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Abstract

Speech-to-text (S2T) generation systems fre-
quently face challenges in low-resource sce-
narios, primarily due to the lack of extensive
labeled datasets. One emerging solution is con-
structing virtual training samples by interpo-
lating inputs and labels, which has notably en-
hanced system generalization in other domains.
Despite its potential, this technique’s applica-
tion in S2T tasks has remained under-explored.
In this paper, we delve into the utility of interpo-
lation augmentation, guided by several pivotal
questions. Our findings reveal that employ-
ing an appropriate strategy in interpolation aug-
mentation significantly enhances performance
across diverse tasks, architectures, and data
scales, offering a promising avenue for more
robust S2T systems in resource-constrained set-
tings.1

1 Introduction

Recently, neural network-based end-to-end systems
have achieved impressive improvements and be-
come the de facto modeling method for speech-
to-text (S2T) generation tasks, such as automatic
speech recognition (ASR) (Karita et al., 2019)
and automatic speech translation (AST) (Xu et al.,
2023b). These deep learning models typically com-
prise millions or even billions of parameters and
require vast amounts of training data to achieve
state-of-the-art performance (Zhang et al., 2022).
For example, leading ASR models demand thou-
sands of hours of training data (Lu et al., 2020).
However, the labeling of such extensive datasets
leads to significant costs, and models trained on
limited data are prone to overfitting, resulting in

* Corresponding author.
1The source code is available at https://github.com/xuchen

nlp/S2T.

suboptimal generalization to unseen samples (Ying,
2019).

To enhance generalization capabilities, data aug-
mentation has become a key strategy (Shorten and
Khoshgoftaar, 2019). Existing approaches in S2T
can be broadly classified into two categories: on-
line and offline augmentation. Online methods,
such as SpecAugment (Park et al., 2019), enhance
regularization by transforming the input representa-
tion during training. By introducing random noise
into input features, these techniques have become
standard in S2T tasks. Offline methods, on the
other hand, boost data diversity by creating large
amounts of pseudo-data through original audio dis-
tortion (Ko et al., 2015) or synthesis (Rosenberg
et al., 2019). Though effective, these offline tech-
niques are separate from the training process, often
requiring additional steps and computational re-
sources. This creates a demand for more efficient
solutions.

We resort to interpolation augmentation (IPA),
also known as Mixup, a notable method first intro-
duced in image classification (Zhang et al., 2017).
IPA mitigates overfitting by constructing virtual
samples through linear interpolation of both input
features and labels from two randomly selected
samples. This approach has achieved impressive
success across diverse domains, including speech
processing (Medennikov et al., 2018; Lam et al.,
2020; Meng et al., 2021; Kang et al., 2023), nat-
ural language processing (Guo et al., 2019; Sun
et al., 2020; Xie et al., 2023), and computer vision
(Verma et al., 2019; Wang et al., 2023).

In the specialized field of speech processing, pre-
liminary studies have explored IPA in speech sep-
aration (Lam et al., 2020; Alex et al., 2023) and
classification tasks (Snyder et al., 2017; Liu et al.,
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2023). However, its application in S2T tasks re-
mains limited and largely unexplored (Medennikov
et al., 2018; Meng et al., 2021; Cheng et al., 2022;
Zhou et al., 2023). The existing work has not yet
established clear guidelines on when and how IPA
can be optimally leveraged in S2T tasks, leaving a
substantial gap in our understanding and applica-
tion of this promising technique.

In this paper, we examine this question more
closely, conducting a series of experiments to an-
swer the following questions:

Q1 What is the appropriate interpolation strat-
egy, and what distinctions arise between inter-
polating speech features and text embeddings?
(§3)

Q2 How can IPA create an effective combina-
tion with existing augmentation techniques,
such as the well-established method SpecAug-
ment? (§4)

Q3 Are there specific issues in applying IPA to
S2T tasks, and how can they be addressed?
(§5)

Q4 How does IPA perform across various sce-
narios? (§6)

By probing these questions, we develop an ef-
fective IPA method that achieves consistent im-
provements across two S2T tasks (including ASR
and AST), various architectures (including encoder-
decoder and encoder-CTC), and diverse data scales
(ranging from LibriSpeech 10h to 960h).

2 Experimental Settings

Data augmentation methods typically demonstrate
greater potential in low-resource scenarios. In light
of this, we conduct analyses using the LibriSpeech
100h ASR dataset and subsequently apply our find-
ings to various scenarios. We report results mainly
on the test-clean and test-other sets. The average
word error rate (WER) is calculated on the concate-
nation of all four subsets.

Various existing data augmentation techniques,
such as SpecAugment and speed perturbation, have
achieved excellent results. SpecAugment (Park
et al., 2019), the most widely employed method
in S2T tasks, introduces random noise to the input
features through time warping, frequency mask-
ing, and time masking. Speed perturbation (Ko
et al., 2015), on the other hand, commonly expands

the dataset by generating three variations of raw
audio with speed factors of 0.9, 1.0, and 1.1, fa-
cilitating its integration. In our work, the goal of
IPA is to not only lead to isolate improvements
but to also work orthogonally with these methods.
Therefore, we first examine scenarios without other
augmentations and then explore the effects of their
combination.

In the field of S2T, common architectures encom-
pass both encoder-decoder (Enc-Dec) and encoder-
CTC (Enc-CTC) designs. The Enc-Dec model
consists of an encoder with 12 Conformer layers
and a decoder with 6 Transformer layers, each con-
taining 256 hidden units, 4 attention heads, and
2048 feed-forward sizes. Connectionist Temporal
Classification (CTC, Graves et al., 2006) multi-
task learning is applied on top of the encoder, in-
troducing an additional loss with a weight of 0.3.
The Enc-CTC model can be viewed as a variant of
the Enc-Dec model, containing only an 18-layer
Conformer encoder for comparable parameters of
about 30M. It predicts the text purely through CTC,
where the weight of the CTC loss is 1. We ini-
tially investigate the effects of IPA on the Enc-Dec
model before extending the method to the Enc-CTC
model. More details about the datasets and model
settings are described in Appendix A.

3 Q1: Choice of Interpolation Strategy

In this section, we begin with an overview of the
basic implementation of IPA. Subsequently, we
investigate the appropriate interpolation strategy
tailored specifically for the field of S2T generation.

3.1 Definition of IPA
IPA, commonly known as Mixup (Zhang et al.,
2017), constructs virtual samples in a vicinal distri-
bution by linearly interpolating both the inputs and
labels of two randomly selected samples, thereby
enhancing the model’s generalization capability.
Considering two samples (xi, yi) and (xj , yj),
where x denotes the input features and y repre-
sents the corresponding label. IPA assembles the
new sample as follows:

xm = λ · xi + (1− λ) · xj (1)

ym = λ · yi + (1− λ) · yj (2)

where λ ∈ [0, 1] is a weighting factor drawn from
a Beta distribution λ ∼ Beta(α, α).

A value of α approaching 0 implies that the gen-
erated samples closely resemble either (xi, yi) or
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(xj , yj), while a value of α approaching +∞ leads
to a more balanced interpolation between the two.
In practical applications, IPA randomly replaces a
subset of samples with the interpolated versions in
each mini-batch, while leaving the remaining sam-
ples untouched. The selection ratio γ is typically
set to 1, indicating the model is trained completely
on the interpolated samples. Both α and γ serve as
essential hyper-parameters, and finding their opti-
mal values often requires careful empirical explo-
ration.

3.2 IPA Strategy in S2T
Building upon the aforementioned framework, we
extend our investigation to the application of IPA
within the domain of S2T generation, focusing
specifically on ASR and AST tasks.

Let a training sample be denoted as (s, x, y),
where s denotes the speech features, x denotes the
transcription of s, and y denotes the translation
in the target language in AST, or the transcription
in the case of ASR. When employing an Enc-Dec
model, the training objectives encompass the uti-
lization of joint CTC loss to model x at the en-
coder level, coupled with cross-entropy (CE) loss
to model y within the decoder. Thus, it can be
formulated as:

LCTC(h, x) = − log PCTC(x|h; θEnc) (3)

LCE(h, z, y) = − log PCE(y|h, z; θ) (4)

where h is the output of the encoder, and z is the
input embedding of the decoder. θEnc and θ are
the model parameters of the encoder and the whole
network. Two hyper-parameters wCTC and wCE are
introduced to balance CTC and CE loss compo-
nents:

L = wCTC · LCTC + wCE · LCE (5)

To apply the IPA in S2T tasks, several signifi-
cant distinctions must be noted when compared to
conventional classification tasks:

• In typical classification models, the archi-
tecture usually comprises only the encoder,
whereas in the S2T model based on the Enc-
Dec architecture, the decoder processes the
embedding sequence as input. The feasibil-
ity of directly interpolating word embeddings
remains an open question.

• The label in classification tasks often takes
the form of a one-hot category, thereby sim-
plifying the interpolation process, while the

S2T tasks present a more complex scenario.
Specifically, the training objectives for CTC
and CE are discrete text sequences, and the
method to interpolate and learn the label ef-
fectively remains an open question.

To address these challenges, we first design the
interpolation strategy grounded in previous stud-
ies, followed by an exploration of specific issues.
Consider two arbitrary samples in a batch, denoted
as (si, xi, yi) and (sj , xj , yj). We interpolate the
input according to Eq. (1):

sm = λ · si + (1− λ) · sj (6)

where we pad the shorter features with zeros to
achieve the same length for interpolation. After
obtaining the representation hm outputted by the
encoder, we calculate the CTC loss with respect to
both labels and interpolate them as follows:

LCTC(hm, xi, xj) = λ · LCTC(hm, xi)

+(1− λ) · LCTC(hm, xj) (7)

Employing the widely proven interpolation strat-
egy Zhang et al. (2017) in the encoder is natural
due to similar designs. Thereby we focus on the in-
terpolation strategy within the decoder. A straight-
forward implementation is similar to the operation
in the encoder, which involves interpolating the em-
beddings zi and zj in the input layer of the decoder:

zm = λ · zi + (1− λ) · zj (8)

Next, we calculate losses with two labels yi and
yj for interpolation. The whole procedure is for-
malized as:

LCE(zm, hm, yi, yj) = λ · LCE(hm, zm, yi)

+(1− λ) · LCE(hm, zm, yj) (9)

For simplicity, we refer to this strategy as embed-
ding interpolation (EIP).

However, the preceding approach may lead to a
disparity between training and decoding. During
training, the decoder takes the interpolated embed-
ding sequence as input, whereas it receives only a
single embedding sequence during inference. To
bridge this gap, we investigate an alternative strat-
egy that solely interpolates the encoder input while
preserving the original input in the decoder (Meng
et al., 2021). The loss in this context is calculated
as follows:

LCE(hm, zi, zj , yi, yj) = λ · LCE(hm, zi, yi)

+(1− λ) · LCE(hm, zj , yj) (10)
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Method α γ EIP clean other Avg.

Baseline - - - 11.85 30.78 20.81

IPA

0.2 1.0 10.31 25.12 17.37
2.0 0.3 10.31 26.44 18.00
2.0 1.0 10.14 22.45 15.99
0.2 1.0 √ 10.29 25.53 17.48
2.0 0.3 10.40 26.67 18.02
2.0 1.0 9.91 22.90 16.35

Table 1: WER of IPA method applied to the Enc-Dec
model without SpecAugment on the LibriSpeech 100h
dataset.

In summary, two interpolation strategies have
distinct characteristics. The first approach lever-
ages simple interpolation operations akin to those
in the encoder and contributes to the regularization
of the decoder. Conversely, the second approach
focuses on consistent modeling, bypassing inter-
polation in the decoder, and may facilitate more
stable learning.

We construct experiments to validate these two
strategies. For the hyper-parameters, we select
α from the set {0.2, 0.5, 1.0, 2.0} and γ from
{0.3, 1.0}. The partial results presented in Table 1
illustrate that enhancing noise by increasing either
α or γ serves to reinforce generalization, leading to
significant improvements, particularly on the more
noisy test-other set. In addition, the EIP strategy
exhibits slightly inferior performance. This obser-
vation aligns with our initial conjecture.

4 Q2: Combination of Augmentation
Techniques

Although the straightforward application of the IPA
method has yielded noticeable improvements, our
exploration seeks to combine it with existing data
augmentation techniques.

4.1 Preliminary Results

Table 2 presents the results obtained when using
SpecAugment. Compared with the IPA method,
SpecAugment is more effective in enhancing per-
formance. However, excessive interpolation inten-
sity inversely affects the results, leading to perfor-
mance degradation. Reducing the values of α and
γ alleviates this issue, though it yields only modest
gains.

Another noteworthy observation is that the EIP
strategy promotes a more stable training pro-
cess, despite a decline in performance. This phe-
nomenon might be attributed to the inherent sensi-

Method α γ EIP clean other Avg.

Baseline - - - 8.51 19.05 13.63

IPA

0.2 0.3 8.45 18.68 13.46
0.2 1.0 8.75 19.51 13.89
2.0 0.3 9.19 19.88 14.27
2.0 1.0 11.01 23.48 16.88

0.2 0.3
√

8.29 18.97 13.53
0.2 1.0 8.73 19.39 13.80
2.0 0.3 8.71 19.01 13.65
2.0 1.0 10.36 20.24 15.07

Table 2: WER of IPA method applied to the Enc-Dec
model with SpecAugment on the LibriSpeech 100h
dataset.

tivity of the original model to noise, coupled with
an apparent deficiency in handling complex input
within the decoder. The enhanced robustness in-
troduced by SpecAugment appears to mitigate this
issue, empowering the decoder to handle interpo-
lated input and extract information from the noisy
encoder output.

4.2 Why Does the Combination Fail?

To optimize the combination between SpecAug-
ment and IPA, it is crucial to shed light on the
influence of SpecAugment on the IPA approach.
Both two methods function by introducing regular-
ization into the encoder input, targeting a balance
to improve the model’s ability to generalize with-
out causing it to under-fit. With the right amount of
noise, the model may take longer to reach its best
performance but eventually perform better.

However, too much noise may result in troubles,
leading to training failures or poor results. We think
that the noise added by SpecAugment might mess
up the interpolation, synthesizing samples that stray
too far from the desired vicinal distribution. As the
original samples are replaced with the interpolated
version, it leads to poor learning of the actual data
distribution.

To validate our conjecture, we visualize the data
distribution of original and interpolated samples
by t-SNE. Figure 1 (Top) shows that interpolated
samples maintain a similar distribution to that of
the original samples when SpecAugment is not
employed, even with a large interpolation weight.
However, this distribution uniformity is disrupted
with the introduction of SpecAugment, giving rise
to an evident discrepancy in distribution, as illus-
trated in Figure 1 (Middle).

Although the initial input representations (the
first column) appear similar thanks to the cepstral
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Figure 1: Visualization of encoder representations of
both original (depicted as green squares) and interpo-
lated (depicted as pink circles) samples in the IPA
method. The upper triangle and lower triangle represent
the centers of two data distributions, respectively. The
experiment is conducted using the LibriSpeech 100h
dataset with an interpolation ratio of γ = 0.3. Top:
without SpecAugment and α = 2.0. Middle: with
SpecAugment and α = 2.0. Bottom: with SpecAug-
ment and α = 0.2.

mean and variance normalization operation, the ex-
cessive perturbation caused by SpecAugment leads
to a deviation of the interpolated samples from
the original empirical distribution during encod-
ing. This phenomenon, referred to as distribution
shift, can be slightly mitigated by diminishing the
intensity of the interpolation, thus narrowing the
divergence between the two data distributions, as
shown in Figure 1 (Bottom). However, traces of
the distribution shift persist in the representation
at the top layers. This inconsistency with the mid-
dle layers stems from the influence of the decoder,
which we discuss subsequently.

4.3 Appending-based IPA

To mitigate the problem of distribution shift iden-
tified previously, the key is to prevent the interpo-
lated samples from disturbing the stable learning
of the original data distribution. The "replace"
operation within the conventional IPA method is
revealed to be suboptimal, constraining the magni-
tude of permissible regularization techniques. As
an alternative, we introduce an "appending" opera-
tion into the IPA methodology, referred to as AIPA.
Specifically, for an original batch comprising n
samples, AIPA synthesizes ⌈n × γ⌉ interpolated
samples. These are concatenated with the original
batch, resulting in a new batch size of ⌈n×(1+γ)⌉

0.0 0.5 1.0
0.0

0.5

1.0
Input

0.0 0.5 1.0
0.0

0.5

1.0
Layer 4

0.0 0.5 1.0
0.0

0.5

1.0
Layer 8

0.0 0.5 1.0
0.0

0.5

1.0
Layer 12

0.0 0.5 1.0
0.0

0.5

1.0
Input

0.0 0.5 1.0
0.0

0.5

1.0
Layer 4

0.0 0.5 1.0
0.0

0.5

1.0
Layer 8

0.0 0.5 1.0
0.0

0.5

1.0
Layer 12

Figure 2: Similar to Figure 1, visualization of encoder
representations in the AIPA method. Top: Enc-Dec
model with SpecAugment, α = 0.2. Bottom: Enc-CTC
model with SpecAugment, α = 0.2.

Method α γ EIP clean other Avg.

Baseline - - - 8.51 19.05 13.63

AIPA

0.2 0.3 8.13 18.95 13.36
0.2 1.0 8.01 18.52 13.05
2.0 0.3 8.26 18.39 13.16
2.0 1.0 8.48 18.91 13.48

0.2 0.3
√

8.45 18.72 13.25
0.2 1.0 7.91 18.14 12.79
2.0 0.3 8.30 18.57 13.27
2.0 1.0 7.88 18.17 12.95

Table 3: WER of AIPA method applied to the Enc-
Dec model with SpecAugment on the LibriSpeech 100h
dataset.

for training. This simple approach preserves all
original samples and generates interpolated ones,
thereby safeguarding stable training while simulta-
neously enabling robust regularization.

Moreover, AIPA guarantees exhaustive learning
of both the original and vicinal distributions, bridg-
ing the divergence between training and inference,
as the original samples remain unaltered. As de-
picted in Figure 2 (Top), the distance between the
two classes of samples has been significantly mini-
mized.

The experimental results in Table 3 further vali-
date these findings. AIPA yields modest and con-
sistent improvements under the augmentation of
varying intensities. Notably, the EIP operation ap-
pears to be advantageous. This phenomenon can
be interpreted as an additional benefit conferred by
AIPA, which serves to enhance the robustness of
the decoder by introducing controllable regulariza-
tion. Based on these results, we select α = 0.2 and
γ = 1.0 as the default hyper-parameters and em-
ploy EIP operation for the subsequent experiments.
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Figure 3: Encoding process of the AIPA method with
COS training.

5 Q3: Resolution of Specific Issues

While the current method does achieve stable ef-
fects, the enhancements are relatively modest. This
section delves into further optimization by address-
ing the specific issues when employing AIPA in
S2T tasks.

In the standard implementation, interpolated
samples are given the dual responsibility of predict-
ing two corresponding text sequences in both CTC
and CE losses. However, this strategy might intro-
duce a risk of ambiguity in the decision boundaries,
potentially leading to an over-smoothed model.
This risk is notably amplified during CTC learn-
ing, where the likelihood of a particular transcript
x given the hidden representations h is obtained
by summing over the probabilities of all feasible
alignment paths Φ(x) between the speech s and x:

PCTC(x|h) =
∑

π∈Φ(x)

P(π|h) (11)

This implies that each representation is required
to cater to a multiplicity of labels, which substan-
tially complicates the ideal predicted distribution,
making it challenging to converge and somewhat
counter-intuitive. Therefore, the design of appro-
priate training objectives for interpolated samples
is pivotal.

We propose constraint objective space (COS),
which facilitates CTC learning by replacing the
complex traversal with deterministic labels. Rather

Model dev test Avg.
clean other clean other

Baseline 8.20 19.13 8.51 19.05 13.63

AIPA 7.56 17.95 7.91 18.14 12.95
+ CTC COS 7.11 17.66 7.49 17.85 12.43
+ CTC COS∗ 7.20 17.74 7.57 17.90 12.51
+ CE COS 7.41 17.92 7.82 17.99 12.69
+ Both COS 7.26 17.75 7.61 17.80 12.52

Table 4: WER of AIPA method applied to the Enc-
Dec model with SpecAugment on the LibriSpeech 100h
dataset. The α and γ are set to 0.2 and 1, respectively.
COS∗ indicates using the hard labels.

than computing the best alignment by the model
(Xu et al., 2023a), we take the predicted distribu-
tion of the original samples as the objective of the
interpolated samples for efficiency. Specifically,
we calculate the COS loss as follows:

LCOS
CTC(hm, h) = −

T∑

m=1

|V |∑

k=1

P(πm = vk|h)

× log P(πm = vk|hm) (12)

where T represents the length of h, and V denotes
the vocabulary. Drawing a parallel to learning on
text labels, we formulate the interpolation of the
losses as follows:

LCOS
CTC(hm, hi, hj) = λ · LCOS

CTC(hm, hi)

+(1− λ) · LCOS
CTC(hm, hj) (13)

In this framework, the original samples act as
a teacher, guiding the more accessible learning
process of the interpolated student (Hinton et al.,
2015). This distribution offers detailed informa-
tion across the entire vocabulary, and importantly,
the training objective becomes more deterministic,
thereby simplifying the learning process. The final
design of AIPA with COS is depicted in Figure 3.

Similarly, this strategy can be extended to the
cross-entropy (CE) loss, denoted by LCOS

CE . The
final training objective thus takes the form:

L = wCTC · LCTC + wCOS
CTC · LCOS

CTC

+ wCE · LCE + wCOS
CE · LCOS

CE (14)

where wCOS
CTC and wCOS

CE are weights of two COS
losses.

We present the results in Table 4. Utilizing COS
for CTC training yields an average significant re-
duction of 1.35 WER points, as this approach sim-
plifies CTC learning by eliminating the need for
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Method dev test Avg.
clean other clean other

Baseline 9.58 23.07 9.99 23.84 16.50
+ InterCTC 8.18 20.19 8.47 20.73 14.28

+ PAE 8.09 19.85 8.32 20.76 14.15

AIPA 8.77 21.41 9.07 21.75 15.14
+ CTC COS 7.16 17.93 7.39 18.17 12.57
+ InterCTC 7.74 19.73 8.12 20.09 13.82

+ CTC COS 7.03 17.43 7.37 17.80 12.31
+ Both COS 6.73 17.07 6.99 17.35 11.94

+ PAE 6.44 16.49 6.70 16.67 11.49

Table 5: WER of AIPA method applied to the Enc-CTC
model with SpecAugment on the LibriSpeech 100h
dataset. The α and γ are set to 0.2 and 1, respectively.

complex dynamic programming. Note that the soft
training objective is not necessary. The main mo-
tivation is to provide simplified labels for stable
learning. Replacing the distribution with the one-
hot labels by argmax operation also achieves obvi-
ous effects. However, the application of COS in CE
adversely affects performance. We speculate that
the CE objective is more straightforward to learn,
whereas the COS method might introduce errors.

6 Q4: Effect under Various Scenarios

We have obtained numerous valuable insights from
the ablation studies conducted on the LibriSpeech
100h dataset. We now extend the application of
the aforementioned settings to a broader array of
scenarios.

6.1 Model Architectures
Combining the above efforts, we develop an ef-
fective interpolation augmentation method, which
achieves significant improvements in the Enc-Dec
architecture. The effects are further explored on the
Enc-CTC model, with results presented in Table 5.

Due to the inherent conditional independence
assumption of CTC modeling, the baseline model
struggles to converge well. To build more robust
configurations, we employ popular techniques to
enhance the model’s performance. Utilizing Inter-
CTC (Lee and Watanabe, 2021), additional CTC
supervisions are introduced into the intermediate
layers, effectively bridging the gap. Meanwhile,
the prediction-aware encoding (PAE) method (Xu
et al., 2023a) integrates self-predicted information,
yet only achieves slight improvements due to the
limited accuracy of the CTC prediction.

AIPA yields more substantial improvements
on the Enc-CTC model, addressing its inherent
fragility. The COS method significantly aids CTC

0.2 0.5 1 2
5

10

15

20

25

α

W
E

R

clean clean w/ COS other other w/ COS

Figure 4: Effects of the hyper-parameters α on Enc-
CTC models trained with LibriSpeech 100h dataset.

learning, resulting in a reduction of 2.57 WER
points. This result demonstrates the appropriate
training objective facilitates convergence effec-
tively. Within the AIPA method, the intermediate
CTC loss is computed similarly to the standard
CTC, but its direct use has limited impact. How-
ever, when coupled with joint COS methods, it
achieves gains of 1.88 WER points. Finally, thanks
to the improved prediction of intermediate CTC,
the PAE method also exhibits notable effects. Com-
bining these methods achieves a remarkable reduc-
tion of 2.66 WER points over the baseline model.

Beyond merely improving performance, we also
examine the data distribution within the Enc-CTC
model, as depicted in Figure 2 (Bottom). Except for
applications on various architectures, the settings
are consistent with those in the preceding figure.
In the Enc-CTC model, both the original and in-
terpolated samples share the same representation
space in the top layers. This observation suggests
that the distribution shift in the Enc-Dec model is
attributable to the behavior of the decoder. We spec-
ulate that the decoder must differentiate between
two data distributions to capture information effec-
tively, whereas the CTC objective diminishes this
need, thereby maintaining a similar distribution.

Hyper-parameter α has significant influences on
the final performance. We illustrate the results of
the AIPA method both with and without the COS
method in Figure 4. AIPA achieves stable results
by preserving the original data distribution, and
variations in α have only a minor impact. However,
increasing α negatively affects the efficacy of the
COS method. A possible explanation is that a larger
α results in a more balanced sample interpolation
between two original samples, leading to increased
COS loss and poor convergence.

In summary, our findings indicate that the IPA
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Dataset Method dev test Avg.
clean other clean other

10h Baseline 35.34 51.89 35.13 53.20 43.74
AIPA 28.34 43.89 28.46 44.76 36.22

50h Baseline 13.10 28.40 13.48 29.46 21.03
AIPA 10.54 22.50 10.84 23.12 16.64

960h Baseline 3.47 9.34 3.61 9.02 6.31
AIPA 2.91 7.61 3.01 7.51 5.21

Table 6: WER of AIPA method applied to the Enc-CTC
model with SpecAugment on the LibriSpeech 10h, 50h,
and 960h dataset. InterCTC is used for all models and
the COS technique is used in AIPA.

Method Transformer Conformer

Baseline 6.06 7.16
+ InterCTC 5.67 5.87

+ PAE 5.32 5.81

AIPA 5.58 6.14
+ CTC COS 5.12 4.55

+ InterCTC 5.15 4.53
+ InterCTC COS 5.05 4.35

+ PAE 4.62 4.27

Table 7: WER of AIPA method applied to the Enc-CTC
model with SpecAugment on the AiShell-1 dataset.

technique is particularly well-suited for the Enc-
CTC architecture. This suitability may stem from
multiple factors, such as the baseline model’s inher-
ent fragility, the compatibility of continuous fea-
tures with interpolation, and the elimination of the
decoder’s influence. We will explore these reasons
further in future research.

6.2 Data Scales
By integrating our proposed strategies, we achieve
more significant improvements, especially on the
noisy other test sets. Under the extreme low-
resource scenarios of 10h and 50h data, our method
achieves substantial reductions of about 4 ∼ 6
WER points and boosts the convergence speed ef-
fectively. Even under the high-resource scenario
of 960h, AIPA still delivers further improvements.
These findings indicate that the optimized IPA set-
tings are not only effective in low-resource environ-
ments but also demonstrate their efficacy in high-
resource scenarios.

6.3 Model Backbones
We explore the effects of our method with different
model backbones on the AiShell-1 ASR dataset,
incorporating speed perturbation. The results, dis-
played for both Transformer and Conformer mod-
els in Table 7, reveal some new insights. Interest-

Method dev tst-COMMON

Baseline 25.42 26.31
+ InterCTC 26.35 26.56

+ PAE 26.62 26.62
AIPA 25.85 26.38

+ CTC COS 26.04 26.75
+ CE COS 26.13 26.64
+ Both COS 26.79 26.88
+ InterCTC 26.48 26.68

+ All COS 26.92 27.50
+ PAE 26.69 27.39

Table 8: BLEU of AIPA method applied to the Enc-Dec
model with SpecAugment on the MuST-C En-De ST
dataset.

ingly, the base Conformer model underperforms its
Transformer counterpart, potentially due to under-
fitting associated with larger model parameters. De-
spite incorporating auxiliary techniques, the Con-
former model struggles to converge optimally.

Our proposed method effectively addresses this
convergence issue. Notably, employing the COS
method specifically for CTC learning offers out-
standing regularization and significantly enhances
the model’s convergence. This observation un-
derscores the advantages of our interpolation aug-
mentation method over SpecAugment. Across
both model architectures, our interpolation strat-
egy yields stable and substantial improvements,
illustrating its broadly applicable effectiveness.

6.4 AST Task

The AST task presents unique challenges due to the
substantial modeling complexity involved in han-
dling both cross-modality and cross-lingual map-
ping. In this demanding context, the fundamental
AIPA method delivers only modest improvements,
as shown in Table 8. However, with the applica-
tion of our proposed learning objectives for the
interpolated samples, we observe more substantial
gains.

A notable distinction is the effectiveness of the
COS method for CE loss. This likely stems from
the increasing task complexity, where the distribu-
tion may be more readily learned by the decoder,
thereby easing the training process. Remarkably,
without resorting to intricate designs, our method
achieves a BLEU score of 27.50. This performance
is highly competitive, approaching current state-of-
the-art results where no additional training data are
employed.
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7 Conclusion

In this paper, we develop a comprehensive ex-
ploration of the interpolation augmentation (IPA)
method’s application in S2T generation. Our find-
ings provide actionable insights for the effective
application of IPA in S2T: (1) Utilizing IPA alone
may not surpass the effectiveness of SpecAugment;
a careful combination of both lies in mitigating
distribution shift and preserving the learning of
original data distribution. (2) Defining an appropri-
ate training objective for interpolated samples is of
paramount importance. (3) IPA demonstrates par-
ticular compatibility with the Enc-CTC model. (4)
The appropriate IPA strategy significantly enhances
performance across diverse scenarios.

Limitations

Although our method demonstrates exceptional per-
formance in various scenarios, there are still some
underlying challenges that remain in the follow-
up of our work. We outline key limitations and
propose future directions for improvement:

• Enhancing stability with diverse hyper-
parameters: As depicted in Figure 4, a larger
value of α leads to the generation of exces-
sively noisy interpolated samples, adversely
affecting the WER. This underscores the need
for a more robust IPA method and the de-
termination of universally effective hyper-
parameters to ensure broader applicability.

• Adapting to pre-trained models: The S2T field
boasts several influential open-source, pre-
trained models such as Wav2vec2.0 (Baevski
et al., 2020), HuBERT (Hsu et al., 2021), and
Whisper (Radford et al., 2023). Integrating
our IPA method with these established models
is a promising avenue that requires thorough
validation and exploratory research.
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A Experimental Settings

A.1 Datasets and Pre-processing

The datasets are from three benchmarks:

• LibriSpeech is a publicly available read En-
glish ASR corpus, which consists of 960-hour
training data (Panayotov et al., 2015). To as-
sess the performance in both low-resource and
high-resource environments, we conduct ex-
periments on LibriSpeech 10h, 50h, 100h, and
960h. We report results on all four subsets,
including dev-clean, dev-other, test-clean, and
test-other. The average word error rate (WER)
is calculated on the concatenation of all four
subsets.

• AiSHELL-1 is a publicly available Chinese
Mandarin speech corpus, which consists of
170-hour training data (Bu et al., 2017). We
report results WER on both the dev and test
sets.

• MuST-C is a multilingual speech translation
corpus extracted from the TED talks (Gangi
et al., 2019). We test our method on the MuST-
C English-German (En-De) speech translation
dataset of 400 hours of speech. We select
(and tune) the model on the dev set (Dev) and
report the results on the tst-COMMON set
(Test).

For pre-processing, we follow the standard
recipes in fairseq toolkit (Ott et al., 2019), which
eliminates the utterances of more than 3,000 frames
or fewer than 5 frames. To explore the impact of
integrating another augmentation method, we em-
ploy speed perturbation in our experiments con-
ducted on the AiShell-1 dataset. The extraction of
80-channel Mel filter bank features is carried out
using a 25ms window and a stride of 10ms. For
segmentation, we employ SentencePiece (Kudo
and Richardson, 2018) segmentation with a size
of 10,000 for the LibriSpeech 100h and MuST-
C datasets, 256 for the LibriSpeech 960h dataset.
And the AiSHELL-1 dataset is segmented using
4231 characters. For the MuST-C AST dataset, we
utilize a shared vocabulary for the source and target
languages.

A.2 Model Settings

We train the ASR model using the Enc-CTC archi-
tecture and AST models with the Enc-Dec architec-
ture. α and γ are set to 0.2 and 1, respectively. The
weight wCTC and wCE for the training objective are
set to 0.3 and 1.0 in the encoder-decoder model,
while 1.0 and 0.0 in the Enc-CTC model. And
the weight wCOS

CTC and wCOS
CE for the COS method

are set to the half of them. SpecAugment (Park
et al., 2019) is always applied for better results.
Note that our pipeline first applies SpecAugment
pre-processing, then performs interpolation aug-
mentation (IPA) on the SpecAugmented samples.
This order allows IPA to increase diversity on top
of the distortions from SpecAugment

All methods are implemented using the fairseq
toolkit. We employ the Adam optimizer and follow
the default learning schedule in fairseq. We apply
dropout with a rate of 0.1 and label smoothing
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ϵls = 0.1 for regularization. Note that the feed-
forward size is set to 1024 on the LibriSpeech 960h
dataset for comparison with previous results.

We do not incorporate pre-training and knowl-
edge distillation techniques during the training
process. We train the model 300 epochs on Lib-
riSpeech 100h and 960h for better convergence and
100 epochs for both AiShell-1 ASR and MuST-C
AST datasets. We early stop training when there
is no performance improvement on the develop-
ment set for 20 consecutive checkpoints. We report
WER/CER and case-sensitive SacreBLEU for ASR
and AST tasks, respectively.

A.3 Augmentation Settings
In our methodology, SpecAugment is always ap-
plied first, followed by sample interpolation. This
sequence is based on two key considerations:

• SpecAugment is a per-sample operation,
whereas IPA can be batch-processed. Apply-
ing SpecAugment before IPA results in greater
efficiency.

• Employing IPA after SpecAugment intro-
duces additional perturbations, potentially en-
hancing regularization effects. In addition,
employing IPA after SpecAugment is easier
from the perspective of the code implementa-
tion.
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