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Abstract

Automatic evaluation of natural language gen-
eration (NLG) tasks has gained extensive re-
search interests, since it can rapidly assess the
performance of large language models (LLMs).
However, automatic NLG evaluation struggles
with medical QA because it fails to focus on the
crucial correctness of medical facts throughout
the generated text. To address this, this paper
introduces a new data structure, imap, designed
to capture key information in questions and an-
swers, enabling evaluators to focus on essential
details. The imap comprises three components:
Query, Constraint, and Inform, each of which
is in the form of term-value pairs to represent
medical facts in a structural manner. We then in-
troduce imapScore, which compares the corre-
sponding medical term-value pairs in the imap
to score generated texts. We utilize GPT-4 to
extract imap from questions, human-annotated
answers, and generated responses. To mitigate
the diversity in medical terminology for fair
term-value pairs comparison, we use a medical
knowledge graph to assist GPT-4 in determin-
ing matches. To compare imapScore with ex-
isting NLG metrics, we establish a new bench-
mark dataset. The experimental results show
that imapScore consistently outperforms state-
of-the-art metrics, demonstrating an average
improvement of 79.8% in correlation with hu-
man scores. Furthermore, incorporating imap
into n-gram, embedding, and LLM metrics
boosts the base versions, increasing correla-
tion with human scores by averages of 89.9%,
81.7%, and 32.6%, respectively.

1 Introduction

LLMs, assimilated extensive knowledge, have
demonstrated impressive potential as medical con-
sultants. They can act as professional experts to aid
doctors in diagnosis, treatment decision-making,
and offering second opinions on complex cases

*Equal Contribution
†Corresponding author

Figure 1: The illustration highlights challenges and
potential remedies in automatic medical QA evalua-
tion, comparing responses from ChatGPT, PaLM-2, and
GPT-4 to Ground Truth through voting based on metric
scores. Initially, ChatGPT erroneously prevails based
on votes from the raw response text. In the 2nd round,
PaLM-2 takes the lead by focusing on the disease name.
However, most of the metrics fail to recognize SMA’s
alternate name, Werdnig-Hoffmann Disease. GPT-4 cor-
rectly identifies this alternate name and should receive
equal recognition and votes as PaLM-2. Upon unifying
the disease name in the 3rd round, all metrics accurately
identified and correctly voted for the disease.

(Thirunavukarasu et al., 2023; Singhal et al., 2022).
They also assist patients by providing diagnostic
information, treatment options, and medical pop-
ular science (Huo et al., 2023). However, the
practical application of LLMs in clinical settings,
where medical factual correctness is critical, en-
counters challenges. One significant issue is the
tendency of LLMs to generate “hallucinated” con-
tent—information that is plausible but incorrect or
unfounded in evidence (Maynez et al., 2020; Kad-
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dour et al., 2023). Meanwhile, many LLMs are
lauded for their proficiency in medical question-
answering (QA), as evidenced by their high scores
on standardized single-choice or multiple-choice
medical examinations (Tu et al., 2023). However,
excelling in such exams does not necessarily equate
to being a competent medical professional.

Recently, BLEU (Papineni et al., 2002) and
ROUGE (Lin, 2004) have become popular in medi-
cal response evaluation (Cai et al., 2023). However,
they fall short in effectively assessing content qual-
ity or capturing medical language nuances and fac-
tual accuracy (Reiter and Belz, 2009). LLM-based
metrics (Liu et al., 2023b; Fu et al., 2023) also
face challenges due to the diversity and complex-
ity of medical terminology, impacting their ability
to verify medical facts accurately. Furthermore,
these models’ uniform treatment of all tokens in
the responses neglects the crucial aspect of medical
correctness, affecting the reliability of LLM-based
evaluations in healthcare settings.

As shown in Figure 1, an example of automatic
evaluation for disease diagnosis QA generated by
three LLMs: ChatGPT, PaLM-2 and GPT-4. In
this scenario, ChatGPT mistakenly receives the
majority of support from six metrics (votes 6) in
the first voting on raw generated text, indicating
that most metrics are incapable of accurately eval-
uating disease diagnoses in their entirety. When
the focus shifted to disease names in the second
round, the majority of metric votes leaned towards
the correct answer from PaLM-2. This suggests
key information extraction could be a viable ap-
proach, mirroring the practice of highlighting and
aligning essential details in the generated answer
and the label during manual assessment. However,
the results still neglect the fact that SMA (the dis-
ease mentioned in the example) is also known as
Werdnig-Hoffmann Disease, a detail overlooked by
most metrics. If we further unify the disease name
and conduct the third round of vote, all metrics
unanimously select the correct answer (generated
by PaLM-2 and GPT-4), underscoring the impor-
tance of terminology standardization in evaluation.

These considerations guide a more refined eval-
uation paradigm for medical QA, involving: 1)
identifying core needs and critical evidence, 2) uni-
fying terminology and ensuring alignment, and
3) prioritizing key information and scoring. To
extract the key information, we introduce a new
data structure, imap, which captures the core re-
quirements and informs from questions and an-

swers, parsing them into medical term-value pairs
based on primary needs, constraints, and informed
points. GPT-4 can be readily instructed to gener-
ate the imap for questions and answers. Addition-
ally, a medical knowledge graph aids in unifying
medical expressions. Leveraging the imap of the
question, reference, and generated response, we
proposed a new metric, imapScore, which com-
pares corresponding medical term-value pairs
within the imap to score generated texts. This
metric can be flexibly applied to prompt LLMs to
evaluate text from various perspectives, integrat-
ing principles from human scoring to align more
closely with expert assessments. We quantitatively
evaluate imapScore by comparing the correlation
between imapScore and human score for medical
QA. Since there are no public available benchmark
for medical QA with human ratings, we created a
new benchmark that can also be utilized for other
medical QA-related research. We enlisted three
medical professionals to rate the generated outputs
of two public datasets, HMedQA in Chinese and
iCliniq1 in English from three perspectives: fac-
tual accuracy, completeness, and specific. 2 After
performing extensive experiments and conducting
in-depth analysis from diverse perspectives, we
found that imapScore surpasses other metrics, sig-
nificantly improving the correlation with human
scores. Furthermore, the integration of imap into
n-gram, embedding, and LLM metrics notably en-
hances the base versions. Our contributions are as
follows:

• New Benchmark: A new benchmark 3 for
evaluating the NLG performance in medical
QA, especially from the perspective of factual
correctness of the LLM-generated content.

• imap: A data structure introduced to parse
medical QA into term-value pairs, capturing
the core needs and critical evidence from ques-
tions and answers to enhance evaluation. Mea-
suring imap of the generated content can en-
hance the performance of n-gram, embedding,
and LLM-based metrics.

• imapScore: A new metric proposed to use the
1https://www.icliniq.com/
2HMedQA, the latest medical QA dataset in Chinese, is

accessible through this link: HMedQA Derived from “Huatuo-
Llama-Med-Chinese,” we abbreviated it as HMedQA in our
paper. The iCliniq dataset, sourced from the iCliniq website,
can be found: iCliniq .

3https://github.com/HathyHuimin/imapScore
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imap for scoring texts, aiming to align closely
with expert assessments. Experimental results
show that imapScore significantly improves
correlation with human scores over existing
metrics.

2 Related Work

Metrics for Evaluating Generated Response.
Various metrics have been proposed to measure
the semantic equivalence of the generated texts
against the reference. N-gram-based metrics are
most commonly used; they rate the quality of gen-
erated text by computing scores derived from the
lexical overlap between the predictions and the ref-
erence. Representatives include BLEU which em-
phasizes n-gram precision, and ROUGE which fo-
cuses on n-gram recall. NIST (Doddington, 2002),
a variant of BLEU, emphasizes the importance
of informative n-grams, offering a more nuanced
assessment. Embedding-based metrics offer bet-
ter semantic understanding compared to n-gram-
based methods that depend on superficial text over-
lap. BERTScore (Zhang et al., 2019), a promi-
nent embedding-based metric, employs BERT to
derive features from sentences, producing similar-
ity scores through word pair inner products. An-
other noteworthy metric is BARTScore (Yuan et al.,
2021), which formulates evaluating generated text
as a text generation task from BART (Lewis et al.,
2019). MoverScore (Zhao et al., 2019) advances
by evaluating semantic similarity, tracking “infor-
mation units” from reference to generated text. In
the realm of fact-based summarization evaluation,
QuestEval (Scialom et al., 2021) and QAFactEval
(Fabbri et al., 2021) employ question generation
models and question answering models to facilitate
a detailed comparison of facts, while AlignScore
(Zha et al., 2023) evaluates text alignment through
chunk comparison. However, these general task
methods may require specific dataset training and
lack specificity evaluation. Recently, LLM-based
approaches such as GPTScore (Fu et al., 2023) and
G-EVAL (Liu et al., 2023b) have been employed
for evaluating generated responses. Leveraging
LLMs as evaluators presents significant promise in
appraising responses across a range of tasks. How-
ever, these methods often struggle to measure fine-
grained medical facts and are heavily dependent
on predefined evaluation protocols and prompts.
FActScore (Min et al., 2023) proposes an approach
to evaluate factual accuracy by dividing generated
text into short sentences. In contrast, our method

Figure 2: The boxplot displays the distribution of
human-scored CMP/SPC at the same ACC in our bench-
mark. It reveals a substantial variance in CMP/SPC
metrics at the same ACC ( > 1.0), with only a slight
overlap between CMP and SPC distributions, highlight-
ing the necessity of concurrently using all three metrics.

delves into term-level relationships and explores
additional dimensions, including comprehensive-
ness and specificity, providing a more nuanced and
detailed evaluation.

Medical QA Benchmarks. Numerous signifi-
cant studies have enriched the benchmarks of med-
ical QA. MedQA (Jin et al., 2021) provides a
trilingual, open-domain QA dataset derived from
medical exams. MedMCQA (Pal et al., 2022) a
benchmark primarily based on questions from In-
dian medical institutions. MultiMedQA (Pal et al.,
2022) encompasses a wide range of healthcare top-
ics through multiple-choice questions. MLEC-QA
(Li et al., 2021) is the largest Chinese biomedi-
cal QA dataset from national exams. CARE-MI
(Xiang et al., 2023) is a Chinese benchmark fo-
cusing on misinformation in maternity and infant
care. CMExam (Liu et al., 2023a) is a dataset with
explanations for model reasoning from Chinese
medical exams. Recently, Cai et al. (2023) pro-
posed MedBench, a comprehensive Chinese med-
ical benchmark that employs BLEU and ROUGE
for self-assessment.

3 Preliminaries

Generated Text Evaluation. We aim to assess
the quality of generated responses in terms of fac-
tual correctness in medical QA scenarios, where
the goal is to generate a response Rs based on a
given question Qs. Commonly, one or multiple
human references Rf are provided to aid this eval-
uation. The evaluation metrics are quantified by:
score = f(Rs|Qs,Rf, α), where α denotes fac-
tual correctness aspects (e.g., accuracy).
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Figure 3: Our framework for imapScore calculated based on imap extraction and linking. We input the imap
instruction into the LLMs to generate a question imap (imapQ), which is further used to generate label and response
imap (imapL and imapR). A medical knowledge graph then aids the LLMs in identifying relationships between
term’s values of imapL and imapR. Then the imapScore is computed based on these matching relationships.

Gold-standard Factual Correctness Evaluation.
Currently, the gold standard for assessing the qual-
ity of generated text is human evaluation. This in-
volves using a set of standard criteria to rigorously
assess the correctness of medical facts contained
within the text. In our benchmark, evaluators are
instructed to score the generated responses from
three commonly used perspectives independently:

• Accuracy (ACC) (Thirunavukarasu et al.,
2023) assesses whether the response contains
inaccuracies or unfactual content.

• Completeness (CMP) (Cai et al., 2023) mea-
sures how well the generated text captures the
key ideas of the reference.

• Specific (SPC) (Fu et al., 2023) determines
whether the generated text is generic or spe-
cific to the reference.

Figure 2 illustrates the distributions of CMP and
SPC annotated scores at the same ACC, empha-
sizing the importance of using all these metrics.
Scores range from 0.0 to 5.0. High ACC but low
SPC often results when an answer is correct but too
general, a common occurrence in LLMs answering
medical questions. For instance, a response like
“take medicine” for a specific drug reference is not
incorrect, but it lacks detail. Similarly, mentioning
only one correct drug out of the referenced three
demonstrates ACC but lacks CMP.

The human evaluation process typically begins
with identifying the core requirements of the ques-
tion, followed by searching for and noting the es-
sential elements in the reference answer that ad-
dress these requirements, with an emphasis on high-
lighting key points. Subsequently, they assess how
comprehensively the key points are covered in both
the reference answer and the generated response be-
fore assigning a score. Consequently, we propose
the imapScore to mimic human evaluation logic to
improve automatic evaluation in medical QA, as
detailed further in Section 4.2.

4 imapScore

imap structures questions and answers, encapsu-
lating key information. From this, we propose an
effective metric—imapScore.

4.1 Interactive MAP (imap)

The imap, an interactive map generalized for
single-turn or multi-turn QA, is a data structure
designed to distill questions or answers down
to a level of medical factual detail that is suf-
ficient for interaction. It consists of three key
components: Query (Q), Constraint (C), and
Inform (I), which encode the primary needs, their
constraints, and the informed points, respectively.
Each element within these components is a
medical term-value pair. Given that one term
can have multiple values, formally, imap is
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represented as imap = {Q,C, I}, where Q =[
(t1, v11), (t

1, v12), ..., (t
1, v1L1), ..., (t

N , vN
LN )

]
.

Here N and Li represent the unique number of
medical terms in Q and the number of corre-
sponding values related to ti, respectively. In this
context, “t” and “v” represent the term and the
value respectively. The term probes the key intent
of the question, while the values communicate the
essential response points. These terms and values
are not constrained to a fixed set; rather, they are
dynamically generated by the LLMs. For instance,
consider the following question: “A young woman
displays symptoms like erythematous plaques and
papules. What’s the diagnosis? Which departments
can offer treatment?”. The Q can be represented as
[(diagnosis, ?), (departments, ?)].

Both C and I share the same format as Q, but
the specific terms and values can differ. The imap
is capable of extracting key medical facts from QA
interactions for rating. In single-turn QA, the ques-
tion imap simplifies to {Q,C}, containing only
the Query and Constraint, while the answer imap
simplifies to {I}, containing only the inform con-
tents. For instance, as illustrated in Figure 3, we
derive the imap for Question as {Q=[(Treatment,
?)], C=[(Symptom, Sore Throat), ...]}. Similarly,
the imap for Response is {I=[(Treatment, Antibi-
otic Therapy), (Treatment, Surgical Drainage)]}.

4.2 The imap-Based Metric: imapScore
The key insight of imapScore is that the values as-
sociated with a specific medical term, which are
required in the question and present in the response
imap, should closely align with those in the label
imap. The extraction of imap is efficiently facili-
tated by LLMs (as elaborated in Section 4.3); how-
ever, clarifying the nature of these value relation-
ships and what defines their alignment are essential
aspects to consider. We draw upon the framework
of relations between entities in medical knowledge
graphs to divide the relationships among a label’s
value vL and a response’s value vR into four dis-
tinct categories: 1) Exact Match (Rele): vL and
vR sharing identical meanings but may be phrased
through varied expressions, exemplified by “Inci-
sion and Drainage” and “Surgical Drainage”; 2)
Belonging (Relb): when vL is a subset of vR, exem-
plified by “Penicillin” and “Antibiotic Therapy”; 3)
Containment (Relc): when vL includes vR, exem-
plified by “Nephritis” and “Glomerulonephritis”;
4) Unmatched (Relu) relationships that do not fit
into the above three categories.

Given the question and its imap, we assume
that the imap for the human-annotated label
and the generated response are represented as
imapL =

[
(ṫ1, v̇11), ..., (ṫ

i, v̇ij), ...
]
, and imapR =

[
(t̄1, v̄11), ..., (t̄

i, v̄ij), ...
]
, respectively. Here ṫi ∈

TL, t̄i ∈ TR, where TL and TR are the sets of
medical terms in imapL and imapR, respectively.
Similarly, v̇ij ∈ V L

ṫi
, v̄ij ∈ V R

t̄i
, where V L

ṫi
and V R

t̄i

are the sets of values associated with ṫi and t̄i, re-
spectively. Then

imapScore =
∑

t∈TL∩TR

(1)

[

∑
v̇∈V L

t

IM(v̇,V R
t )(v̇)

|V L
t | +

∑
v̄∈V R

t

IM(v̄,V L
t )(v̄)

|V R
t | − λt],

where IM(·)(v) is an indicator function that
maps the value v to one if it satisfies the con-
dition M(·). M(v, V ) denotes the scenerios
where the best match between value v and
all values in set V , determined by the pri-
ority order: Rele,Relb,Relc,Relu, is not Un-
matched Relu. |V L

t | and |V R
t | are the num-

ber of values of term t corresponding to imapL

and imapR, respectively. The term λt =∑
v̇∈V L

t ,v̄∈V R
t

IR(v̇,v̄)=Relc (v̇,v̄)

IR(v̇,v̄)∈{Rele,Relb,Relc}(v̇,v̄)
serves as a

penalty term that penalizes the value relationships
R(v̇, v̄) where v̇ includes v̄. This arises when re-
sponse values are more specific than their labels,
leading to potential inaccuracies. For example,
when the label is “Nephritis” and the response is
specifically “Glomerulonephritis,” it could poten-
tially miss other conditions like “IgA Nephropa-
thy”, resulting in a misdiagnosis.

4.3 Implementing imapScore
The calculation of imapScore as outlined in Equa-
tion 1 necessitates imapL, imapR, and an under-
standing of the correspondence between their term
values. We introduce a paradigm based on LLMs
and a medical knowledge graph (KG) to facilitate
the extraction of imap and the association of its val-
ues. The methodology comprises two main steps,
as depicted in Figure 3. Initially, we provide GPT-4
with an instruction to identify the question imap.
Subsequently, this question imap is incorporated
into the instruction, prompting GPT-4 to generate
both the label imap and the response imap. In the
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Table 1: The imap extraction instruction template for
questions and answers. Detailed information can be
found in Appendix, Section C.

Question Label or Response

Task Definition: ... Please
refer to the following exam-
ple to extract the imap for
<Question>.

Example:
[Example Question]
[Example imap]

<Question>: ...
Please output <imap>:

Task Definition: ... Please
refer to the following exam-
ples to extract the imap for
<Response>.

Example: [...]

<Question>: ...
<imap>: ...
<Response>: ...
Please output <imap>:

second step, the KG is employed to aid GPT-4 in
identifying the relationships between the values
of medical terms for both the label imap and re-
sponse imap. By following these procedures, we
are equipped to compute the imapScore in accor-
dance with Equation 1.

Question imap Extraction. The imap extraction
process can be simplified by supplying GPT-4 with
a natural language instruction. It should define the
imap, outline the task, incorporate examples, and
pose the question. An illustration of this prompt for-
mat is provided in Table 1. More specific prompts
are elaborated in Table 5 in the Appendix.

Label or Response imap Extraction. To extract
the imap for a label or response, we update the
prompt by adding both the question and its imap
when instructing GPT-4. As shown in the right
column of Table 1, the process involves revising
the task description, incorporating the question
and its imap into the examples, and adding the la-
bel/response along with its corresponding question
and imap. This approach facilitates the extraction
of the response imap. Further examples are detailed
in Table 6 in the Appendix.

imap Link: Value Relationship Identification.
The essential step in calculating the imapScore
is to identify the relationships between each term
in V L

t and V R
t with respect to term t. We pro-

pose two methods to achieve this: Medical KG-
based and LLM-based. The KG-based method, as
described in (Wang), is executed by 1) mapping
each value to a KG entity that shares the same
meaning, and 2) identifying whether there exist
Rele,Relb,Relc relations between KG-linked enti-
ties for values in V L

t and V R
t . Specifically, to map

a value to KG, we employ a BERT-based encoder

to derive word embeddings, generate entity can-
didates, re-rank them based on BERT similarity
scores and the presence of the candidate entity in
the value, and finally select the top-ranked entity
as the mapped KG entity. To verify the matching
relation for values in the two sets, we check for
the existence of a “Synonym” relation as Rele and
a “Belonging” relation as Relb or Relc for each
mapped KG entity in V L

t and V R
t . For the LLM-

based method, we provide GPT-4 with the label
imap and response imap, and instruct it to generate
pairs of term-value for label imap and response
imap corresponding to the four matching relation-
ships (Rele,Relb,Relc,Relu). The imapScore uti-
lizes the medical KG to aid GPT-4 in determining
the relationships between term values.

5 Experimental Settings

5.1 Evaluation Dataset Construction

Unlike previous research that assesses the overall
text quality, we focus on evaluating factual correct-
ness across multiple dimensions within the context
of medical QA. Given the absence of publicly ac-
cessible medical QA datasets with human scores,
we explored two available datasets: HMedQA,
which is in Chinese, and iCliniq, in English. Both
datasets feature single-turn QA interactions be-
tween patients and online doctors. Due to the pres-
ence of noise, such as incomplete answers and ob-
viously factually false statements in the labels, we
eliminate these noisy samples and retain as many
as possible, resulting in 2,998 from HMedQA and
2,003 from iCliniq. A comprehensive analysis of
these curated datasets is provided in Table 3.

Responses Generation. To thoroughly examine
our approach for evaluating generated responses,
we utilize LLMs to generate two distinct sets of
responses for HMedQA and iCliniq, respectively.
For HMedQA, we employed GPT-4 and PaLM-2 to
generate responses derived from patient questions.
Given that iCliniq already includes responses from
ChatGPT, we supplemented it with an additional
series of responses given by PaLM-2.

Human Scoring. Despite having questions, la-
beled answers, and generated responses, we still
lack human scores to validate the consistency be-
tween our method and manual scoring, thereby
proving the effectiveness of imapScore. To ensure
the professionalism of manual scoring, we invited
three medical experts to independently score the
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Table 2: The Spearman’s (ρ) and Kendall-Tau (τ ) correlations of different metrics on HMedQA and iCliniq datasets
show performance in accuracy (ACC), completeness (CMP), and specific (SPC). All values are multiplied by 100
for clarity. Darker shades of blue signify better performance. +imap represents replacing raw question text and
answer text with their imap for evaluation. Nearly all +imap instances significantly (p < 0.05) outperform their base
versions with exceptions marked by *. imapScore consistently exceeds all baseline metrics, and + KG (indicating
the use of KG to assist value relationship identification in imapScore) significantly (p < 0.05) exceeds the base
imapScore, with exceptions marked by .̈ Notably, UniEval results for HMedQA, not supporting Chinese, and
original ChatGPT responses for iCliniq were used as provided.

Metrics

HMedQA iCliniq

GPT-4 PaLM-2 ChatGPT PaLM-2

ACC CMP SPC ACC CMP SPC AVE ACC CMP SPC ACC CMP SPC AVE

ρ τ ρ τ ρ τ ρ τ ρ τ ρ τ ρ τ ρ τ ρ τ ρ τ ρ τ ρ τ ρ τ ρ τ

ROUGE-1 17 13 14 10 13 9 34 26 28 20 23 17 22 16 12 9 12 8 9 7 18 14 21 15 21 15 16 11
+imap 44 32 41 30 37 28 51 39 41 30 40 29 42 31 27 19 28 20 31 23 26 19 27 20 32 22 28 20
ROUGE-2 19 14 17 12 15 11 37 29 31 23 28 21 24 18 17 12 15 11 14 10 18 13 17 13 20 14 17 12
+imap 47 38 44 34 36 30 53 43 44 34 42 34 44 36 24 18 25 18 25 19 23 17 23 17 27 20 24 18
ROUGE-L 13 10 8 6 10 7 24 18 19 14 13 10 14 11 12 9 13 9 7 5 13 9 17 12 18 13 13 10
+imap 42 32 37 27 34 26 49 38 38 28 34 25 39 29 25 17 26 18 29 21 25 18 25 18 30 22 27 19
BLEU-4 13 10 6 5 9 6 26 19 21 15 15 11 15 11 19 14 18 13 14 10 16 12 17 12 19 13 17 12
+imap 35 26 30 22 29 22 43 33 32 23 27 20 33 24 23 17 24 17 24 18 22 17 23 17 24 17 23 17

BERTScore 18 13 14 10 14 10 24 18 20 14 17 12 18 13 21 15 23 16 19 14 18 13 20 15 22 16 20 15
+imap 37 27 36 26 35 26 41 31 31 23 30 23 35 26 39 28 40 29 39 29 32 24 31 23 36 26 36 26
MoverScore 27 19 22 16 18 13 41 31 35 25 28 21 28 21 18 12 17 12 14 10 20 15 22 16 23 16 19 14
+imap 47 35 42 31 37 28 55 43 44 34 38 29 44 33 38 28 39 29 36 26 34 26 30 22 33 24 35 26
BARTScore 18 13 18 13 16 12 33 24 25 19 20 15 22 16 12 8 12 9 9 7 11 8 11 8 13 9 11 8
+imap 31 23 28 20 28 21 40 30 32 23 28 20 31 23 33 24 32 23 31 22 26 19 22 16 27 20 28 21
UniEval - - - - - - - - - - - - - - 15 11 14 10 8 6 4 3 7 5 3 3 8 6
+imap - - - - - - - - - - - - - - 30 22 28 20 22 16 13 10 14 10 10 7 20 14
AlignScore - - - - - - - - - - - - - - 8 6 7 5 7 5 13 10 14 11 7 6 9 7
+imap - - - - - - - - - - - - - - 25 19 18 13 16 12 30 21 27 19 20 14 23 16
QuestEval - - - - - - - - - - - - - - 21 23 31 22 26 19 21 16 23 17 21 15 24 19
+imap - - - - - - - - - - - - - - 37 27 38 27 34 25 25 19 30 23 31 22 33 24
QAFactEval - - - - - - - - - - - - - - 24 18 22 16 21 16 24 18 23 16 23 16 23 17
+imap - - - - - - - - - - - - - - 25 19 23 18 23 16 27 19 25 18 26 16 25 18

GPTScore 33 25 45 39 27 22 38 31 35 28 25 21 34 28 27 23 26 21 17 16 25 20 24 20 23 15 24 19
+imap 52 31 48 40∗ 41 36 44 42 45 33 32 42 44 38 37 28 39 29 36 34 27 25 28 25 29 21 34 27
G-EVAL 47 39 49 40 26 22 44 34 41 33 32 25 40 32 32 27 30 24 22 18 23 19 26 21 26 19 26 21
+imap 57 47 51 42∗ 41 37 54 45 47 38 43 41 49 42 40 33 38 31 42 34 28 23 30 25 34 25 35 28
FActScore 20 17 20 17 27 24 23 18 21 17 29 24 23 20 7 6 6 5 6 4 12 10 17 14 11 9 10 8
+imap 52 41 57 46 42 34 54 40 53 41 39 35 50 40 27 19 17 16 17 15 33 28 30 23 24 19 25 20

imapScore 63 50 62 49 44 41 62 53 60 50 49 45 57 48 56 47 55 43 55 48 37 30 33 27 40 33 46 38
+ KG 66 54 65 53 47 44 68 57 64 5̈2 53 48 60 51 60 50 60 50 61 53 48 40 44 35 4̈0 3̈3 52 44

Figure 4: Distribution of human scores (ranging from 0
to 5) across ACC, CMP, and SPC dimensions.

two sets of generated responses of two datasets
from three dimensions: Accuracy (ACC), Com-
pleteness (CMP), and Specific (SPC). After com-
prehensive training and a preliminary test, the ex-
perts’ average ratings were used. As presented in
Figure 4, the distribution of overall human scores
across the three dimensions is relatively uniform,
spanning from 0 to 5.

The percentage agreement among the three ex-

perts is calculated pairwise and then averaged. We
categorize the scores into the following bins: {0},
{0.5, 1, 1.5}, {2, 2.5}, {3, 3.5}, {4,4.5}, {5}. We
consider the ratings of two experts to "agree" if they
fall within the same bin. The percentage of agree-
ment for Accuracy, Completeness, and Specificity
is 0.87, 0.85, and 0.81, respectively. We also calcu-
lated the average difference between the pairwise
ratings of the experts on Accuracy, Completeness,
and Specificity, which were 0.46, 0.47, and 0.53, re-
spectively. The range of the rating is 5. Given that
the raters underwent comprehensive training prior
to the rating process, the inter-annotator agreement
is quite promising.

5.2 Baselines, Correlations, and Dimension

We consider the metrics of three broad cate-
gories: 1) N-gram-based metrics, which include
three variations of ROUGE (ROUGE-1, ROUGE-
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Figure 5: Illustration of the Spearman’s correlation enhancement across ACC, CMP, and SPC by integrating imap
into baselines. We divide the data into three buckets based on imap compression ratios (p), encoding the length ratio
of imap to the original response, distinguished by colors. Legends display the sample distribution by p value range.

2, ROUGE-L) and a variation of BLEU (BLEU-
4); 2) Embedding-based metrics, which include
BERTScore, MoverScore, BARTScore, UniEval
(Zhong et al., 2022), AlignScore (Zha et al., 2023),
QuestEval(Scialom et al., 2021), and QAFactE-
val(Fabbri et al., 2021); 3) LLM-based methods,
include GPTScore and G-EVAL. Details on these
metrics have been discussed in Section 2. Our eval-
uation methodology aligns with that of G-EVAL,
focusing on analyzing different metrics through
sample-level Spearman (Zar, 2005)’s and Kendall-
Tau (Kendall, 1938) correlation. The assessment
spans three critical dimensions: ACC, CMP, and
SPC. Implementation details for baselines and
imapScore are in Appendix Section A.

6 Experiment Results

Our research aims to explore the following: 1) the
efficacy of imapScore in medical QA evaluations;
2) the impact of incorporating imap on improving
current leading approaches.

Main Results of imapScore. Table 2 displays
Spearman’s and Kendall-Tau Correlation across
metrics for generated responses from two datasets,
revealing significant insights: 1) Utilizing imap
instead of raw text for evaluation significantly
elevates baseline metrics. The enhanced ver-
sions (“+imap”) outperform the originals, with av-
erage Spearman’s correlations for n-gram-based,
embedding-based, and LLM-based metrics rising
from 14.9 to 28.3, 15.6 to 28.4, and 28.0 to 37.1,
respectively, showing relative improvements of
89.9%, 81.7%, and 32.6%. 2) imapScore consis-
tently outperforms all baselines and their +imap
variants, surpassing even the previous state-of-the-
art, prompt-based G-EVAL and its adding imap
version, highlighting the importance of identify-
ing imap’s value relationships in advancing au-
tomatic evaluation methodologies. 3) Integrat-
ing KG (+KG) into imapScore achieves the best

agreement with humans, resulting in a remark-
able 10.1% improvement over imapScore alone,
which is not surprising since KG helps in refining
the unification of value expressions.

Other interesting findings include: 1) LLM-
based metrics surpass other baselines, highlighting
their effectiveness in medical QA evaluation. 2)
On HMedQA, PaLM-2 surpasses GPT-4 through
better medical language alignment with labels, but
imapScore boosts GPT-4’s human score alignment,
surpassing PaLM-2. 3) Differences in HMedQA
and iCliniq correlations hint at dataset variability,
yet imapScore consistently enhances evaluation
performance across both.

6.1 Further Analysis

Further research explores imapScore’s capability
through three questions: 1) How does imap integra-
tion enhance baseline metrics? 2) What advantages
does a KG offer in evaluation? 3) Is imapScore
applicable in the absence of golden labels?

The Effect of imap. The imap aims to distill raw
text, directing the evaluator’s attention towards key
info for better ratings. This section delves into the
workings of the imap mechanism, examining its
impact on baseline metrics across imap compres-
sion ratios (“p”). These ratios represent the length
ratio of imap to the original response. The out-
comes using BLEU-4, BERTScore, and GPTScore
metrics are reported in Figure 5, with additional
baseline results in Figure 8 in the Appendix. The
main results show an inverse correlation between
imap’s improvement and its compression ratios p;
specifically, the lower the imap compression ra-
tios, the more significant the absolute improvement
gained from integrating imap. This outcome is ex-
pected, as a smaller p value indicates scarce key
information in the raw text, allowing imap to more
efficiently eliminate irrelevant data when compar-
ing labels and responses for evaluation.
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Figure 6: The left figure illustrates the Spearman’s corre-
lation boost across six medical tasks with KG assisting
imapScore. The right tables show three cases where KG
surpasses GPT-4 in accurately linking medical values.

Figure 7: Spearman’s correlation comparisons of G-
EVAL, both with and without labels, alongside the en-
hancements from integrating imap (+imap).

The Effect of KG Integration. While imapScore
insisted with KG, it achieves the best performance
in Table 2, this section aims to dissect KG’s bene-
fits into subtasks to illustrate its true performance
gains. As depicted in Figure 6, GPT-4 shows better
performance in the field of medicine, where the
contribution of the KG is less evident. The gains
from the KG are relatively average in other tasks.
Furthermore, we observe that GPT-4 tends to give
“Exact Match” (Rele) and “Unmatched” (Relu) rela-
tionships. In contrast, the KG, with explicit knowl-
edge encoded within, is capable of delivering more
accurate relationships, as showcased through the
three examples in the right-hand tables in Figure 6.

Adaptability to Unlabeled Scenarios. To ex-
plore the efficacy of imapScore in the absence of
golden labels, we compared G-EVAL and G-EVAL
+ imap in labeled and unlabeled scenarios. Figure
7 reveals that: 1) imap is effective even without
labels, as shown by the superior performance of the
“w/o label +imap” compared to using only raw text
“w/o label”; 2) having labels benefits performance,
as their absence tends to reduce the performance.
See Figure 9 in Appendix for further details.

7 Conclusions

This paper presented imap, a data structure that
parses medical QA into term-value pairs, enhanc-
ing evaluation by capturing essential needs and evi-
dence from QAs. Besides, we proposed imapScore,
a novel metric that uses imap for text scoring, align-
ing closely with expert assessments. Furthermore,
we built a new benchmark for evaluating NLG in
medical QA, focusing on the medical factual cor-
rectness generated by LLMs. Experimental results
demonstrated that imapScore is in better agreement
with humans compared to existing metrics.

Limitations

In this study, we have identified two primary limita-
tions of imapScore that warrant further exploration
in subsequent research endeavors. The first limi-
tation pertains to the potential insufficiency of the
Knowledge Graph (KG) used in our experiments,
both in terms of coverage and entity relations. This
could introduce bias into the effectiveness of KG’s
contribution to enhancing imapScore. Despite the
current “imapScore + KG” version demonstrating
superior performance in aligning with human scor-
ing, this issue hinders our ability to fully substan-
tiate the positive impact of KG on imapScore. To
mitigate this, potential solutions include integrat-
ing imap with a more extensive medical KG that
includes a wider array of medical terminologies
and considering a greater number of entity relation-
ships for matching.

Additionally, our current benchmark dataset is
limited to single-turn QA interactions, which pre-
vents the assessment of imapScore’s performance
in multi-turn QA scenarios, despite imap’s inher-
ent design to handle such interactions. To eval-
uate imap’s proficiency in multi-turn settings, a
dataset featuring multi-turn medical QAs with hu-
man scores is necessary. In our future work, we
plan to expand our benchmark to encompass multi-
turn QAs, facilitating a more comprehensive evalu-
ation of the imapScore’s capabilities.

Ethics Statement

Our work adheres to the ACL Ethics Policy. This
paper aims to investigate automatic evaluation met-
rics for question-answering (QA) systems, with
the objective of minimizing dependence on man-
ual evaluation and enhancing automatic evaluation
methods, thereby simplifying the review process
and hastening advancements in medical QA. It is
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crucial to emphasize that the proposed metric and
benchmark are designed solely for research pur-
poses and are not suitable for direct clinical appli-
cation due to the potential risks associated with the
misuse of medical QA systems.

It is important to note that the introduced bench-
mark was sourced from two publicly available QA
datasets collected from online interactions between
doctors and patients, with all patient privacy-related
information meticulously eliminated. To ensure
data privacy and security, we performed a compre-
hensive manual review of the dataset, confirming
that it contains no identifiable or offensive pieces of
information within the experimental dataset. This
review was carried out by medical experts serving
as human evaluators, who have recommended re-
leasing the dataset for research purposes based on
their assessment.
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A Experiment Settings

Benchmark Dataset Size The comprehensive
breakdown of samples in both HMedQA and
iCliniq datasets utilized for our benchmark is de-
picted in Table 3 and Table 4. As shown in Table 4,
it is noteworthy that the average length of questions
and answers in the iCliniq dataset is significantly
longer compared to HMedQA. This disparity may
be attributed to cultural differences, as doctors in
western countries often tend to express empathy
towards patients before offering medical advice.

Settings for Hyperparameters In generating re-
sponses from Large Language Models to queries
within the HMedQA and iCliniq, we applied the
subsequent hyperparameter configurations:

• The “temperature” was configured to 0.9 and
“top p” to 0.95 for both GPT-4 and PaLM-2.

• The original responses provided by ChatGPT
for the iCliniq dataset were utilized as is.

Configuration of Baseline Models In the de-
ployment of baseline models, we detail the op-
timum outcomes from trials involving diverse
backbone models and hyperparameter adjustments
across each dataset:

• BERTScore (Zhang et al., 2019): Employed
the “distilbert-base-uncased” as its founda-
tional backbone model.

• MoverScore (Zhao et al., 2019): For the
HMedQA dataset evaluation, “bert-base-
chinese” was selected as the backbone model;
conversely, for iCliniq, the “distilbert-base-
uncased” model was maintained.

• BARTScore (Yuan et al., 2021): Utilized
“facebook/bart-large-cnn” as its primary back-
bone model.

• UniEval (Zhong et al., 2022): Adopted
“MingZhong/unieval-sum” as the model. No-
tably, UniEval results for HMedQA were
omitted in Table 2 due to its incompatibility
with Chinese content.

• G-EVAL (Liu et al., 2023b): Configured the
“temperature” to 1.0 and “top p” to 1.0 in
alignment with its specified hyperparameters.
Results were derived by averaging five sam-
ples.

imap Extraction Settings We configured the
“temperature” parameter to 0.9 and “top p” to 1
to prompt GPT-4 to extract imap and analyze the
relationships among values. This experimental pro-
cedure was conducted three times to guarantee reli-
ability, selecting outcomes for term-value pairs and
value relationships that were consistently replicated
more than twice.

Medical Knowledge Graph (KG) The KG uti-
lized in our experiments comprises over three mil-
lion entities and twelve million relationships. Com-
prehensive details about the KG are available on
our website. The link will be included in the final
version of our paper, as it contains sensitive identity
information. We plan to make the KG accessible
for research purposes.

B Experiment Results

This section reports further insights into Spear-
man’s correlation improvement with imap. Firstly,
we showcase additional findings on how Spear-
man’s correlation is enhanced through imap integra-
tion as opposed to imap compression ratios. These
results are elaborated in terms of ACC, CMP, and
SPC metrics, spanning nine baseline evaluations,
as depicted in Figure 8.

Furthermore, Figure 9 illustrates the compara-
tive outcomes of applying imap in contexts where
golden labels are absent within the G-EVAL frame-
work. These results are segmented across various
LLMs and datasets for a detailed analysis.

C Example Prompts

We provide the details of the prompts used for imap
extraction pertaining to questions and answers, as
presented in Tables 5 and 6.
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Table 3: Data sizes for each medical task in HMedQA and iCliniq.

Dataset Advice Treatment Diagnosis Cause Lab-Test Symptom Medicine Department Others Sum
HMedQA 125 1,110 769 44 160 121 77 67 1525 2,998
iCliniq 335 291 340 330 158 157 80 162 150 2,003

Table 4: Analysis of Question and Answer Lengths in HMedQA and iCliniq.

Dataset Type Advice Treatment Diagnosis Cause Lab-Test Symptom Medicine Department
HMedQA Question 42 45 46 39 47 33 38 41
HMedQA Answer 83 68 62 47 51 51 65 25
iCliniq Question 295 292 277 214 253 236 208 267
iCliniq Answer 540 490 540 528 560 531 476 324

Figure 8: Illustration of the Spearman’s correlation enhancement across ACC, CMP, and SPC by integrating imap
into baseline metrics. We divide the data into three buckets based on imap compression ratios (p), encoding the
length ratio of imap to the original response, distinguished by colors. Legends display the sample distribution by p
value range.
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Figure 9: Spearman’s correlation of G-EVAL with and without label, and the improvement achieved by adding imap
on four sets of generated responses. GH, MH, Gi, and Mi represent GPT-4 on HMedQA, PaLM-2 on HMedQA,
ChatGPT on iCliniq, and PaLM-2 on iCliniq, respectively.
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Prompt:
Task Definition:
imap is a data structure that extracts key info from a question and responses into three components: Query,
Constraint, and Inform, each containing term-value pairs.
Please use “Query” and “Constraint” intent to extract the imap for <Question>. You can refer to the
following examples first:

Example 1:
<Question>:
Hi doctor, I am a 28-year-old male with redness and pain in the joint area and difficulty urinating. I have a
recent history of microbial infection. What disease might I have? How should it be treated?
<imap>:
Query-disease-?
Query-treatment-?
Constraint-gender-male
Constraint-age-28
Constraint-symptom-redness and pain
Constraint-symptom-difficulty urinating
Constraint-symptom-history of microbial infection

Example 2:
<Question>:
Hi doctor, are the treatment plans for gestational hypertension and esophageal cancer the same?
<imap>:
Query-are the treatment plans the same-?
Constraint-disease-gestational hypertension
Constraint-disease-esophageal cancer

<Question>:
Hello doctor, My friend aged 30 had two drops of phenol mistaking for milk. He vomited and had a lot of
saltwater. Please advise for any side effects.
<imap>:

Output:
Query-side effects-?
Constraint-age-30
Constraint-substance ingested-phenol
Constraint-action-vomited
Constraint-action-had a lot of saltwater

Table 5: Question imap extraction prompt.

10256



Prompt:
Task Definition:
imap is a data structure that extracts key info from a question and responses into three components: Query,
Constraint, and Inform, each containing term-value pairs.

You will be given one <Question> along with a <Question imap>. Your task is to extract the “inform”
component from <Response> to replay to the “Query” component in <Question imap>. That is you should
target “Query-diagnosis-?” and FILL the "[value]" in one or several actions “Inform-diagnosis-[value]”.
Please note that the [value] should include ALL the key information. Besides, [Value] should be as
SHORT as possible. You can use words or phrases directly extracted from the text to fill in [value]. Just
directly give a conclusion without explanation. If there is no relevant information, output Inform-None.

<Question>:
Hi doctor, I have a sore throat on one side of my throat. But, after looking, it looks like a sore next to my
throat on the roof of my mouth. What could it be?
<Question imap>:
Query-diagnosis-?
Constraint-symptom-sore throat on one side
Constraint-symptom-sore on the roof of mouth

<Response>: Hi. I have gone through the attachment (attachment removed to protect patient identity). It is
oral stomatitis with pharyngitis. It can be due to smoking and alcohol infection. Certain investigations like
Hb (hemoglobin), TLC (total leucocyte count), DLC (differential leucocyte count), and ESR (erythrocyte
sedimentation rate) can be done. It can be treated by taking oral Vitamin B complex tablets with
Chlorhexidine mouthwash. Avoid spicy foods and smoking. For more information consult an ENT
otolaryngologist online. Take care.
<imap>:

Output:
Inform-diagnosis-oral stomatitis with pharyngitis

Table 6: Response imap extraction prompt.
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