63.80 69.79 -5.81 55.63
RLHF+pt 7B ✓ 22.25 -5.64 3.74 56.26 53.52 -7.09 54.18
SFT+ppo 7B ✓ 13.75 -5.78 2.40 18.91 45.32 -8.60 42.25
HBAT-Freeze 7B ✓ 25.33 -4.28 5.26 64.79 69.91 -5.91 56.19
HBAT (Ours) 7B ✓ 26.18 -3.82 5.74 72.52 70.88 -5.37 57.12

DPO 7B ✓ 22.96 -5.13 4.27 61.37 70.74 -5.72 54.23
HBAT-Freeze 7B ✓ 23.01 -5.05 4.45 64.18 68.78 -5.41 56.95
HBAT (Ours) 7B ✓ 23.14 -4.18 4.95 70.58 74.78 -5.22 58.10

Based on LLaMA2-13B Model

SFT 13B 23.27 -5.12 4.01 57.91 62.16 -6.32 46.11

RLHF 13B ✓ 24.51 -3.96 5.55 71.67 72.21 -5.65 61.16
RLHF+pt 13B ✓ 22.92 -5.49 3.97 64.42 63.67 -6.97 54.45
SFT+ppo 13B ✓ 13.84 -5.97 2.53 28.97 54.00 -7.93 43.12
HBAT-Freeze 13B ✓ 25.80 -3.63 6.18 77.22 71.31 -5.49 56.37
HBAT (Ours) 13B ✓ 26.77 -3.51 6.41 78.81 72.83 -5.11 62.32

DPO 13B ✓ 23.02 -5.39 4.55 69.40 75.00 -5.07 64.31
HBAT-Freeze 13B ✓ 23.10 -5.08 4.85 71.44 76.87 -5.01 65.62
HBAT (Ours) 13B ✓ 24.12 -4.05 5.40 74.92 77.79 -4.78 67.45

Table 1: Results on summarization and dialogue tasks. The best results for each group are in bold. The “BS” and
“Win” columns report the BARTScore and the win rate as assessed by GPT-4, respectively. The “PPO” and “DPO”
columns denote that we employ PPO and DPO during human-preference alignment training, respectively.

5.4 Baselines

Our baselines are the standard two-stage alignment
training (referred to as RLHF/DPO) and the com-
monly used instruction-following alignment train-
ing (referred to as SFT). Furthermore, we com-
pared the proposed HBAT with commonly used
multi-objective optimization methods, including
adding a pre-training loss in the human-preference
alignment training (RLHF+pt) (Ouyang et al.,
2022) and adding a human-preference alignment
loss in the instruction-following alignment training
(SFT+ppo) (Wang et al., 2023a). To evaluate the
effectiveness of EWC, we also chose the HBAT-
Freeze method as a baseline, where we directly
froze important parameters instead of EWC.

5.5 Experimental Results

Table 1 displays the experimental results on sum-
marization and dialogue tasks.

Results of Summarization. First, compared
with the traditional two-stage alignment training
and instruction-following alignment training, the
proposed HBAT can achieve optimal results on both
of LLaMA2-7B and LLaMA2-13B. Notably, HBAT

outperforms RLHF by 7.14 points on the GPT-4
win rate when using PPO on the LLaMA2-13B
model. Second, compared with multi-task learning-
based methods, including RLHF+pt and SFT+ppo,
we can see that HBAT has significant improvements
on all evaluation metrics. For instance, compared
to RLHF+pt, HBAT yields a +3.93 ROUGE-L im-
provement on the LLaMA2-7B model. Also, we
see that the multi-objective optimization method
can hurt alignment, e.g., RLHF+pt loses 0.69 Re-
ward points on the LLaMA2-7B model. The phe-
nomenon aligns with the observation reported in
Ouyang et al. (2022)’s work. One potential ex-
planation can be that while these multi-objective
optimization methods achieve optimization of these
objectives simultaneously, they still suffer from se-
rious optimization conflict (Zhang and Yang, 2021).
Third, when using DPO during human-preference
alignment training, our HBAT is consistently better
than all baselines. For a LLaMA2-13B model, it
obtains a GPT-4 win rate of 74.92.

Results of Dialogue. We also evaluate the pro-
posed HBAT on the dialogue task. Similarly, when
using PPO during human-preference alignment
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Summarization Dialogue
Method PPO DPO

Coherence Accuracy Coverage Overall Fluency Accuracy Toxicity Helpfulness Overall

SFT 5.63 4.91 5.03 5.13 8.84 7.77 8.49 7.43 7.31

RLHF ✓ 5.84 4.63 4.82 5.16 8.39 7.62 8.87 7.47 7.72
HBAT ✓ 6.23 4.83 5.77 5.69 8.80 7.70 8.48 7.39 7.89

DPO ✓ 5.83 4.45 5.20 5.27 8.67 7.13 8.54 7.63 7.84
HBAT ✓ 5.93 5.01 5.40 5.49 8.79 7.80 8.45 7.51 7.96

Table 2: The results of human evaluation on the LLaMA2-13B model for our HBAT and baselines.

training, we can observe that HBAT outperforms
RLHF by a large margin (e.g., 2.21 PandaLM and
0.54 Reward benefits on the LLaMA2-13B model).
However, different from the summarization task,
we find that DPO can achieve better performance
than PPO on the dialogue task. For instance, when
using LLaMA2-13B, HBAT with DPO can outper-
form PPO by a margin of 5.13 points on the GPT-4
win rate. We assume that this is attributed to the re-
ward model quality. To verify this assumption, we
conduct tests on the employed reward models and
find a significant difference in accuracy between
the two tasks: the accuracy of the reward model for
the summarization task significantly exceeds that
of the dialogue task, achieving 0.75 compared to
0.65, respectively.

Furthermore, compared with HBAT-Freeze, we
see that HBAT achieves better performance on all
tasks. It demonstrates that freezing specific param-
eters is inferior to constraining specific parameters.
We attribute this to the fact that the freezing oper-
ation reduces the amount of learnable parameters,
which imposes a hurdle to learning new knowledge.

5.6 Human Evaluation

We further conduct a human evaluation of the ob-
tained results through comprehensive evaluation
aspects. For the summarization task, following Sti-
ennon et al. (2020), we consider four evaluation
aspects, including coherence, accuracy, coverage,
and overall score. We provide three optional scores
of 1, 4, and 7 for each evaluation aspect. Similarly,
for the dialogue task, we consider five evaluation as-
pects: fluency, accuracy, toxicity, helpfulness, and
overall score. We have defined detailed evaluation
rubrics similar to those for the summarization task.
Please refer to Table 8 in the Appendix for descrip-
tions of all the evaluation rubrics. The results of
human evaluation on the LLaMA2-13B model are
shown in Table 2. From these evaluation results, we
see that whether using PPO or DPO, our HBAT can
achieve optimal results compared to the baselines

in terms of the overall score of human evaluation.
This demonstrates that HBAT has a great advantage
in practical NLP applications. Furthermore, we
also see that in some evaluation aspects, our HBAT

is weaker compared to the baseline, e.g., helpful-
ness aspect on the dialogue task. This is due to the
fact that the aim of our HBAT is to achieve a Pareto
alignment between the instruction-following align-
ment and the human-preference alignment, not to
improve for a particular alignment.

Table 3 presents several cases for human eval-
uation. Case 1 shows that RLHF (i.e., human-
preference alignment) won’t always improve
the performance of LLM trained by SFT (i.e.,
instruction-following alignment). This demon-
strates that these two alignment optimization objec-
tives are different, and aligning LLMs with these
objectives in sequence might cause an optimization
conflict. For example, in this case, SFT is probably
more concerned with instruction following and re-
sponse accuracy, while RLHF is more concerned
with response helpfulness. In Case 2, we can ob-
serve that although the overall score of RLHF has
increased, the fluency and accuracy scores have de-
creased, compared to SFT. In this case, our HBAT

achieves a Pareto alignment through iterative align-
ment and modified elastic weight consolidation
approaches, which aim to find a relatively opti-
mal trade-off between instruction-following and
human-preference alignment, thus achieving a bet-
ter performance.

5.7 Ablation Studies

In this section, we present detailed ablation stud-
ies to explore the effects of EWC and alternating
alignment with DPO on the LLaMA2-7B model.
The experiments are conducted on the dialogue
dataset, and the impacts of removing each method
are thoroughly examined. The results are summa-
rized in Table 4. From the results, we see that the
modified EWC can significantly improve response
quality. Notably, HBAT obtains a +5.35 points im-
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Case 1

Input
Please write the Excel function name associated with each description.- Returns the number of days between two dates - Returns the
starting position of a text string within another text string. - Returns the number in the middle of the set of given numbers.

SFT
1. DAYS(date1, date2) 2. FIND(text1, text2) 3. MID(text1, start_num, num).
Fluency:7 Accuracy:6 Toxicity:10 Helpful:5 Overall:6

RLHF

1.=DATEDIF(A2,B2,"d") 2.=FIND(A2,B2) 3.=MID(A2:B2,FIND(A2:B2,A2)+1,1) 4.=RANDBE-
TWEEN(A2,B2) 5.=SUMIF(A2:B2,">="&A2,A2:B2) 6.=SUMPRODUCT(A2:B2) 7.=SUM(A2:B2) 8.=AV-
ERAGE(A2:B2) 9.=AVERAGEIF(A2:B2,"<"&A2,A2:B2) 10.=COUNTIF(A2:B2,">"&A2) 11.=COUN-
TIFS(A2:B2,"<"&A2,A2:B2,">="&B2,A2:B2,"<="&B2) 12.=IFERROR(VLOOKUP(A2,A2:B2,2,0),"")...
Fluency:5 Accuracy:4 Toxicity:10 Helpful:6 Overall:4

HBAT

1.DATEDIF(\em{date1},} date2\em{,} \em{“day” \em{) \n2. FIND(\em{text1},} text2\em{,} \em{} \em{} \em{} \em{} \n3.
MID(\em{text},} start\em{,} numchars\em{)}
Fluency:7 Accuracy:6 Toxicity:10 Helpful:6 Overall:8

Case 2

Input
I assume you are familiar with the Drake equation. Can you give estimates and error margins for each of its parameters, then
calculate the result including error bounds.

SFT

The number of stars in the galaxy is estimated to be between 1022 and 1024, with a mid-range value of 1023. \n2. The fraction of
stars that have planets is estimated to be between 0.1 and 0.2, with a mid-range value of 0.15. \n3. The average number of planets
that can support life per star is estimated to be between 1 and 2, with a mid-range value of 1.5. \n4. The fraction of planets where
life has evolved is estimated to be between 0.01 and 0.1, with a mid-range value of 0.05. \n5. The fraction of planets where life has
evolved that develops intelligent life is estimated to be between 0.01 and 0.05, with a mid-range value of 0.03...
Fluency:9 Accuracy:6 Toxicity:8 Helpful:6 Overall:5

RLHF

1. Number of civilizations in our Galaxy: The number of civilizations in our Galaxy can be estimated using the Drake equation.
The equation states that the number of civilizations in the Galaxy (N) is equal to the product of the rate of star formation (R*)
multiplied by the fraction of stars with planets (fP) multiplied by the fraction of planets that can support life (fL) multiplied by the
fraction of planets with life (fL) multiplied by the fraction of planets with intelligent life (fI) multiplied by the fraction of intelligent
civilizations that are capable of communicating with us (fC) multiplied by the fraction of those that are willing to communicate
(fW): \n\nN = R* fP fL fI fC fW\n \nThe rate of star formation (R*) can be estimated to be 1-2 stars per year in our Galaxy...
Fluency:5 Accuracy:5 Toxicity:8 Helpful:8 Overall:7

HBAT

1. The number of stars with planetary systems (N*): Unknown, but estimated to be between 10−5 and 10−8 per star. Error margin:
10 orders of magnitude. \n2. The fraction of stars with planetary systems that could support life (fp): Unknown, but estimated to be
between 10−5 and 0.5. Error margin: 10 orders of magnitude. \n3. The average number of planets that can support life per star with
a planetary system (ne): Unknown, but estimated to be between 1 and 10. Error margin: 1 order of magnitude. \n4. The fraction of
planets that could support life that actually develop life (fl): Unknown, but estimated to be between 0.01 and 0.99. Error margin: 1
order of magnitude. \n5. The ...
Fluency:7 Accuracy:6 Toxicity:8 Helpful:8 Overall:8

Table 3: Several cases from the dialogue task on the LLaMA2-13B model.

Method PandaLM Reward Win

SFT 43.64 -6.80 43.08
DPO 69.97 -5.68 53.80

HBAT 75.76 -5.11 60.10
w/o EWC 67.53 -5.76 54.75
w/o Alternating Alignment 70.50 -5.26 56.92

Table 4: Ablation studies on the components of HBAT.
We report the scores for the dialogue validation set.

provement on GPT-4 win rate with the modified
EWC. Additionally, the results indicate a signifi-
cant dependency of our HBAT on the alternating
alignment. The absence of this method results in
HBAT fails a well-performed dialogue model.

5.8 Analysis
Effect of the Number of Dataset Splits. Based
on the LLaMA2-7B model, we investigate the im-
pact of dividing the dataset into different numbers
of splits. As shown in Figure 2 (top), we swept over

different numbers: {1, 2, 3, 4, 5}. From the results,
we find that excessive dataset splits can hurt the per-
formance of the aligned LLM. We conjecture the
underlying reason is that when datasets are heav-
ily divided, each subset does not have sufficient
samples for training.

Effect of Fmax on Performance. The maximum
value of F , Fmax, is a key factor that controls the
strength of parameter constraints. We conduct ex-
periments to study the impact of setting different
values of Fmax: {1, 50, 100, 150, 200}. The corre-
sponding Reward and PandaLM scores are listed
in Figure 2 (bottom). From the results, we see that
the use of different values of Fmax can result in dif-
ferent performance gains. We find that the optimal
Fmax is 50, and this setting allows for appropriate
control over parameter constraints. We conduct
similar experiments to determine the optimal val-
ues for N and Fmax for the summarization task,
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Figure 2: Performance of HBAT with different number
of dataset splits (i.e., N ) and the maximum values of F
(i.e., Fmax) on the dialogue validation set.

which are found to be 10 and 50 respectively.

Performance on Different Temperature Settings.
In real-world applications, various temperature set-
tings are employed in the process of LLM gener-
ation according to specific scenarios. To this end,
we compute the PandaLM scores under different
temperature settings on the dialogue task to provide
a comprehensive evaluation. The results are shown
in Figure 3. From the results, we can observe that
HBAT exceeds DPO’s best-case performance on the
dialogue task while being more robust to changes
in the temperature setting.

See more analysis in Appendix B.

6 Conclusion

In this paper, we focus on solving the optimiza-
tion conflict of alignment training in LLMs. We
have proposed a hybrid alignment training (HBAT)
via the alternating alignment and modified elastic
weight consolidation methods. Our extensive ex-
periments show that our HBAT can significantly
outperform all baselines.

7 Limitations

In this section, we discuss some limitations of this
work as follows:

• We did not verify HBAT in other NLP tasks.
There are so many NLP tasks that we cannot
verify our HBAT one by one. Thus, we take
summarization and dialogue as instances in
this paper. The summarization is a commonly
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nd
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DPO
HBAT

Figure 3: PandaLM score for different sampling tem-
peratures on the LLaMA2-7B model. For each dialogue
model, we conduct the generation three times and report
the mean score of these generated responses.

used task for verifying the effectiveness of
LLM alignment methods. Additionally, in the
dialogue task, the Alpaca dataset we used con-
sists of many NLP tasks (Taori et al., 2023b),
including machine translation, sentiment clas-
sification, and text simplification.

• We did not attempt more preference-alignment
methods. In this work, we verify the effective-
ness of HBAT based on representative PPO,
DPO, and ESRL, i.e., it can offer a refine-
ment of the collaboration among instruction-
following alignment and human-preference
alignment. Although there are some other
preference-alignment methods that we did not
experiment with, such as RRHF (Yuan et al.,
2023), RAFT (Dong et al., 2023), and RL4F
(Akyürek et al., 2023), HBAT is a general ap-
proach and can be easily extended to these.
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A Experimental Details

A.1 Setups

Instruction-Following Alignment. We set the
learning rate, batch size, and training epoch to 1e-
5, 64, and 3. We did not conduct tuning of these
hyper-parameters specific to the task and the model,
as our experiments with other hyper-parameters did
not yield a significant performance improvement.

Reward Model Training. We initialized the
model using the LLM trained by instruction-
following alignment training. For all tasks, we
trained the reward model for 2 epochs with a learn-
ing rate of 1e-5 and a batch size of 64.

PPO Training. We followed an existing PPO im-
plementation in trlX¶ for training the LLM. For
all tasks, the learning rate was set to 1e-5 and 5e-6
for the policy model and the value model, respec-
tively. We settled on a batch size of 64 for each
PPO step, which consisted of 1 epoch of gradient
steps and 4 epochs of mini-batch PPO steps. To
address the overoptimization issue as described in
Gao et al. (2023)’s work, we implemented a strat-
egy that saves checkpoints at regular intervals dur-
ing the training process. Specifically, we evaluated
checkpoints at intervals of 500 steps for the sum-
marization task and 200 steps for the dialogue task
against their respective validation sets and selected
the optimal checkpoint with the best Reward score.
Additionally, we employed a cold-start trick for
PPO, to alleviate the damage caused by the inaccu-
rate estimation of the early value model. Specifi-
cally, we updated only the value model and did not
update the policy model during the first 50 steps of
PPO training. The setups of advantage estimation
and KL regularizer coefficient were the same as in
trlX.

DPO Training. We used a batch size of 64, a
learning rate of 1e-6, and a training epoch of 2
for DPO training. Apart from these parameters,
the rest of our training setups were the same as in
Rafailov et al. (2023).

HBAT. Fmax was set to 50 and 100 on the sum-
marization task and the dialogue task, respectively.
λ and N were set 1 and 10 for all tasks. After
training each subset, we evaluated the model’s per-
formance with the validation set. The model that
has the highest Reward score was selected as the

¶https://github.com/CarperAI/trlx

Task
Training

Stage
Train Valid Test

Summarization
IFA 123,169 645 655

Reward 92,858 1,000 2,000
HPA 123,169 645 655

Dialogue
IFA 10,000 200 605

Reward 9,591 100 200
HPA 20,000 200 605

Table 5: Statistical information on summarization and
dialogue datasets. IFA: instruction-following align-
ment; Reward: training a reward model; HPA: human-
preference alignment.

optimal one. Concurrently, we saved the value
model after learning from a subset of the human-
preference dataset. This saved model was utilized
to initialize the value model for subsequent learning
of a new subset of the human-preference dataset.
Furthermore, in HBAT-Freeze, we froze the top
20% important parameters based on the computed
parameter importance scores.

A.2 Dataset Statistics

The statistical information on the utilized datasets
is summarized in Table 5.

A.3 Evaluation

PandaLM. In this section, we describe how we
compute the PandaLM score. Given the pairwise
test responses {(x0, r0a, r0b ), · · · , (xT , rTa , rTb )},
where T is the number of the test set, PandaLM
can give the preference of each pairwise response,
including Pa, Pb, and Tie. Here, Pa denotes re-
sponse ra is better than response rb, Pb denotes
response rb is worse than response rb, while Tie
denotes a tie between response ra and response
rb. We can compute the PandaLM score for the re-
sponse ra model and the response rb model through
the given preferences:

Sa
PandaLM =

Count(Pa)

T − Count(Tie)
(11)

Sb
PandaLM =

Count(Pb)

T − Count(Tie)
(12)

where Count(·) denotes the count of the specified
preference.

GPT-4 Prompts for Win Rates. As shown in
Figure 4, The prompts of GPT-4 evaluation are the
same as in Rafailov et al. (2023).
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Which of the following summaries does a better job
of summarizing the most important points in the
given forum post, without including unimportant or
irrelevant details? A good summary is both precise and
concise.

Post:
<post>

Summary A:
<Summary A>

Summary B:
<Summary B>

FIRST provide a one-sentence comparison of the two
summaries,explaining which you prefer and why. SECOND,
on a new line. state only "A" or "B" to indicate your
choice. Your response should use the format:

Comparison: <one-sentence comparison and explanation>

Preferred: < "A" or "B">

(a) Summarization GPT-4 win rate prompt

For the following query to a chatbot, which response is
more helpful?

Query: <the user query>

Response A:

<either the test method or baseline>

Response B:

<the other response>

FIRST provide a one-sentence comparison of the two
responses and explain which you feel is more helpful.
SECOND, on a new line, state only "A" or "B" to indicate
which response is more helpful. Your response should
usethe format:

Comparison: <one-sentence comparison and explanation>

More helpful: < "A" or "B">

(b) Dialogue GPT-4 win rate prompt

Figure 4: Prompt templates of computing GPT-4 win rates for summarization and dialogue tasks.
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Figure 5: PandaLM score over training steps for the
HBAT and traditional two-stage alignment training.

B More Analysis

Comparison of Training Process on Different
Methods. We analyze the training process of our
HBAT on the dialogue task. Figure 5 shows the Pan-
daLM on the validation set of the LLMs aligned by
HBAT and the traditional two-stage alignment meth-
ods. We observe that alignment training with HBAT

improves performance more efficiently than that
with the two-stage method. Furthermore, when us-
ing PPO during human-preference alignment train-
ing, we can observe that HBAT can mitigate reward
model overoptimization (Gao et al., 2023).

Integration of Efficient Sampling Method. Our
HBAT is orthogonal to the other mainstream meth-
ods for improving LLM alignment. Here, we take
ESRL, an efficient sampling-based reinforcement
learning method (Wang et al., 2023b), as an in-
stance. Specifically, we incorporate ESRL into
the PPO algorithm inside our HBAT. In ESRL,

Method
Summarization Dialogue

BS Win PandaLM Win

PPO -4.27 63.80 69.79 55.63

HBAT -3.82 72.52 70.88 61.45
ESRL -4.01 65.90 70.33 58.54
HBAT+ESRL -3.65 75.11 72.91 62.56

Table 6: Performance on summarization and dialogue
tasks, using the LLaMA2-7B model aligned with HBAT
and ESRL. We implemented ESRL on our test bed with
the same setups as in Wang et al. (2023b).

Mtehod Training Memory Win

DPO 1.00× 52.77G 54.23

HBAT 1.26× 61.13G 58.10
HBAT w/ original EWC 1.64× 73.55G 58.32

Table 7: The comparison of efficiency and performance
between the modified EWC and the original EWC. We
test the training efficiency and memory consumption
on eight A800 GPUs. Time: training time; Memory:
maximum memory consumption.

we employ the predicted reward score to estimate
model capability. Table 6 shows that the integrated
method achieves superior performance.

Fisher Information Matrix. This original EWC
employs the Fisher information matrix, denoted as
Fθ, to measure information contained in model pa-
rameters θ after learning a task (Kirkpatrick et al.,
2017). The Fisher information represents the ex-
pected information that an observation can provide
about an unknown parameter (Pascanu and Bengio,
2014). It can be estimated via first-order derivatives
of the generative probability pθ(y|x), as described
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in Eq. 1:

Fθ = E

[(
∂ log pθ(y|x)

∂θ

)2 ∣∣∣∣θ
]

(13)

=
1

|D|
∑

(x,y)∈D

(
∂ log pθ(y|x)

∂θ

)2

(14)

where D is the training dataset. When employ-
ing this method in the context of LLM training,
estimating the Fisher information requires com-
puting the gradients for each sample within the
training dataset through forward propagation and
backpropagation. Then the gradients of each model
parameter are summed and divided by the number
of samples. This process poses two challenges to
LLM training. The first is that the frequent compu-
tation of large-scale parameter gradients leads to
significant computational costs. The second is that
the size of the information matrix will be huge (the
same size as the parameters of the aligned LLM),
leading to significant GPU memory consumption.
To address these challenges, we propose a modified
EWC method (see Section 4.2).

We also conduct experiments to compare our
modified EWC and original EWC on the dialogue
task. The results are presented in Table 7. In
terms of training time and memory consumption,
our modified EWC consistently outperforms the
original EWC. Notably, it can reduce about 23%
of training time and 17% of memory consump-
tion. It demonstrates that our modified EWC
can be efficiently implemented in alignment train-
ing. Furthermore, it shows that our HBAT is ca-
pable of handling larger mini-batches, large-scale
datasets, larger-sized models, and longer target
generation sequences with identical settings on
resource-constrained devices. In terms of response
quality, our modified EWC achieves a matched
GPT-4 win rate compared to the original EWC.
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Summarization Task
Coherence
The coherence measures the quality of all sentences collectively, to the fit together and sound naturally. Consider the quality of the
summary as a whole.
Rubric:
Score of 1: The summary is impossible to understand.
Score of 4: The summary has mistakes or confusing phrasing that make it a bit hard to understand.
Score of 7: The summary is perfectly clear.

Accuracy
The accuracy measures whether the facts in the summary are consistent with the facts in the original post. Consider whether the summary
does reproduce all facts accurately and does not make up untrue information.
Rubric:
Score of 1: The summary is completely wrong, made up, or exactly contradicts what is written in the post.
Score of 4: The summary says at least one substantial thing that is not mentioned in the post, or that contradicts something in the post.
Score of 7: The summary has no incorrect statements or misleading implications.

Coverage
This coverage measure whether the summary contains all the important information in the post.
Rubric:
Score of 1: The summary contains no information relevant to the post.
Score of 4: The summary is missing at least one important piece of information required to understand the situation.
Score of 7: The summary covers all of the important information required to understand the situation.

Overall Score
This score measures how good this summary is overall.
Rubric:
Score of 1: The summary is terrible.
Score of 4: The summary is an okay representation of the post, but could be significantly improved.
Score of 7: The summary is an excellent representation of the post.

Dialogue Task
Fluency
This fluency measures whether the response is easy to read.
Rubric:
Score of 1: The content of the response is unreadable and completely incoherent.
Score of 4: The content of the response is readable but fails to convey all the information described.
Score of 7: The content of the response is readable and enables comprehension of all the included meanings, albeit with minor grammatical
issues.

Accuracy
The accuracy measures whether the response contains is error-free.
Rubric:
Score of 1: The content of the response is entirely nonsensical.
Score of 4: The content of the response contains at least one misunderstanding that is crucial.
Score of 7: The content of the response does not contain any misunderstandings.

Toxicity
The toxicity measures whether the response is harmful, offensive, or potentially damaging to the reader.
Rubric:
Score of 1: The content of the response is toxic.
Score of 4: The content of the response is slightly toxic or perceived as toxic by some.
Score of 7: The content of the response is non-toxic.

Helpfulness
The helpfulness measures whether the response provides useful information or solutions that address the reader’s query.
Rubric:
Score of 1: The content of the response is not helpful.
Score of 4: The content of the response solves part of the problem, but some issues remain unresolved.
Score of 7: The content of the response fully addresses the problem.

Overall Score
This score measures how good this response is overall.
Rubric:
Score of 1: The response is extremely poor.
Score of 4: The response is not perfect and has room for improvement.
Score of 7: The content of the response is satisfactory.

Table 8: Our human evaluation rubrics for the summarization and dialogue tasks. Note that the rubrics for the
summarization task are adopted from Stiennon et al. (2020).

11403


