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Abstract

kNN-MT has utilized neighborhood knowledge
for auxiliary decoding, significantly improving
translation performance. Subsequently, kNN-
KD transitions the use of neighborhood knowl-
edge from the decoding phase to the train-
ing phase, to address the temporal and spa-
tial inefficiencies inherent in kNN-MT. How-
ever, kNN-KD transfers all the kNN knowl-
edge arbitrarily, which has the potential to
restrict the learning of student models. In
this paper, we propose a novel domain-aware
kNN-KD method, which filters out domain-
relevant neighborhood knowledge for learning
in the distillation process. Notably, this entire
process exclusively utilizes the neighborhood
knowledge of the original model, eliminating
the need for establishing any additional datas-
tores. Experiments on four domain translation
tasks demonstrate that our method achieves
state-of-the-art performance, realizing an av-
erage gain of 1.55 COMET and 1.42 BLEU
scores, by further enhancing the translation of
rare words. Source code can be accessed at
https://github.com/wangzx1219/Dk-KD.

1 Introduction

The field of neural machine translation (NMT,
Vaswani et al., 2017; Ng et al., 2019) has wit-
nessed significant advancements, resulting in note-
worthy improvements in various translation tasks.
Among these innovations, the introduction of kNN-
MT (Khandelwal et al., 2020) stands out as a pi-
oneering approach. This method leverages neigh-
borhood knowledge for assisted decoding, enhanc-
ing the translation capabilities of the model. In
kNN-MT, the translation process benefits from
an expanded contextual understanding, allowing
for more accurate and contextually relevant trans-
lations. This integration effectively bridges the
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gap between raw translation output and nuanced,
context-aware language understanding.

Although the enhancement of model translation
capability by kNN-MT is significant, its retrieval
cost in the decoding process and consumption of
storage space are non-negligible, which limits the
application of kNN-MT in practical scenarios. The
existing methods try to transfer knowledge from the
kNN datastore into new models. kNN-KD (Yang
et al., 2022) employs knowledge distillation (KD,
Hinton et al., 2015) for training the network from
scratch, which, in some cases, leads to suboptimal
and unstable outcomes. INK (Zhu et al., 2023) pro-
pose to migrate knowledge into the adapter mod-
ule (Bapna and Firat, 2019b), which is more effi-
cient due to its smaller parameter size and generally
yields better results. However, existing methods
indiscriminately transfer knowledge from the datas-
tore, a practice we believe may have its limitations.

Building on the pros and cons of the previous
methods, this paper introduces domain-aware kNN-
KD (Dk-KD), aimed at extracting the most valu-
able knowledge from the kNN datastore within
the domain. The approach begins by training a
more refined teacher model, specifically optimized
for storing kNN knowledge, which facilitates the
learning process of the adapter. Subsequently, kNN
knowledge is selectively distilled from the teacher
model into the adapter, ensuring targeted and effi-
cient knowledge transfer. Specifically, we first con-
struct a datastore using the representations from
the original NMT model. Subsequently, we uti-
lize domain-relevant knowledge to aid in training
the teacher model. Finally, we leverage both the
teacher and domain-relevant knowledge to assist
in training the final model. Domain-aware knowl-
edge selection is employed to filter domain-relevant
knowledge from the retrieved representations.

Experiments on four domain translation tasks
indicate that Dk-KD outperforms other advanced
models that utilize kNN knowledge for KD. Our
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primary contributions are as follows:

• We introduce Dk-KD, which extracts domain-
relevant knowledge from a general-domain
NMT model by establishing a kNN datastore.

• We employ a two-step distillation process to
extract domain-relevant knowledge from the
datastore. Experiments show that domain-
aware knowledge selection within the data-
store is beneficial for model learning.

• Dk-KD focuses on the learning of domain
knowledge, improving the translation of
domain-specific low-frequency words.

2 Background

2.1 kNN-MT

kNN-MT (Khandelwal et al., 2020) is a method
that employs retrieval-augmented techniques in text
generation. It operates by retrieving the k closest
data points from a vast datastore during the decod-
ing phase, thereby assisting a pre-trained Neural
Machine Translation (NMT) model by providing
contextually relevant information. The process of
kNN-MT can be divided into two main steps:

Building kNN Datastore The datastore is a cru-
cial aspect of the kNN-MT system, where it stores
the knowledge of a pre-trained NMT model in the
form of key-value pairs. In this context, the key
represents the output representation at each time
step, and the value corresponds to the target to-
ken, which is the accurate translation. Specifically,
given a set of training data (X ,Y), we process
each sentence pair (x,y) to construct the datastore
(K,V). This process can be understood as struc-
turing the knowledge learned by the model in a
way that facilitates efficient retrieval and utilization
later on. The construction for the datastore is:

(K,V) =
⋃

(x,y)∈(X ,Y)

{(f(x,y<i),yi) ∀yi ∈ y} .

(1)
The output representation of the NMT model at a
specific time step i, denoted as f(x, y<i), serves as
the key, while the corresponding reference target
token yi is the value. This is because each time
step’s output representation corresponds to a tar-
get token, and all these representations need to be
stored for subsequent retrieval and utilization.

Model Inference During the inference process,
at each decoding step i, kNN-MT transforms
the current translation context into a representa-
tion, f(x, y<i). This representation, f , is then
used to query the k nearest neighbors N i

k =
{(kj , vj) | j ∈ {1, 2, . . . , k}} from the datastore
by comparing the l2 distance, effectively identi-
fying the k most similar historical contexts to the
current one. The distribution for kNN is:
pkNN(yi|x,y<i) ∝

∑

(kj ,vj)∈N i
k

1yi=vj exp

(
−d(kj , f(x, yi))

τ

)
,

(2)
where τ is the temperature, and d(·, ·) is the l2
distance function. The final probability distribution
predicting the next token yi is the interpolation of
two distributions with a tuning parameter λ:

p(yi|x,y<i) =

(1− λ)pMT(yi|x,y<i) + λpkNN(yi|x,y<i).
(3)

By incorporating external knowledge, the retrieval
distribution has been adjusted to refine the initial
NMT distribution, thus better performance.

2.2 kNN-KD
kNN-KD was proposed to address the slow decod-
ing speed and large storage space issues of kNN-
MT. It shifts the phase of utilizing kNN knowl-
edge from decoding to training. Specifically, this is
achieved through the KD method, during the model
training process, the kNN distribution stored in the
datastore acts as the teacher. For all translation
contexts (x,y<i) during the training process, kNN-
KD treats them as queries and performs retrieval in
the datastore, subsequently obtaining the retrieval
results N .

Apply kNN to KD Let pkNN represent the kNN
distribution retrieved from the datastore. To train
an NMT model from scratch using KD, the loss
during distillation is:

LkNN−KD =
∑

yi∈V
pkNN(yi|x,y<i)

× log

(
pkNN(yi|x,y<i)

pMT(yi|x,y<i)

)
,

(4)

where V represents the target language vocabulary.
The final loss is obtained by balancing the cross-
entropy (CE) loss and the distillation loss through
the parameter δ:

L = (1− δ)LCE + δLkNN−KD. (5)
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Figure 1: An overview of our proposed Dk-KD method.

3 Domain-Aware kNN-KD

3.1 Motivation
Our objective is to maximize the utilization of the
datastore established by existing models and in-
ject domain-relevant knowledge into adapter layers
through a dual KD process, a technique not imple-
mented in previous methodologies. Recent studies,
such as kNN-KD (Yang et al., 2022) and INK (Zhu
et al., 2023), have shifted the kNN retrieval from
the datastore from the decoding phase to the train-
ing process, utilizing kNN representations to fa-
cilitate the model’s learning of knowledge. How-
ever, they overlook the need to tailor knowledge
learning to specific domains, which may lead to
inadequate learning outcomes for the model re-
garding domain-specific vocabulary. Therefore, we
propose Domain-Aware kNN-KD, which focuses
on learning domain-relevant knowledge from kNN
representations during the training process. The
overall training process is depicted in Figure 1.

3.2 Domain-Aware Datastore Construction
As illustrated in the first part of Figure 1, for a spe-
cific domain, we employ the original NMT model
to perform forced decoding on sentences from the
domain’s training set (X ,Y). For each sentence,
we obtain multiple context representations, which,
along with the corresponding target tokens, are
saved into a domain-aware kNN datastore (K,V).

3.3 Domain-Aware Teacher Finetuning
The purpose of this step is to train a teacher model
that possesses a profound understanding of specific

domain knowledge, termed a domain-aware model.
Beginning with a pre-trained NMT model, which
lacks a deep understanding of any specific do-
main, we tackle this issue by adopting a fine-tuning
strategy and incorporating a domain-aware datas-
tore. The key aspect here is to perform domain-
aware knowledge selection on the kNN representa-
tions, enabling us to accurately identify and extract
domain-relevant knowledge through this process.
This domain-specific knowledge is instrumental
in training a teacher model that comprehends the
nuances and demands of the specific domain.

During fine-tuning, upon obtaining the kNN dis-
tribution, we assess the magnitude of the target
token ȳi within this distribution. If the probabil-
ity pDT

kNN(ȳi) is greater than or equal to a thresh-
old α, it is considered domain-relevant knowl-
edge. Conversely, if pDT

kNN(ȳi) is less than α, it
is deemed domain-irrelevant knowledge. We calcu-
late the Kullback-Leibler (KL) divergence between
the domain-relevant kNN distribution and the out-
put distribution of the NMT model:

LKL =
∑

yi∈V
pDT
kNN(yi|x,y<i)

× log

(
pDT
kNN(yi|x,y<i)

pRTMT(yi|x,y<i)

)
,

(6)

Furthermore, the acronyms DT and RT refer to
the Distant Teacher and the Relevant Teacher, cor-
responding to the original NMT model and the
domain-aware teacher model, respectively. The fi-
nal loss for the entire sentence can be formulated
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as:

LTeacher = LCE +
I∑

i=1

1(pDT
kNN(ȳi)≥α)Li

KL, (7)

where I represents the length of the sentence. The
indicator function therein indicates the screening
process, where only valid kNN knowledge is in-
cluded in the calculation of the loss.

The parameters of the original NMT model are
defined as θN, and the parameters of the teacher
model during fine-tuning are defined as θT. The
training objective for this step is formulated as:

θ̃T = argminLTeacher

(
(X ,Y); (K,V); θN ; θT )

)

(8)

3.4 Domain-Aware Adapter Distillation
The aim of this step is to refine the domain-aware
teacher model through fine-tuning and to further ex-
tract domain-relevant knowledge from the domain-
aware datastore. This process begins with the
adapter layers attached to the original NMT model.
These adapter layers are additional layers intro-
duced into the NMT model architecture, including
the encoder and decoder, aimed at enhancing the
model’s adaptability and understanding of specific
domain knowledge without significantly altering
the overall structure of the model. During this pro-
cess, domain-aware knowledge selection is still
performed on the kNN representations, allowing
for the precise extraction of domain-relevant knowl-
edge from the datastore through this filtering mech-
anism. This domain-relevant knowledge is then
used to optimize the adapter layers.

We utilize the relevant teacher model to retrieve
kNN distribution from the datastore. Subsequently,
we compare the probability of the golden label in
this distribution with α and filter out distributions
where the probability is less than α, in order to
isolate knowledge with stronger domain-relevant.
The distilled distributions are then integrated with
the distribution output by the teacher model. The
final representation of the teacher probability dis-
tribution pT is:

pT =

{
λpRTMT + (1− λ)pRTkNN, if pRTkNN(ȳi) ≥ α,

pRTMT, if pRTkNN(ȳi) < α.
(9)

The method for calculating the final loss is:

LKL =
∑

yi∈V
pT(yi|x,y<i) log

(
pT(yi|x,y<i)

pSTU
MT (yi|x,y<i)

)
.

(10)

Dataset IT Koran Medical Law

Train 222,927 17,982 248,009 467,309
Dev 2,000 2,000 2,000 2,000
Test 2,000 2,000 2,000 2,000

Table 1: Statistics of four domain translation datasets.

LStudent = LCE + β
I∑

i=1

Li
KL. (11)

where STU denotes the final student model and β
is a balanced coefficient.

The parameters of the adapter layer attached to
the NMT model are defined as θA, hence the train-
ing objective for this step can be represented as:

θ̂A = argminLStudent

(
(X ,Y); (K,V); θ̃T ; θA )

)

(12)

3.5 Discussion
The original NMT model is generally not special-
ized to a specific domain since it is trained on data
from various domains. However, after training on
a dataset specific to a domain, we consider the
teacher model to be focused on that domain. Simi-
larly, the distribution obtained from the datastore,
after filtering, should also be focused on the do-
main. This can make our final model align with
the domain as closely as possible. The final model
includes the original model with adapter layers
added, while keeping the parameters of the origi-
nal model’s embedding layer, encoder, and decoder
unchanged. Therefore, our model can outperform
vanilla kNN-MT systems in terms of inference time
and memory costs, achieving a balance between
time, memory space, and model effectiveness.

4 Experiments

4.1 Experimental Setup
Testbed Model and Dataset We selected the
winning model from the WMT’191 German-to-
English (Ng et al., 2019) news translation task as
the basis for constructing our NMT model, utilizing
it for both translation and datastore. In this paper,
we refer to it as the domain-agnostic model. We
conduct experiments on the multi-domain datasets,
which include Koran, IT, Medical, and Law. The
statistics of these datasets are shown in Table 1.
We follow Ng et al. (2019) to tokenize the sentence
into subword units.

1https://github.com/facebookresearch/fairseq/
tree/main/examples/wmt19
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Parameters IT Koran Medical Law

Domain-Aware Teacher Finetuning

k 16 16 16 16
τ 10 10 10 100
max-epochs 100 60 100 100
max-tokens 4096 4096 4096 8192

Domain-Aware Adapter Distillation

k 8 16 8 4
τ 100 10 50 10
λ 0.1 0.2 0.1 0.1
max-epochs 80 80 80 80
max-tokens 8192 8192 8192 8192
adapter-ffn 8192 512 8192 8192

Table 2: Dk-KD settings for different datasets.

Baselines For the purpose of comparison, we out-
line the performance of the original model here and
also test two methods of applying neighborhood
knowledge during the decoding phase. Moreover,
we also compare with the methods distilling neigh-
borhood knowledge into the model.

• Vanilla NMT (Vaswani et al., 2017) introduces
the Transformer model, which adopts a self-
attention mechanism.

• Vanilla kNN-MT (Khandelwal et al., 2020) uti-
lizes neighborhood knowledge to enhance trans-
lation during the decoding phase.

• Robust kNN-MT (Jiang et al., 2022) enhances
kNN-MT performance by dynamically adjusting
decoding hyperparameters.

• kNN-KD (Yang et al., 2022) aims to train an
NMT model from scratch that distills kNN
knowledge into it.

• INK (Zhu et al., 2023) smooths the representa-
tion space using kNN knowledge from an asyn-
chronously refreshed datastore.

Evaluation During inference, we set beam size
as 4 and length penalty as 0.6. We used the follow-
ing two metrics for MT evaluation:

• COMET (Rei et al., 2020), a machine learning-
based evaluation tool specifically designed for
assessing the quality of machine translations. It
quantifies the accuracy and fluency of transla-
tions by comparing the translated text with ref-
erence texts translated by humans. We report

the COMET score, calculated using the publicly
available wmt20-comet-da2 model.

• BLEU (Papineni et al., 2002), a widely-used
metric for automatically evaluating the quality
of machine translations. We present our results
using case-sensitive, detokenized sacrebleu3.

4.2 Implementation Details

We employed the fairseq4 toolkit for model imple-
mentation, leveraging knn-box5 (Zhu et al., 2024)
for the construction and kNN retrieval of the datas-
tore. Furthermore, we utilized FAISS6 for efficient
search operations. In the first phase, we set the
learning rates for the Koran, IT, and Medical do-
mains to 1e-4, respectively. For the Law domain,
the learning rate was adjusted to 3e-4.In the sec-
ond phase, during the training of the adapter layers,
we standardized the learning rates across all four
domains to 3e-4, respectively, and set β to 2.0.All
Dk-KD systems were trained on A100 GPUs. In
the two-stage distillation, we set the threshold α to
0.5. Throughout the entire training process, we set
the label smoothing parameter to 0.1, the weight de-
cay to 0.0001, used the Adam optimizer with betas
of (0.9, 0.98), and adopted an inverse square root
learning rate scheduler with a warm-up of 4000
updates. We selected the model with the highest
validation BLEU score for testing.

The parameters involved in the distillation pro-
cess of Dk-KD are outlined in Table 2, including
those for kNN retrieval, max-epochs, and batch-
size for training. During the fine-tuning phase of
the teacher model, due to the small size of the
Koran dataset, we appropriately reduced the max-
epochs to prevent the model from overfitting to
the validation set, which could lead to suboptimal
results. With the larger Law dataset, to ensure
thorough learning, we adjusted its batch size. Simi-
larly, during the distillation adapter phase, we also
reduced the dimension of the adapter layers specif-
ically for the characteristics of the Koran dataset.
To ensure the learning effectiveness and training
speed of the adapter layers, we standardized the
max-tokens to 8192.

2https://github.com/Unbabel/COMET
3https://github.com/mjpost/sacrebleu
4https://github.com/facebookresearch/fairseq
5https://github.com/NJUNLP/knn-box
6https://github.com/facebookresearch/faiss

9462

https://github.com/Unbabel/COMET
https://github.com/mjpost/sacrebleu
https://github.com/facebookresearch/fairseq
https://github.com/NJUNLP/knn-box
https://github.com/facebookresearch/faiss


Method IT Koran Medical Law Avg.

COMET BLEU COMET BLEU COMET BLEU COMET BLEU COMET BLEU

Vanilla NMT 39.29 38.35 -1.36 16.26 46.91 39.99 57.54 45.48 35.60 35.02
FT 67.34 49.95 6.69 21.80 59.71 57.58 71.24 63.60 51.25 48.23
Adapter 66.82 48.50 2.49 21.76 60.61 57.17 70.18 61.00 50.03 47.11

Training: Vanilla | Decoding: kNN Datastore Retrieval

Vanilla kNN-MT 51.76 45.64 3.01 20.82 52.84 54.23 66.47 61.40 43.52 45.52
Robust kNN-MT 58.10 48.62 2.07 19.65 57.54 57.27 69.82 63.79 46.88 47.33

Training: kNN Knowledge Distillation | Decoding: Vanilla

kNN-KD 57.07 44.30 -31.64 15.79 56.14 55.92 67.93 62.32 37.38 44.58
INK 67.26 48.31 6.60 22.56 60.45 57.33 71.31 61.54 51.41 47.44
Dk-KD 69.41 50.30 9.41 23.37 60.75 57.80 72.26 63.96 52.96 48.86

Table 3: Main results on the four domain translation tasks. Both COMET score and BLEU score reflect that our
Dk-KD method achieves significant improvements compared with INK on all the tasks (p < 0.1).

Method IT Koran Medical Law Avg.

COMET BLEU COMET BLEU COMET BLEU COMET BLEU COMET BLEU
Dk-KD 69.41 50.30 9.41 23.37 60.75 57.80 72.26 63.96 52.96 48.86
w/o Relevant Teacher 68.19 49.13 7.60 22.12 60.43 57.67 72.09 63.40 52.08 48.08

Table 4: “w/o Relevant Teacher” indicates the step of training the relevant teacher model is omitted, allowing for
direct training of the adapter using domain-specific knowledge from the datastore.

4.3 Main Results

The comparative results of different systems are
presented in Table 3. Given the original NMT
model’s lack of domain sensitivity, its performance
on tests across the four domains was relatively
moderate. While the conventional kNN-MT model
demonstrates improved translation quality, its de-
coding phase incurs significant time and storage
costs, which limit its widespread application. The
kNN-KD approach requires training from scratch,
resulting in unstable outcomes. Meanwhile, the
INK training framework demands asynchronous
updates to the datastore, resulting in a high demand
for disk interaction during training. Dk-KD op-
timizes the balance between memory usage and
method effectiveness, eliminating the need for ex-
tra disk operations during training, ensuring a more
stable and consistent learning environment, thereby
validating the method’s rationality. Through test-
ing on four domain tasks, Dk-KD achieved com-
mendable translation outcomes, demonstrating the
effectiveness of Dk-KD.

5 Analysis

5.1 Method Justification

Effect of Domain-Aware Teacher Finetuning
To validate the significance of training the teacher

model, we omitted the distillation process in Step 1.
Specifically, we directly extracted the kNN proba-
bility distribution from the datastore during the
training process, applied the same threshold to
select domain-relevant knowledge, and used the
filtered results for KD on the adapter layer. Al-
though there was an improvement compared to
adapter baseline, the results were still not suffi-
ciently excellent and stable. Table 4 indicates that
distilling the adapter layer using a teacher model
significantly enhances translation quality. These
findings underscore the effectiveness of integrating
domain-specific knowledge into a teacher model,
highlighting it as an effective strategy for extracting
domain-relevant knowledge from the datastore.

Effect of Domain-Aware Knowledge Selection
To validate the effectiveness of the domain-aware
distillation approach, we conducted four sets of
experiments for two-stage KD on the Koran and IT
datasets, with results depicted in Figure 2. Here,
Dk-KD denotes “Learn ≥ α”, wherein the learn-
ing objective targets the distribution of neighbor-
hood knowledge with golden labels greater than or
equal to a threshold, representing domain-relevant
knowledge; “Learn < α” represents the opposite
scenario, targeting distributions where golden la-
bels are below the threshold, representing domain-
irrelevant knowledge; “Learn all” refers to using
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Threshold IT Koran Medical Law Avg.

COMET BLEU COMET BLEU COMET BLEU COMET BLEU COMET BLEU

0.2 69.14 49.15 6.66 22.73 61.18 58.10 71.59 63.47 52.14 48.36
0.3 68.01 49.13 9.26 23.49 60.56 57.39 72.41 63.32 52.56 48.33
0.4 68.44 49.56 8.25 23.20 60.96 58.31 71.85 63.48 52.38 48.64
0.5 69.41 50.30 9.41 23.37 60.75 57.80 72.26 63.96 52.96 48.86
0.6 68.95 49.62 7.85 23.17 60.97 57.96 72.22 63.45 52.50 48.55
0.7 67.40 49.01 6.57 22.80 61.88 58.46 72.78 63.99 52.16 48.57
0.8 67.88 49.49 8.85 23.36 61.88 58.69 71.96 63.77 52.64 48.83

Table 5: Experimental effects of different α.
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Figure 2: For Dk-KD in the context of two-step dis-
tillation, we conducted three comparative experiments
for each step on the Koran and IT datasets, respectively.
The bars in the histogram indicate the increase in BLEU
scores relative to the baseline NMT model.

all retrieved neighbor knowledge kNN distribu-
tions for distillation without filtering, meaning all
retrieved probability distributions are utilized for
distillation; “Learn none” indicates that neighbor
knowledge kNN distributions are not used for dis-
tillation. It can be intuitively observed that learn-
ing from domain-relevant knowledge can enhance
the performance of the final model compared to
learning from the complete set of neighborhood
knowledge, while learning from domain-irrelevant
knowledge can diminish the performance of the
final model. Furthermore, the effectiveness and ra-
tionality of selectively filtering knowledge are high-
lighted by the improved performance of the final
model after executing domain-aware knowledge
selection, compared to indiscriminate learning.

In addition, the choice of different thresholds
is also noteworthy, we conducted experiments on
different α while fixing other parameters and the
results of the tests are shown in Table 5. As can be
seen by their average scores in the four domains, for
both assessment metrics, all test results are higher
than the current state-of-the-art methods. These

experiments demonstrate that, despite the variabil-
ity introduced by different threshold settings, the
method consistently enhances performance com-
pared to the state-of-the-art (namely, INK), indicat-
ing flexibility and robustness in threshold selection.

5.2 How Does Dk-KD Enhance Domain
Translation?

Enhanced Domain-Aware Sentence Represen-
tation We input the test set sentences into the
model, extract the outputs from the model’s en-
coder, and perform average pooling. Then, by
applying t-SNE for dimensionality reduction on
the sentence representations, we obtain the clus-
tering results as shown in Figure 3. The Koran
dataset exhibits the best clustering effect, which
may be attributed to the presence of a larger num-
ber of unique terms within the Koran domain. Con-
versely, in the clustering of the Law, Medical, and
IT datasets, there is always a degree of overlap,
likely due to the intersecting content across these
domains. We also calculated the average intra-
cluster distance for each method, and the results in-
dicate that Dk-KD has the smallest average cluster
distance, demonstrating the best clustering effect
for distinguishing domain shifts. Given that our
sentence representations are derived from the aver-
age pooling of individual word representations, the
model’s effectiveness in clustering sentence repre-
sentations is directly related to its performance in
representing words. Low-frequency words, due to
their sparse occurrence, may have vector represen-
tations that are less accurate or robust, leading to
suboptimal clustering performance.

Enhanced Rare Word Translation In multi-
domain datasets, low-frequency words are often ter-
minologies specific to their respective domains. We
examined word frequencies of WMT19 German-
English training sets across domains, classifying
words as low-frequency (less than 50 occurrences),
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Figure 3: Visualization of sentence representations from test sets across four datasets for different systems.
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Figure 4: Comparing the translation performance of tokens with varying frequencies across four datasets.

medium-frequency (51-999 occurrences), and high-
frequency (over 1000 occurrences). To evaluate
our approach, we used a baseline that involves di-
rect training of adapters and employed compare-
mt (Neubig et al., 2019) to calculate F-scores, as
shown in Figure 4. Our research demonstrates that,
in comparison to the adapter baseline and INK,
Dk-KD exhibits a significant improvement in the
inference accuracy of low-frequency words across
various domains. This improvement is particularly
notable in the medical and law fields, where the en-
hancement in inference accuracy for low-frequency
words exceeds that of medium and high-frequency
words. We hypothesize that the improvement of
translating low-frequency words is associated with
the size of the datastore, suggesting that a larger
and more comprehensive datastore facilitates better
learning outcomes for low-frequency words. The
robust performance of Dk-KD across different do-
mains, especially the translation of low-frequency
words, validates the efficacy of our approach.

5.3 Dk-KD with kNN Datastore Retrieval

Following the training process of Dk-KD, we con-
structed a new datastore using the representations
from the final model and applied Robust kNN-MT
to it. The resulting COMET and BLEU scores
are shown in Table 6. We found that applying
R-kNN to the Koran dataset actually deteriorates
translation performance, which may be attributed
to the smaller size of the Koran dataset leading to a
sparser datastore, making it challenging to extract
an effective kNN distribution to assist in genera-

tion. The sparse datastore for the Koran dataset
indicates a need for further methodological adjust-
ments or enhancements when dealing with limited
or highly specialized data collections. Despite the
challenges observed with the Koran dataset, the
overall results illustrate that, in most scenarios, the
combined application of Dk-KD with R-kNN still
leads to an improvement in translation quality.

6 Related Work

6.1 Domain Adaptation for NMT

The prevailing approaches in this area can gener-
ally be categorized into model-centric and data-
centric methods. The former focuses on carefully
designing NMT model architectures to learn trans-
lation knowledge of target domain (Wang et al.,
2017; Zeng et al., 2018; Bapna and Firat, 2019a;
Guo et al., 2021) or improving the training process
to better utilize relevant context (Wuebker et al.,
2018; Bapna and Firat, 2019b; Lin et al., 2021;
Liang et al., 2021). The latter, on the other hand,
involves leveraging target domain monolingual cor-
pora (Zhang and Zong, 2016; Zhang et al., 2018b),
synthetic corpora (Hoang et al., 2018; Hu et al.,
2019; Wei et al., 2020), parallel corpora (Chu et al.,
2017), or learn the similar data various domains
to intensify the model for low-resource machine
translation (Zhan et al., 2021), to enhance machine
translation models through model fine-tuning. In
this paper, we propose a novel approach by start-
ing with building a datastore of domain knowledge,
extracting domain-relevant knowledge from stored
representations.
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Method IT Koran Medical Law

COMET BLEU COMET BLEU COMET BLEU COMET BLEU
Dk-KD 69.41 50.30 9.41 23.37 60.75 57.80 72.26 63.96
R-kNN 58.10 48.62 2.07 19.65 57.54 57.27 69.82 63.79
Dk-KD+R-kNN 69.69 50.75 1.64 21.65 60.83 59.23 73.22 65.79

Table 6: Results of Dk-KD with kNN Decoding.

6.2 kNN-MT

Example-based approaches have been introduced
into machine translation, demonstrating the utility
of leveraging token-level or sentence-level exam-
ples to improve translation performance (Zhang
et al., 2018a; Gu et al., 2018). kNN-MT signif-
icantly improves performance by retrieving ex-
amples, serving as a non-parametric retrieval-
augmented method that offers an alternative to tra-
ditional fine-tuning methods (Khandelwal et al.,
2020). Adaptive kNN-MT further enhances perfor-
mance through the training of a network that dy-
namically adjusts parameters (Zheng et al., 2021a;
Jiang et al., 2022). kNN-MT has shown promising
progress in various machine translation tasks, in-
cluding domain adaptation (Zheng et al., 2021b;
Cao et al., 2023), interactive machine transla-
tion (Wang et al., 2022b), Transfer Learning (Li
et al., 2022; Liu et al., 2023) and speech trans-
lation (Du et al., 2022). Other researchers have
enhanced kNN-MT retrieval efficiency by pruning
the datastore (Wang et al., 2022a), dynamically con-
structing the datastore (Meng et al., 2022; Wang
et al., 2021; Dai et al., 2023), and reducing the num-
ber of steps required for retrieval (Martins et al.,
2022a,b). To eliminate the need for retrieval dur-
ing inference, the approach of distilling the knowl-
edge from the datastore into the model parameters
has been proposed, presenting a novel alternative
to kNN retrieval (Yang et al., 2022; Zhu et al.,
2023). We observe that not all the knowledge con-
tained in a domain-specific datastore is beneficial
for the learning of student models. In this paper,
we present a two-step distillation process to extract
domain-relevant knowledge from the neighboring
datastore, effectively distilling the knowledge into
the adapter.

7 Conclusion and Future Work

In this paper, we introduce a method named
domain-aware kNN-KD, which extracts domain-
relevant knowledge from a domain-aware datas-
tore constructed by a domain-agnostic model. In

Dk-KD, we design a two-stage knowledge distilla-
tion process that initially trains a domain-relevant
teacher with the aid of domain-relevant knowl-
edge, and then utilizes the teacher model to distill
domain-relevant knowledge into the adapter lay-
ers, achieving improvements in translation perfor-
mance. Notably, Dk-KD significantly enhances the
source representation and the translation accuracy
of domain-specific low-frequency words.

Future work includes: 1) Attempting to shift the
filtering of domain-focused knowledge from the
training phase to the datastore construction phase,
aiming to reduce the storage footprint of the data-
store and alleviate retrieval times; 2) Identifying
more effective and efficient methods for filtering
domain-relevant knowledge to enhance the efficacy
of kNN knowledge distillation.

Limitations

While the effectiveness of our model is promising,
employing the entire datastore for knowledge dis-
tillation during the training phase results in longer
training times. Furthermore, we need to conduct
two rounds of training for each domain, thereby in-
creasing the overall training expense. Additionally,
we observed that even with the final model, kNN
knowledge continues to aid in inference perfor-
mance. This suggests that our selection of domain-
relevant knowledge is not sufficiently precise, or
the distillation method may be unsuitable, indi-
cating potential areas for improvement. Due to
the large scale of large language models, current
methods of kNN knowledge distillation, including
Dk-KD, are not readily transferable to machine
translation based on large language models, await-
ing further development in GPU memory capacity.
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