
Findings of the Association for Computational Linguistics: ACL 2024, pages 6780–6795
August 11-16, 2024 ©2024 Association for Computational Linguistics

ETAS: Zero-Shot Transformer Architecture Search via Network
Trainability and Expressivity

Jiechao Yang1,2 Yong Liu1,2,*

1 Gaoling School of Artificial Intelligence, Renmin University of China, Beijing, China
2 Beijing Key Laboratory of Big Data Management and Analysis Methods

{yangjiechao2021, liuyonggsai}@ruc.edu.cn

Abstract

Transformer Architecture Search (TAS) meth-
ods aim to automate searching for the optimal
Transformer architecture configurations for a
given task. However, they are impeded by the
prohibitive cost of evaluating Transformer ar-
chitectures. Recently, several Zero-Shot TAS
methods have been proposed to mitigate this
problem by utilizing zero-cost proxies to eval-
uate Transformer architectures without train-
ing. Unfortunately, they are limited to specific
computer vision or natural language processing
tasks. Nonetheless, most of them are devel-
oped based on empirical observations and lack
theoretical guarantees. To solve this problem,
we develop a new zero-cost proxy called NTSR
that combines two theoretically-inspired indica-
tors to measure the trainability and expressivity
of Transformer networks separately. We then
integrate it into an effective regularized evo-
lution framework called ETAS to demonstrate
its efficacy on various tasks. The results show
that our proposed NTSR proxy can consistently
achieve a higher correlation with the true perfor-
mance of Transformer networks on both com-
puter vision and natural language processing
tasks. Further, it can significantly accelerate the
search process for finding the best-performing
Transformer architecture configurations.

1 Introduction

Transformer networks (Li et al., 2022a; Zhou et al.,
2022; Chitty-Venkata et al., 2022) have attracted
tremendous interest over recent years due to their
effectiveness in learning long-range dependencies
in data and superior performance across various
tasks. They have gradually replaced traditional
neural networks, such as Convolutional Neural Net-
works (CNNs) and Recurrent Neural Networks
(RNNs), in a variety of domains including Nat-
ural Language Processing (NLP) (Javaheripi et al.,
2022), Computer Vision (CV) (Chen et al., 2022),

* Corresponding Author

speech signal processing (Chitty-Venkata et al.,
2022), and healthcare (Chitty-Venkata et al., 2022).
Recently, the Transformer architecture has become
the de facto backbone for most large language mod-
els (LLMs) (Zhao et al., 2023; Tornede et al., 2024).
In real applications, it is often necessary to adjust
the Transformer architecture configurations accord-
ing to the specific tasks (Javaheripi et al., 2022),
such as the depth of the network, the number of
attention heads, embedding dimension, and the in-
ner dimension of the feed-forward layer. However,
manually tuning these parameters requires repeated
refinement with expert experience, which is time-
consuming and computationally expensive.

To solve this problem, various Transformer Ar-
chitecture Search (TAS) methods (Lin et al., 2021;
Chitty-Venkata et al., 2022; Wei et al., 2024; Chen
et al., 2023) have been proposed, which automate
the search for the optimal Transformer architecture
configurations for a given task and data. The cur-
rent popular TAS methods include reinforcement
learning (Zhu et al., 2021), evolutionary search
(Real et al., 2019; Zhou et al., 2024), one-shot (Li
et al., 2021; Chen et al., 2021b), and predictor-
based search (Wei et al., 2023; Ning et al., 2023).
However, during the search process, they still de-
mand a high computational cost to evaluate sev-
eral hundred or thousands of architectures. Train-
ing a Transformer network can take hours or even
days, thus hindering the practical application of
TAS (Wei et al., 2024). Recently, zero-shot Neu-
ral Architecture Search (NAS) methods (Li et al.,
2024) have attracted much attention as they de-
sign zero-cost proxies to estimate the performance
of a network at the initialization stage. They can
quickly evaluate the performance of a network in a
few seconds by computing statistics from a single
forward/backward propagation pass of the network
with a minibatch of data at initialization (Abdelfat-
tah et al., 2021). Nevertheless, Zhou et al. (2022)
have shown the majority of existing zero-cost prox-

6780

ies are specifically designed for the CNN search
spaces (e.g.,NAS-Bench-101 (Ying et al., 2019),
NAS-Bench-201 (Dong and Yang, 2020), NAS-
Bench-301 (Zela et al., 2022), TransNAS-Bench-
101 (Duan et al., 2021)) and perform worse on the
Transformer search space. They leverage the char-
acteristics of Transformer networks and design a
DSS zero-cost proxy that estimates synaptic diver-
sity of multi-head self-attention (MSA) and synap-
tic saliency of the multilayer perceptron (MLP) in
the Transformer network to rank its performance
in a Vision Transformer (ViT) search space. Later,
Chen et al. (2022) introduce a zero-cost proxy that
measures the complexity of manifold propagation
through ViT to estimate how complex a function
can be approximated by a Vision Transformer net-
work. Javaheripi et al. (2022) choose the number of
decoder parameters in auto-regressive Transform-
ers as a zero-cost proxy for the perplexity of the
language model without the need for any model
training.

Unfortunately, current zero-cost proxies for
Transformer architectures are specifically designed
for certain computer vision or natural language pro-
cessing tasks. For example, existing zero-cost prox-
ies for Transformers like DSS (Zhou et al., 2022)
and TVT (Wei et al., 2023) are specially designed
for Vision Transformer (ViT) encoder-only archi-
tectures. They show great performance on multiple
vision tasks, but they perform relatively worse on
the most used GPT auto-regressive architecture in
NLP applications (Chen et al., 2022). On the other
hand, LTS (Chen et al., 2022) show that decoder
parameters serve as a good proxy for the perfor-
mance of GPT-2 architectures on multiple NLP
tasks. However, they perform relatively worse in
ViT architecture (Zhou et al., 2024; Zhou and Zhu,
2024) as there exists a large amount of parameter
redundancy in these structures, leading to over-
parameterized networks that are prone to overfit-
ting on small-scale datasets. Nonetheless, most of
them are designed based on empirical observations
and lack theoretical assurances. Can we design a
theoretically-inspired zero-cost proxy applicable to
multiple vision and language tasks? To this end, we
propose a novel zero-cost proxy called NTSR that
combines two theoretically-inspired indicators to
measure the trainability and expressivity of Trans-
former networks. In particular, based on the theo-
retical underpinnings of deep neural network train-
ing, we design the NTKT metric that utilizes the
trace of the mean Neural Tangent Kernel (NTK) to

quantify the trainability of Transformer networks.
Meanwhile, we design another SEPT metric that
utilizes the upper bound of separation rank induced
by the Transformer network to measure the capac-
ity of Transformer networks to represent input de-
pendencies. To demonstrate the effectiveness of our
proposed NTSR zero-cost proxy for Transformer
networks, we compare it to other popular zero-cost
proxies in multiple search spaces. The results show
that NTSR can consistently achieve a higher cor-
relation with the true performance of Transformer
networks on both computer vision and natural lan-
guage processing tasks. To investigate the ability
of our proposed NTSR zero-cost proxy to acceler-
ate searching for the best-performing Transformer
network, we further integrate it into an effective
regularized evolution framework called ETAS. The
results show that NTSR can significantly speed up
finding the best-performing Transformer network.

2 Related Work

Transformer Architecture Search. The goal of
Transformer Architecture Search (TAS) is to search
for the best-performing Transformer configurations
in an automated way for a given task. Recently,
various TAS methods (Li et al., 2022b; Chitty-
Venkata et al., 2022; Ye et al., 2024) have been
proposed. One of the most popular methods is
evolution-based Transformer architecture search
(So et al., 2019, 2021; Su et al., 2022). They use
an evolutionary search algorithm to find the opti-
mal Transformer architecture within a given target
budget. Another classic method is reinforcement
learning (Zhu et al., 2021; Zhu, 2021), which uses
a controller to sample high-quality Transformer
architectures and updates the controller using the
network’s performance as a reward. However, cur-
rent evolutionary search and reinforcement learn-
ing approaches need to collect a substantial number
of network samples to train, which is costly and
time-consuming. To reduce the search cost of TAS,
one-shot methods (Chen et al., 2021a,b; Li et al.,
2022a; Wang et al., 2023) have been proposed.
They only train a huge supernetwork and obtain the
performance of the sampled subnetwork through
weight sharing. Nevertheless, training a huge su-
pernetwork is non-trivial, and the memory con-
sumption of a Transformer supernetwork increases
with hidden size and runs out even with small val-
ues (Chitty-Venkata et al., 2022). Predictor-based
methods (White et al., 2021; Shen et al., 2023) train

6781

a surrogate model using a certain number of Trans-
former architecture-accuracy pairs and then use it
to estimate the performance of unseen networks.
Overall, the current popular TAS methods still need
fully training massive architectures to find the opti-
mal network, which demands a high computational
cost. This highlights the great potential of devel-
oping zero-shot methods to replace the expensive
training process in NAS with zero-cost proxies.

Zero-Cost Proxies. In recent years, various types
of zero-cost proxies (Krishnakumar et al., 2022a;
Li et al., 2024; Lee and Ham, 2024) have been pro-
posed to rank the performance of networks at the
initialization stage. One type consists of paramet-
ric saliency-based zero-cost proxies (White et al.,
2022). They score the whole network by sum-
ming the changes in the saliency metric when a
specific parameter of the network is removed. Ab-
delfattah et al. (2021) adopt several pruning-at-
initialization metrics, including snip, grasp, syn-
flow, and fisher, as parameter-level saliency-based
zero-cost proxies for the network performance with
a minibatch of data at initialization. Another type is
network expressivity-based zero-cost proxies (Tu
et al., 2022). They estimate the network perfor-
mance by the expressivity of the network. Mellor
et al. (2021) develop a heuristic NASWOT metric
that utilizes the correlation of network activations
between different data at initialization. Meanwhile,
Chen et al. (2021c) select the number of linear acti-
vated regions represented by the network to mea-
sure the expressivity of a network. Additionally,
there exists a type of zero-cost proxies inspired by
deep learning theory (Zhou and Zhu, 2024; Shu
et al., 2022b). Chen et al. (2021c) choose the con-
dition number of Neural Tangent Kernel (NTK) to
measure the trainability of networks and show it
is negatively correlated with network performance.
Later, Shu et al. (2022a) develop a label-agnostic
and data-agnostic NASI metric that leverages the
trace of NTK as an indicator for network perfor-
mance. More recently, Li et al. (2023) found that
the mean value and standard deviation of gradients
across different samples affect the training conver-
gence of networks. Based on the generalization
theory of deep neural networks, they propose a
theoretically-inspired zero-cost proxy called ZiCo
that considers both the mean value and standard
deviation of gradients in each layer of the network.
Meanwhile, Jiang et al. (2023) use the minimum
eigenvalue of the Pearson correlation matrix upon

each layer of the feature maps to indicate the con-
vergence of the network.

However, most of the existing zero-cost proxies
are specially designed for CNN networks, whose
internal architecture is distinctly different from the
Transformer network. Zhou and Zhu (2024) have
shown that the current zero-cost proxies for CNN
cannot generalize well to the Transformer search
space. To adapt well for the Transformer network,
we develop a novel zero-cost proxy called NTSR
that combines two theoretically-inspired indicators
for measuring the trainability and expressivity of
the Transformer network.

3 Method

In the context of TAS, the goal of zero-cost proxy is
to accurately estimate the ranking of a Transformer
network’s performance at initialization. In fact, a
good neural network architecture should have good
trainability (i.e., how fast a network can converge
via a gradient descent algorithm) and high expres-
sivity (i.e., how complex functions a network can
represent) (Chitty-Venkata et al., 2022; Chen et al.,
2021c). In Sections 3.1 and 3.2, we design two
theoretically-inspired indicators to reflect the train-
ability and expressivity of Transformer networks,
separately. We then propose the NTSR zero-cost
proxy that combines these two important indicators
to measure the trainability and expressivity of a
given Transformer network, and integrate it into an
evolutionary search framework called ETAS to find
the best-performing Transformer network architec-
ture in Section 3.3.

3.1 Trainability of Transformer Network

With the rapid development of deep learning theory
on neural networks, Neural Tangent Kernel (NTK)
has emerged as an effective tool for characteriz-
ing the training dynamics of infinitely wide (Jacot
et al., 2021) or finite wide (Novak et al., 2022)
deep networks. It solved a classic question of “how
does training of neural networks work so well de-
spite being highly nonconvex?" (Yang, 2020). Lee
et al. (2019) have demonstrated that under the large
width limit and constant NTK assumption, the pre-
dictions of a neural network evolving like a linear
model throughout gradient descent training.

NTK of Transformer. Assume there exists a
batch of M sequences with T tokens X =
{xα,1, · · · ,xα,T }Mα=1 and a standard depth-L
Transformer network with one input embed-

6782

ding layer and L transformer blocks. The
output of Transformer network at the L-th
block is {zL

α,1, · · · , zL
α,T }Mα=1. After that, we

define the NTK of a Transformer network
K(X ,X) ∈ RMdLz ×T×MdLz ×T , each element of
the 4-dimensional NTK tensor is:

Kα1,t1,α2,t2 = ∇wz
L
α1,t1

(
∇wz

L
α2,t2

)⊺
, (1)

where α1, α2 ∈ X are pairs of inputs sampled from
training batch X . t1, t2 ∈ [T] is the token index.

Theorem 3.1 (Yang (2020)). Let f be a neural net-
work of standard architecture with scalar output
and randomly initialized weights ω ∼ N

(
0, σ2

ω

)
.

If it satisfies Condition 1 in Yang (2020) and its non-
linearities have polynomially bounded weak deriva-
tives, then its NTK Θ converges almost surely, over
any finite set of inputs, to a deterministic kernel Θ0,
i.e., Θ a.s.−−→ Θ0 as its widths go to infinity.

This theorem indicates the NTK of a standard
Transformer network at initialization K(X ,X) has
a well-defined infinite-width limit. We can use it
to predict the training convergence of the network.
As shown in Equation (14), we can estimate the
training convergence of the network through NTK
at initialization. If Θ0 can be represented through
its eigenvectors and corresponding eigenvalues λi,
then it can be inferred that the eigenvectors of Θ0

coincide with those of e−ηΘ0t with a transforma-
tion of eigenvalues e−ηλit. This observation reveals
that the network’s convergence rate is intimately
connected to eigenstructures of Θ0. Consequently,
a network with a NTK characterized by a greater
total sum of eigenvalues, i.e.,

∑
i λi, is likely to

achieve faster convergence and a lower loss.
However, directly computing

∑
i λi of the 4-

dimensional NTK tensor K(X ,X) of a Trans-
former network is extremely challenging. This dif-
ficulty arises due to the dynamic nature of the net-
work connections in Transformers, where the out-
put at each token index focuses on different parts
of the input sequence, as shown in Equation (7), re-
sulting in distinct outputs for each token index. To
solve this problem, we take the mean of the NTK
tensor K(X ,X) over the token indexes, which is
defined as K̄(X ,X) ∈ RMdLz ×MdLz , where each
element is:

K̄α1,α2 =
1

T 2

T∑

t1=1

T∑

t2=1

∇wz
L
α1,t1

(
∇wz

L
α2,t2

)⊺
.

(2)

Through the above operation, the four-dimensional
NTK tensor K(X ,X) is reduced to a standard two-
dimensional matrix K̄α1,α2 . Besides, the matrix
is symmetric and positive semi-definite, and the
sum of eigenvalues is equivalent to the trace of
K̄(X ,X). Calculating the trace of a matrix offers
computational efficiency, effectively bypassing the
complexities involved in eigenvalue determination.
Consequently, we use the trace of K̄α1,α2 as an
indicator called NTKT for the training convergence
of the network, which is defined as:

NTKT(f) =
∥∥K̄(X ,X)

∥∥
tr =

M∑

i=1

∥∥K̄αi,αi

∥∥
tr

=
1

T 2

M∑

αi=1

T∑

ti=1

dLz∑

j=1

∥∥∇wz
L
αi,ti,j

∥∥2
2
.

(3)

Theorem 3.2. Assume a standard Transformer
net f with randomly initialized weights ω ∼
N

(
0, σ2

ω

)
. Under vanilla stochastic gradient de-

scent (SGD) optimizer and the first-order Taylor
expansion, the mean of outputs over tokens at
time step s + 1 satisfies: f̄s+1(X) − f̄s(X) =
−ηsK̄(X ,X)L′ (f̄s (X)

)
, where ηs is the learning

rate at step s. Then, NTKT(f) is positively corre-
lated with the convergence rate of network f .

The proof of this theorem can be found in Ap-
pendix A.2. This theorem shows that NTKT pro-
vides a reasonable estimate for the training conver-
gence of the network. In general, a larger NTKT
score indicates that the corresponding network will
converge faster and learn more efficiently.

3.2 Expressivity of Transformer Network
The success of Transformer networks largely relies
on attention mechanism to learn complex depen-
dencies among input sequences for different tasks.
Intuitively, the stronger a Transformer network can
model dependencies between inputs, the greater its
capability to represent input information. Is there
a quantitative metric to measure the expressivity
of a Transformer network at initialization? To
solve this problem, we introduce separation rank as
a metric to quantify its ability for modeling depen-
dencies between inputs of a Transformer network.

Separation Rank for Transformer. As shown in
Equation (15), the separation rank directly reflects
the core attention mechanism in Transformer net-
works. The self-attention layer dynamically learns

6783

to correlate any inter-dependent subsets of the in-
puts (Levine et al., 2020). When a transformer
network learns more dependencies between inputs,
the separation rank induced by this network will
have a higher value. Levine et al. (2020) have
demonstrated a tight bound on the separation rank
of Transformer networks with respect to the depen-
dence on depth and width. Further, they leverage
this bound to determine the optimal depth-to-width
ratio for a given Transformer network size.

Theorem 3.3 (Levine et al. (2020)). Let f i,t,L,dx,H

be the i-th scalar output at the t token index
of a standard depth-L Transformer net f with
dimension dx and the number of heads H per
layer. Then, its separation rank w.r.t. balanced
partitions, which obey A ∪ B = [T], |A| =
|B| = T/2, is invariant to identity of the parti-
tion, i.e., A ∪ B = [T], Ã ∪ B̃ = [T], such that
|A|, |B|, |Ã|, |B̃| = T/2: sep(A,B)(f

i,t,L,dx,H) =

sep(Ã,B̃)(f
i,t,L,dx,H).

This theorem reveals that the separation rank
induced by the standard Transformer network re-
mains consistent under different balanced partitions
of inputs. Next, we will omit the specification
of any balanced partition of inputs, denoting it as
sep(f i,t,L,dx,H). Wies et al. (2021) further demon-
strate the existence of an embedding rank bottle-
neck in the expressivity of the Transformer net-
work. They showed that log(sep(f i,t,L,dx,H)) =
Õ (L ·min {r, dx}), where r is the embedding
rank defined as r = rank(WV).

However, the current study mainly focuses on
the separation rank of the Transformer network
with the same dimension dx per layer. In this study,
we extend the separation rank to the Transformer
network where each block l has different dlz and
dlin dimensions. This makes it more difficult to
analyze. To solve this problem, we follow the re-
laxations by Wies et al. (2021) and Levine et al.
(2020). We put all the position-wise feed-forward
layers at the end since the feed-forward operation
does not mix different locations and learn the de-
pendencies between inputs. We then remove all
the normalization layers and omit the ReLU and
softmax non-linearities. The reasons for doing this
can be referred to in Wies et al. (2021) and Levine
et al. (2020). Though these relaxations are shown
to weaken the overall network performance, they
are much less pertinent to the ability of the core
self-attention mechanism to model dependencies
between different places at the input. Consequently,

the multi-head attention operation of each block l
in Equation (8) can be simplified as:

f l+1
t =

T∑

t′=1

H∑

h=1

〈
W q,l,hf l

t ,W
k,l,hf l

t′

〉
W o,l,hW v,l,hf l

t′ .

(4)

By forward propagating the above operations layer-
by-layer, we can obtain the upper bound on the
separation rank of the Transformer network with
different dimensions dlz per layer.

Theorem 3.4. Let fL
t be the output at the t token

index of a standard depth-L Transformer net f with
dimension dlz and the number of heads H per layer.
Then, its separation rank w.r.t. balanced parti-
tions satisfies log(sep(fL

t)) ≤ log(
∑L

l=1 d
l
z) +

log(
∑L

l=1
1−(dlz)

T+1

1−dlz
).

The proof of this theorem is shown in Ap-
pendix A.2. This theorem shows that the sepa-
ration rank of the Transformer net f can be up-
per bounded by a constant, which is related to the
depth of the network L, the number of tokens T ,
and the sum of dimensions

∑L
l=1 d

l
z . Thus, we use

this bound to measure the amount of dependencies
modeled by the Transformer net. We name this
measure as SEPT, which is defined as:

SEPT(f) = log(

L∑

l=1

dlz) + log(

L∑

l=1

1− (dlz)
T+1

1− dlz
)

(5)

SEPT measures the Transformer network’s abil-
ity to model dependencies between different places
of the input. In general, a larger SEPT score indi-
cates that the corresponding Transformer network
has a stronger expressivity regarding different de-
pendencies between inputs.

3.3 Zero-Shot Transformer Architecture
Search via Network Trainability and
Expressivity

NTSR. How can we combine the two
theoretically-inspired indicators, NTKT and
SEPT, to find the best-performing Transformer
network at initialization? To answer this question,
we propose a new zero-cost proxy called NTSR to
make a trade-off between the network’s trainability
and expressivity. Note that the magnitudes of
NTKT and SEPT scores may differ significantly,
and their ranges are unknown before computing
on the whole search space. Hence, we cannot

6784

0 2 4 6 8

number of iterations (beyond initial points)

19

20

21

22

23

b
es

t
va

lid
at

io
n

 lo
ss

ETAS(none)
ETAS(parameters)
ETAS(SEPT)

ETAS(NTKT)
ETAS(DSS)
ETAS(NTSR)

(a)

0 2 4 6 8

number of iterations (beyond initial points)

9.0

9.5

10.0

10.5

11.0

11.5

b
es

t
va

lid
at

io
n

 lo
ss

ETAS(none)
ETAS(parameters)
ETAS(SEPT)

ETAS(NTKT)
ETAS(DSS)
ETAS(NTSR)

(b)

0 2 4 6 8

number of iterations (beyond initial points)

3.2

3.4

3.6

3.8

4.0

4.2

4.4

b
es

t
va

lid
at

io
n

 lo
ss

ETAS(none)
ETAS(parameters)
ETAS(SEPT)

ETAS(NTKT)
ETAS(DSS)
ETAS(NTSR)

(c)

0 2 4 6 8

number of iterations (beyond initial points)

25

30

35

40

45

b
es

t
va

lid
at

io
n

 p
er

p
le

xi
ty

ETAS(none)
ETAS(parameters)
ETAS(SEPT)

ETAS(NTKT)
ETAS(flop)
ETAS(NTSR)

(d)

Figure 1: The best-found valid loss over the number of iterations (beyond initial points) of various methods on (a)
the ImageNet1k dataset of the Autoformer tiny search space, (b) the ImageNet1k dataset of the Autoformer small
search space, (c) the ImageNet1k dataset of the Autoformer base search space, (d) the Wikitex103 dataset of the
GPT-2 search space.

directly normalize NTKT and SEPT scores before
searching the network. To avoid this problem,
instead of using the numerical values of NTKT
and SEPT, we combine the relative ranking of
NTKT and SEPT by comparing the sampled set of
architectures, which is defined as:

NTSR(f) =
1

2
(R(NTKT(f)) + R(SEPT(f))),

(6)

where R(NTKT(f)) and R(SEPT(f)) represent
the relative ranking of the network f converted
from the NTKT(f) and SEPT(f) among the sam-
pled set of architectures. In general, a higher rank
of NTSR indicates that the network has better train-
ability and expressivity.

ETAS. As described above, our proposed NTSR
zero-cost proxy provides a reasonable estimation
of the network’s performance. The next major
question is how to construct an efficient NAS
framework on top of it? To solve this problem,
we integrate it into a popular regularized evolution
framework called ETAS. We first randomly sample
N0 network architectures from the search space
and then pick the top n0 networks according the
ranking of NTSR as the initial parent population
to warmup the whore algorithm. Through warmup,
we can find a better local initial population, thus
potentially expediting the discovery of the optimal
network. Note that the sample size N0 is much
larger than the number of networks we can afford
to train. After that, we generate Nm candidate ar-
chitectures by mutating the parent architectures at
each iteration m and then select top nm architec-
tures from the current Nm candidate architectures
according the ranking of NTSR. We then evalu-
ate the selected architectures and update the parent

population. The algorithm details of our proposed
ETAS framework is given in the Appendix A.3.

4 Experiments and Discussion

In this section, we choose to search for the most
popular Vision Transformer (ViT) and GPT-2 ar-
chitectures in the computer vision and natural lan-
guage processing domains, respectively. We com-
pare our proposed NTSR zero-cost proxy with sev-
eral zero-cost proxies for Transformers, includ-
ing DSS (Zhou et al., 2022), Length Distortion
(LD) (Chen et al., 2022), and conventional zero-
cost proxies for CNNs like snip (Abdelfattah et al.,
2020), grad_norm (White et al., 2022), NASWOT
(Mellor et al., 2021), zico (Li et al., 2023), and
MeCo (Jiang et al., 2023). Since Ning et al. (2021)
have demonstrated that the number of flops and pa-
rameters serve as competitive proxies for network
performance compared to most zero-cost proxies
under the CNN search space, we also add them
for comparison. To perform an ablation study on
our proposed NTSR proxy, we include NTKT and
SEPT alone as zero-cost proxies for comparison.
Here, we choose the widely used Spearman’s ρ (Kr-
ishnakumar et al., 2022b) and Kendall’s τ (Ning
et al., 2021) rank correlation metrics to evaluate
their predictive ability.

4.1 Searching for ViT

To make a fair comparison, we employ the same
search space of AutoFormer (Chen et al., 2021a),
which searches the key components of the ViT ar-
chitecture including embedding dimension, Q-K-V
dimension, number of heads, MLP ratio, and net-
work depth. It contains more than 1.7× 1016 can-
didate architectures covering three common ranges
of model size, i.e., tiny (4-9 M), small (14-34 M),

6785

Zero-cost
proxies

tiny small base
KT SPR KT SPR KT SPR

Autoformer (Chen et al., 2021a) 0.74 0.92 0.75 0.94 0.76 0.95
params 0.57±0.00 0.76±0.00 0.64±0.00 0.81±0.00 0.60±0.00 0.81±0.00
flops 0.49±0.00 0.68±0.00 0.58±0.00 0.78±0.00 0.52±0.00 0.74±0.00
snip 0.56±0.03 0.74±0.03 0.59±0.01 0.76±0.03 0.58±0.06 0.79±0.08

grad_norm 0.33±0.05 0.51±0.04 0.54±0.03 0.72±0.03 0.58±0.04 0.77±0.06
NASWOT 0.54±0.02 0.71±0.02 0.57±0.03 0.75±0.04 0.50±0.02 0.71±0.03

zico 0.48±0.03 0.65±0.03 0.43±0.02 0.62±0.03 0.43±0.04 0.62±0.05
MeCo 0.46±0.03 0.68±0.02 0.47±0.01 0.66±0.03 0.47±0.01 0.66±0.02
DSS 0.66±0.01 0.80±0.02 0.65±0.02 0.82±0.02 0.64±0.03 0.84±0.05
LD 0.52±0.02 0.69±0.02 0.60±0.03 0.81±0.04 0.59±0.03 0.80±0.03

SEPT 0.71±0.00 0.89±0.00 0.72±0.00 0.89±0.00 0.69±0.00 0.87±0.00
NTKT 0.70±0.02 0.87±0.02 0.70±0.03 0.86±0.02 0.72±0.02 0.90±0.02
NTSR 0.74±0.01 0.90±0.02 0.74±0.02 0.91±0.02 0.75±0.01 0.92±0.01

Table 1: The ranking correlation of different zero-cost proxies on the ImageNet-1k dataset of the AutoFormer
search space over 5 independent runs with different random seeds, where KT and SPR represent Kendall’s τ and
Spearman’s ρ rank correlation metrics, respectively.

Method
tiny small base

top1(%) params(M) flops(B) top1(%) params(M) flops(B) top1(%) params(M) flops(B)
ViT/16 (Dosovitskiy et al., 2021) 74.5 5.7 1.2 78.8 22.1 4.7 77.9 86 55.4

DeiT (Touvron et al., 2021) 72.2 5.7 1.2 79.9 22.1 4.7 81.8 86 17.5
ConViT (d’Ascoli et al., 2021) 73.1 6.0 1.0 81.3 27.0 5.4 82.4 86 17.0

Autoformer (Chen et al., 2021a) 74.7 5.9 1.3 81.7 22.9 4.9 82.4 54 11.0
PreNAS (Wang et al., 2023) 77.1 5.9 1.4 81.8 22.9 5.1 82.6 54 11.0

ETAS(none) 73.6 5.8 1.2 80.2 23.7 5.2 80.2 51 10.4
ETAS(parameters) 74.6 5.9 1.2 81.6 29.2 6.1 81.9 86 18.0

ETAS(SEPT) 77.2 5.9 1.2 82.3 27.6 5.8 82.4 54 11.2
ETAS(NTKT) 76.9 5.8 1.3 82.1 24.5 5.2 82.9 84 17.6
ETAS(DSS) 75.3 5.9 1.4 81.7 22.6 4.9 82.1 52 12.0

ETAS(NTSR) 78.1 5.9 1.4 82.6 28 5.9 83.4 82 15.5

Table 2: The test accuracy of various methods on the test set of the ImageNet-1k dataset, where ETAS(none)
represents the ETAS without a zero-cost proxy.

Zero-cost
proxies

CIFAR-100 flowers chaoyang
KT SPR KT SPR KT SPR

TVT (Wei et al., 2023) 0.66 0.78 0.73 0.82 0.25 0.39
params 0.41 0.53 0.46 0.63 -0.16 0.02
flops 0.39 0.47 0.43 0.56 -0.20 -0.04
snip 0.26 0.34 0.32 0.45 -0.03 0.12

grad_norm 0.42 0.55 0.47 0.59 0.14 0.36
NASWOT 0.59 0.73 0.66 0.78 0.21 0.45

zico 0.51 0.70 0.59 0.78 0.16 0.34
MeCo 0.60 0.74 0.62 0.78 0.20 0.41
DSS 0.49 0.63 0.54 0.71 0.17 0.32
LD 0.37 0.52 0.40 0.54 -0.12 0.03

SEPT 0.67 0.81 0.71 0.85 0.21 0.42
NTKT 0.69 0.84 0.74 0.89 0.27 0.49
NTSR 0.71 0.86 0.78 0.90 0.30 0.51

Table 3: The ranking correlation of different zero-cost proxies on three tiny datasets (CIFAR-100, Flowers,
Chaoyang) of the AutoFormer search space, where KT and SPR represent Kendall’s τ and Spearman’s ρ rank
correlation metrics, respectively.

6786

Zero-cost
proxies

WikiText103 LM1B
KT SPR KT SPR

params 0.79±0.00 0.94±0.00 0.77±0.00 0.92±0.00
flops 0.65±0.00 0.80±0.00 0.51±0.00 0.72±0.00
snip 0.40±0.02 0.57±0.04 0.48±0.02 0.66±0.03

grad_norm 0.15±0.02 0.23±0.03 0.06±0.01 0.14±0.01
NASWOT 0.24±0.02 0.37±0.02 0.32±0.01 0.48±0.02

zico 0.18±0.01 0.36±0.02 0.15±0.01 0.26±0.02
MeCo 0.49±0.02 0.65±0.02 0.42±0.01 0.61±0.01
DSS 0.26±0.02 0.35±0.02 0.24±0.01 0.32±0.01
LD 0.48±0.03 0.64±0.03 0.37±0.01 0.50±0.02

SEPT 0.78±0.00 0.94±0.00 0.79±0.00 0.95±0.00
NTKT 0.80±0.02 0.96±0.02 0.78±0.01 0.92±0.02
NTSR 0.81±0.01 0.98±0.01 0.80±0.01 0.96±0.01

Table 4: The ranking correlation of different zero-cost
proxies on the WikiText103 and LM1B datasets of GPT-
2 search space over 5 independent runs with different
random seeds, where KT and SPR represent Kendall’s τ
and Spearman’s ρ rank correlation metrics, respectively.

and base (42-75 M). We randomly sample 1000
networks for each network setup since it is compu-
tationally infeasible to evaluate all networks of the
large AutoFormer search space. After that, we com-
pute the rank correlation between these zero-cost
proxy scores and the true accuracy of these sam-
pled networks on the ImageNet-1K dataset. Table 1
shows the performance of various zero-cost proxies
across three setups, i.e., tiny, small, and base. The
results show that our proposed NTSR proxy can
achieve similar ranking correlation with the one-
shot AutoFormer method and perform better than
other zero-cost proxies.

To demonstrate the effect of the NTSR proxy
on accelerating TAS, we integrate it into the ETAS
framework. Here, we choose to incorporate the top-
5 zero-cost proxies from Table 1 into our proposed
ETAS framework to evaluate their performance on
speeding up the regularized evolution algorithm in
discovering the best ViT architecture. The imple-
mentation details and experimental settings of these
methods are summarized in Appendix A.4.1. Fig-
ures 1(a) to 1(c) show the best-found valid loss over
number of iterations of various methods. The test
loss of various methods on the test set of ImageNet-
1k dataset is shown in Table 2. The results re-
veal that our proposed NTSR zero-cost proxy can
achieve higher rank correlation across three setups.
It can find a Transformer network architecture with
lower validation loss using fewer iterations.

To further demonstrate the flexibility of our pro-
posed NTSR proxy, we compare it with the recently
proposed TVT (Wei et al., 2023) zero-cost proxy
for ViT on three tiny datasets (CIFAR-100, Flow-
ers, Chaoyang) of the AutoFormer search space.

Methods
valid perplexity

(PPL)
latency(ms) CO2 (lbs)

perplexity/latency
MAPD (%)

LTS (Javaheripi et al., 2022) 23.68 17 0.02 0.6
GPT-2 (117M) (Radford et al., 2019) 29.41 18 - -
GPT-2 (345M) (Radford et al., 2019) 22.76 24 - -

ETAS(none) 28.47±0.04 20 0.01 1.6
ETAS(parameters) 23.51±0.05 23 0.03 0.8

ETAS(flop) 26.21±0.05 22 0.05 0.7
ETAS (SEPT) 24.07±0.03 20 0.04 0.7
ETAS (NTKT) 23.72±0.04 18 0.04 0.6
ETAS(NTSR) 21.72±0.03 19 0.04 0.5

Table 5: The validation perplexity of different methods
on the WikiText103 dataset of the GPT-2 search space
over 5 independent runs with different random seeds.

Here, we randomly sample 100 ViT architectures
from the AutoFormer search space and compute
the Kendall ranking correlation and Spearman rank-
ing correlation between distillation accuracy and
different zero-cost proxies. The results reveal that
our proposed NTSR zero-cost proxy still performs
better on these three tiny datasets.

4.2 Searching for GPT-2
The GPT-2 search space used in this section is
largely based on the design of the LTS (Javaheripi
et al., 2022) search space on the WikiText-103
(Merity et al., 2017) and One Billion Word (LM1B)
(Chelba et al., 2014) datasets. It consists of the
number of layers (n_layer ∈ {2, . . . , 16}|1), num-
ber of attention heads (n_head ∈ {2, 4, 8}), de-
coder output dimension for each layer (d_model ∈
{128, . . . , 1024}|64), inner dimension of the feed
forward network for each layer (d_inner ∈
{256, . . . , 4096}|64), and embedding dimension
(d_embed ∈ {128, 256, 512}). Unlike the LTS
search space, we fix the adaptive input embed-
ding factor to k = 4 to approximate the stan-
dard Transformer network with non-adaptive in-
put embedding. We add a constraint that d_inner
must be larger than 2d_model to avoid training
collapse of the network. To quantify the distance
between the proxy and ground truth Pareto front,
we use the mean average perplexity difference
(MAPD) metric used in LTS, which is defined as:
davg = 1

N

∑N
i=1

|pi−pgt,i|
pgt,i

, where pi denotes the i-
th point on the proxy Pareto front and pgt,i is the
closest ground truth Pareto front to pi.

For each dataset, we randomly sample 500 net-
works and compute zero-cost proxies for each net-
work. We train each GPT-2 model from scratch
to obtain its true validation perplexity. After that,
we compute rank correlation between these proxy
scores and true validation perplexity of these sam-
pled networks on the WikiText-103 and One Billion
Word datasets. Table 4 shows the performance of
various zero-cost proxies. To demonstrate the effect

6787

of the NTSR proxy on speeding up TAS, we inte-
grate it into the ETAS framework. Here, we choose
to incorporate the top-5 zero-cost proxies from Ta-
ble 4 into our proposed ETAS framework to eval-
uate their impact on speeding up the regularized
evolution algorithm in discovering the best GPT-2
architecture on the WikiText-103 dataset. The im-
plementation details and experimental settings of
these methods are summarized in Section 4.2.

The validation perplexity of various methods on
GPT-2 search space is shown in Table 5. The re-
sults reveal that our proposed NTSR proxy has a
higher rank correlation with the true validation per-
plexity. It can significantly speed up finding better-
performing Transformer network architectures with
fewer iterations. In contrast, the zero-cost proxies
for Transformers like DSS and LD perform worse
on this GPT-2 search space. This may be because
they are specially designed for the ViT transformer
architecture and thus generalize worse on the GPT
Transformer network. Furthermore, our proposed
NTSR proxy is closer to the true Pareto front com-
pared to other zero-cost proxies.

4.3 Ablation Studies

As shown above, for some tasks like the WikiText-
103 dataset within the GPT-2 search space (see
Table 4), NTKT performs better than SEPT and
achieves lower validation perplexity. However,
for certain tasks like the ImageNet-1k dataset
within the AutoFormer small search space (see
Table 1), SEPT performs better than NTKT. Our
proposed NTSR zero-cost proxy combines the two
theoretically-inspired indicators, NTKT and SEPT,
and obtains consistently better performance across
multiple tasks. To further analyze the combination
effect of these two indicators, we perform abla-
tion experiments on the combination coefficients of
NTKT and SEPT (Equation (6)) on the WikiText-
103 dataset within GPT-2 search space and the
ImageNet-1k dataset within the AutoFormer small
search space. The results are shown in Section 4.3.
The results demonstrate the advantage of combin-
ing NTKT and SEPT indicators equally. This may
be because combining NTKT and SEPT equally
allows them to complement each other.

5 Limitation and Conclusion

In this study, we propose a novel zero-cost proxy
for Transformer networks called NTSR to evalu-
ate the performance of Transformers at initializa-

0.0 0.2 0.4 0.6 0.8 1.0
Coefficient

0.5

0.6

0.7

0.8

0.9

1.0

ra
n

k
co

rr
el

at
io

n

KT SPR

(a)

0.0 0.2 0.4 0.6 0.8 1.0
Coefficient

0.70

0.75

0.80

0.85

0.90

0.95

1.00

ra
n

k
co

rr
el

at
io

n

KT SPR

(b)

Figure 2: The ranking correlation of different com-
bination coefficients of NTKT and SEPT on the (a)
ImageNet-1k dataset within the AutoFormer small
search space and (b) WikiText-103 dataset within the
GPT-2 search space, where KT and SPR represent
Kendall’s τ and Spearman’s ρ rank correlation metrics,
respectively.

tion. Compared to other popular zero-cost proxies
for Transformer networks, our proposed proxy is
designed based on deep neural network learning
theory in terms of the trainability and expressivity
of Transformer networks. It achieves better perfor-
mance on both NLP and CV tasks. However, our
proposed method is limited to decoder-only Trans-
former architectures. In the future, we hope our
proposed proxy can extend to other complex types
of Transformer networks like BERT (Devlin et al.,
2019) and T5 (Raffel et al., 2020).

Acknowledgements

We thank the anonymous reviewers for their
valuable and constructive suggestions and com-
ments. This work is supported by the Beijing
Natural Science Foundation (No.4222029); the
National Natural Science Foundation of China
(N0.62076234); the National Key Research and
Development Project (No.2022YFB2703102); the
“Intel ligent Social Governance Interdisciplinary
Platform, Ma jor Innovation & Planning Interdis-
ciplinary Platform for the “Double-First Class”
Initiative, Renmin University of China”; the
Beijing Outstanding Young Scientist Program
(NO.BJJWZYJH012019100020098); the Public
Computing Cloud, Renmin University of China;
the Fundamental Research Funds for the Cen-
tral Universities, and the Research Funds of Ren-
min University of China (NO.2021030199), the
Huawei-Renmin University joint program on In-
forma tion Retrieval: the Unicom Innovation Eco-
logical Coopera tion Plan; the CCF-Huawei Popu-
lus Grove Fund.

6788

References
Mohamed S Abdelfattah, Abhinav Mehrotra, Łukasz

Dudziak, and Nicholas Donald Lane. 2020. Zero-
cost proxies for lightweight nas. In ICLR.

Mohamed S. Abdelfattah, Abhinav Mehrotra, Lukasz
Dudziak, and Nicholas Donald Lane. 2021. Zero-
cost proxies for lightweight NAS. In ICLR.

Sanjeev Arora, Simon Du, Wei Hu, Zhiyuan Li, and
Ruosong Wang. 2019. Fine-grained analysis of op-
timization and generalization for overparameterized
two-layer neural networks. In ICML, pages 322–332.

Gregory Beylkin and Martin J Mohlenkamp. 2002. Nu-
merical operator calculus in higher dimensions. In
PNAS, 16, pages 10246–10251.

Ciprian Chelba, Tomás Mikolov, Mike Schuster, Qi Ge,
Thorsten Brants, Phillipp Koehn, and Tony Robinson.
2014. One billion word benchmark for measuring
progress in statistical language modeling. In INTER-
SPEECH, pages 2635–2639.

Minghao Chen, Houwen Peng, Jianlong Fu, and Haibin
Ling. 2021a. Autoformer: Searching transformers
for visual recognition. In ICCV, pages 12250–12260.

Shiming Chen, Ziming Hong, Wenjing Hou, Guo-
Sen Xie, Yibing Song, Jian Zhao, Xinge You,
Shuicheng Yan, and Ling Shao. 2023. Transzero++:
Cross attribute-guided transformer for zero-shot
learning. IEEE Trans. Pattern Anal. Mach. Intell.,
45(11):12844–12861.

Tianyi Chen, Bo Ji, Tianyu Ding, Biyi Fang, Guanyi
Wang, Zhihui Zhu, Luming Liang, Yixin Shi, Sheng
Yi, and Xiao Tu. 2021b. Only train once: A one-shot
neural network training and pruning framework. In
NeurIPS, pages 19637–19651.

Wuyang Chen, Xinyu Gong, and Zhangyang Wang.
2021c. Neural architecture search on imagenet in
four GPU hours: A theoretically inspired perspective.
In ICLR.

Wuyang Chen, Wei Huang, Xianzhi Du, Xiaodan Song,
Zhangyang Wang, and Denny Zhou. 2022. Auto-
scaling vision transformers without training. In
ICLR.

Sambasiva Rao Chinnamsetty, Mike Espig, Boris N
Khoromskij, Wolfgang Hackbusch, and Heinz-Jürgen
Flad. 2007. Tensor product approximation with op-
timal rank in quantum chemistry. The Journal of
Chemical Physics, 127(8).

Krishna Teja Chitty-Venkata, Murali Emani, Venkatram
Vishwanath, and Arun K. Somani. 2022. Neural
architecture search for transformers: A survey. IEEE
Access, 10:108374–108412.

Nadav Cohen, Or Sharir, and Amnon Shashua. 2016.
On the expressive power of deep learning: A tensor
analysis. In COLT, pages 698–728.

Nadav Cohen and Amnon Shashua. 2017. Inductive
bias of deep convolutional networks through pooling
geometry. In ICLR.

Stéphane d’Ascoli, Hugo Touvron, Matthew L. Leav-
itt, Ari S. Morcos, Giulio Biroli, and Levent Sagun.
2021. Convit: Improving vision transformers with
soft convolutional inductive biases. In ICML, pages
2286–2296.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: pre-training of
deep bidirectional transformers for language under-
standing. In NAACL, pages 4171–4186.

Xuanyi Dong and Yi Yang. 2020. Nas-bench-201: Ex-
tending the scope of reproducible neural architecture
search. In ICLR.

Alexey Dosovitskiy, Lucas Beyer, Alexander
Kolesnikov, Dirk Weissenborn, Xiaohua Zhai,
Thomas Unterthiner, Mostafa Dehghani, Matthias
Minderer, Georg Heigold, Sylvain Gelly, Jakob
Uszkoreit, and Neil Houlsby. 2021. An image
is worth 16x16 words: Transformers for image
recognition at scale. In ICLR.

Yawen Duan, Xin Chen, Hang Xu, Zewei Chen, Xi-
aodan Liang, Tong Zhang, and Zhenguo Li. 2021.
Transnas-bench-101: Improving transferability and
generalizability of cross-task neural architecture
search. In CVPR, pages 5251–5260.

Mohsen Ghassemi, Zahra Shakeri, Waheed U. Bajwa,
and Anand D. Sarwate. 2019. Sample complexity
bounds for low-separation-rank dictionary learning.
In ISIT, pages 2294–2298.

Arthur Jacot, Franck Gabriel, and Clément Hongler.
2021. Neural tangent kernel: convergence and gener-
alization in neural networks. In STOC, page 6.

Mojan Javaheripi, Gustavo de Rosa, Subhabrata
Mukherjee, Shital Shah, Tomasz Religa, Caio Ce-
sar Teodoro Mendes, Sébastien Bubeck, Farinaz
Koushanfar, and Debadeepta Dey. 2022. Lite-
transformersearch: Training-free neural architecture
search for efficient language models. In NeurIPS.

Tangyu Jiang, Haodi Wang, and Rongfang Bie. 2023.
Meco: Zero-shot NAS with one data and single for-
ward pass via minimum eigenvalue of correlation. In
NeurIPS.

Arjun Krishnakumar, Colin White, Arber Zela, Renbo
Tu, Mahmoud Safari, and Frank Hutter. 2022a. Nas-
bench-suite-zero: Accelerating research on zero cost
proxies. In Advances in Neural Information Process-
ing Systems, pages 28037–28051.

Arjun Krishnakumar, Colin White, Arber Zela, Renbo
Tu, Mahmoud Safari, and Frank Hutter. 2022b. NAS-
bench-suite-zero: Accelerating research on zero cost
proxies. In NeurIPS.

6789

Jaehoon Lee, Lechao Xiao, Samuel S. Schoen-
holz, Yasaman Bahri, Roman Novak, Jascha Sohl-
Dickstein, and Jeffrey Pennington. 2019. Wide neu-
ral networks of any depth evolve as linear models
under gradient descent. In NeurIPS, pages 8570–
8581.

Junghyup Lee and Bumsub Ham. 2024. Az-nas: As-
sembling zero-cost proxies for network architecture
search. arXiv preprint arXiv:2403.19232.

Yoav Levine, Noam Wies, Or Sharir, Hofit Bata, and
Amnon Shashua. 2020. Limits to depth efficiencies
of self-attention. In NeurIPS.

Changlin Li, Tao Tang, Guangrun Wang, Jiefeng Peng,
Bing Wang, Xiaodan Liang, and Xiaojun Chang.
2021. Bossnas: Exploring hybrid cnn-transformers
with block-wisely self-supervised neural architecture
search. In ICCV, pages 12261–12271.

Guihong Li, Duc Hoang, Kartikeya Bhardwaj, Ming Lin,
Zhangyang Wang, and Radu Marculescu. 2024. Zero-
shot neural architecture search: Challenges, solutions,
and opportunities. IEEE Transactions on Pattern
Analysis and Machine Intelligence, pages 1–19.

Guihong Li, Yuedong Yang, Kartikeya Bhardwaj, and
Radu Marculescu. 2023. Zico: Zero-shot NAS via
inverse coefficient of variation on gradients. In ICLR.

Yanyu Li, Geng Yuan, Yang Wen, Ju Hu, Georgios Evan-
gelidis, Sergey Tulyakov, Yanzhi Wang, and Jian Ren.
2022a. Efficientformer: Vision transformers at mo-
bilenet speed. In NeurIPS.

Yanyu Li, Geng Yuan, Yang Wen, Ju Hu, Georgios Evan-
gelidis, Sergey Tulyakov, Yanzhi Wang, and Jian Ren.
2022b. Efficientformer: Vision transformers at mo-
bilenet speed. In NeurIPS, pages 12934–12949.

Ming Lin, Pichao Wang, Zhenhong Sun, Hesen Chen,
Xiuyu Sun, Qi Qian, Hao Li, and Rong Jin. 2021.
Zen-nas: A zero-shot NAS for high-performance
image recognition. In ICCV, pages 337–346.

Joe Mellor, Jack Turner, Amos J. Storkey, and Elliot J.
Crowley. 2021. Neural architecture search without
training. In ICML, pages 7588–7598.

Stephen Merity, Caiming Xiong, James Bradbury, and
Richard Socher. 2017. Pointer sentinel mixture mod-
els. In ICLR.

Xuefei Ning, Changcheng Tang, Wenshuo Li, Zixuan
Zhou, Shuang Liang, Huazhong Yang, and Yu Wang.
2021. Evaluating efficient performance estimators
of neural architectures. In NeurIPS, pages 12265–
12277.

Xuefei Ning, Yin Zheng, Zixuan Zhou, Tianchen
Zhao, Huazhong Yang, and Yu Wang. 2023. A
generic graph-based neural architecture encoding
scheme with multifaceted information. IEEE Trans-
actions on Pattern Analysis and Machine Intelligence,
45(7):7955–7969.

Roman Novak, Jascha Sohl-Dickstein, and Samuel S.
Schoenholz. 2022. Fast finite width neural tangent
kernel. In ICML, pages 17018–17044.

Alec Radford, Jeff Wu, Rewon Child, David Luan,
Dario Amodei, and Ilya Sutskever. 2019. Language
models are unsupervised multitask learners. OpenAI
blog.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine
Lee, Sharan Narang, Michael Matena, Yanqi Zhou,
Wei Li, and Peter J. Liu. 2020. Exploring the limits
of transfer learning with a unified text-to-text trans-
former. JMLR, 21:140:1–140:67.

Esteban Real, Alok Aggarwal, Yanping Huang, and
Quoc V. Le. 2019. Regularized evolution for image
classifier architecture search. In AAAI, pages 4780–
4789.

Yu Shen, Yang Li, Jian Zheng, Wentao Zhang, Peng
Yao, Jixiang Li, Sen Yang, Ji Liu, and Bin Cui. 2023.
Proxybo: Accelerating neural architecture search via
bayesian optimization with zero-cost proxies. In
AAAI.

Yao Shu, Shaofeng Cai, Zhongxiang Dai, Beng Chin
Ooi, and Bryan Kian Hsiang Low. 2022a. NASI:
label- and data-agnostic neural architecture search at
initialization. In ICLR.

Yao Shu, Zhongxiang Dai, Zhaoxuan Wu, and Bryan
Kian Hsiang Low. 2022b. Unifying and boost-
ing gradient-based training-free neural architecture
search. In NeurIPS.

David R. So, Quoc V. Le, and Chen Liang. 2019. The
evolved transformer. In ICML, pages 5877–5886.

David R. So, Wojciech Manke, Hanxiao Liu, Zihang
Dai, Noam Shazeer, and Quoc V. Le. 2021. Search-
ing for efficient transformers for language modeling.
In NeurIPS, pages 6010–6022.

Xiu Su, Shan You, Jiyang Xie, Mingkai Zheng, Fei
Wang, Chen Qian, Changshui Zhang, Xiao-Gang
Wang, and Chang Xu. 2022. Vitas: Vision trans-
former architecture search. In ECCV, pages 139–
157.

Alexander Tornede, Difan Deng, Theresa Eimer, Joseph
Giovanelli, Aditya Mohan, Tim Ruhkopf, Sarah
Segel, Daphne Theodorakopoulos, Tanja Tornede,
Henning Wachsmuth, and Marius Lindauer. 2024.
AutoML in the age of large language models: Cur-
rent challenges, future opportunities and risks. Trans-
actions on Machine Learning Research.

Hugo Touvron, Matthieu Cord, Matthijs Douze, Fran-
cisco Massa, Alexandre Sablayrolles, and Hervé Jé-
gou. 2021. Training data-efficient image transform-
ers & distillation through attention. In ICML, pages
10347–10357.

6790

Renbo Tu, Nicholas Roberts, Mikhail Khodak, Junhong
Shen, Frederic Sala, and Ameet Talwalkar. 2022.
Nas-bench-360: Benchmarking neural architecture
search on diverse tasks. In NeurIPS.

AbdoulAhad Validi. 2014. Low-rank separated repre-
sentation surrogates of high-dimensional stochastic
functions: Application in bayesian inference. Jour-
nal of Computational Physics, 260:37–53.

Haibin Wang, Ce Ge, Hesen Chen, and Xiuyu Sun.
2023. Prenas: Preferred one-shot learning towards
efficient neural architecture search. In ICML, pages
35642–35654.

Zimian Wei, Peijie Dong, Zheng Hui, Anggeng Li,
Lujun Li, Menglong Lu, Hengyue Pan, and Dong-
sheng Li. 2024. Auto-prox: Training-free vision
transformer architecture search via automatic proxy
discovery. In AAAI, pages 15814–15822.

Zimian Wei, Hengyue Pan, Lujun Li, Peijie Dong,
Zhiliang Tian, Xin Niu, and Dongsheng Li. 2023.
Tvt: Training-free vision transformer search on tiny
datasets. arXiv preprint arXiv:2311.14337.

Colin White, Mikhail Khodak, Renbo Tu, Shital Shah,
Sébastien Bubeck, and Debadeepta Dey. 2022. A
deeper look at zero-cost proxies for lightweight nas.
In ICLR Blog Track.

Colin White, Arber Zela, Robin Ru, Yang Liu, and
Frank Hutter. 2021. How powerful are performance
predictors in neural architecture search? In Proc.
Conf. Neural Informat. Process. Syst., pages 28454–
28469.

Noam Wies, Yoav Levine, Daniel Jannai, and Amnon
Shashua. 2021. Which transformer architecture fits
my data? A vocabulary bottleneck in self-attention.
In ICML, pages 11170–11181.

Greg Yang. 2020. Tensor programs ii: Neural tan-
gent kernel for any architecture. arXiv preprint
arXiv:2006.14548.

Hancheng Ye, Chong Yu, Peng Ye, Renqiu Xia, Yan-
song Tang, Jiwen Lu, Tao Chen, and Bo Zhang. 2024.
Once for both: Single stage of importance and spar-
sity search for vision transformer compression. arXiv
preprint arXiv:2403.15835.

Chris Ying, Aaron Klein, Eric Christiansen, Esteban
Real, Kevin Murphy, and Frank Hutter. 2019. Nas-
bench-101: Towards reproducible neural architecture
search. In ICML, pages 7105–7114.

Yang You, Jing Li, Sashank J. Reddi, Jonathan Hseu,
Sanjiv Kumar, Srinadh Bhojanapalli, Xiaodan Song,
James Demmel, Kurt Keutzer, and Cho-Jui Hsieh.
2020. Large batch optimization for deep learning:
Training BERT in 76 minutes. In ICLR.

Arber Zela, Julien Niklas Siems, Lucas Zimmer, Jovita
Lukasik, Margret Keuper, and Frank Hutter. 2022.
Surrogate nas benchmarks: Going beyond the limited

search spaces of tabular nas benchmarks. In ICLR,
pages 1–36.

Wayne Xin Zhao, Kun Zhou, Junyi Li, Tianyi Tang,
Xiaolei Wang, Yupeng Hou, Yingqian Min, Beichen
Zhang, Junjie Zhang, Zican Dong, Yifan Du, Chen
Yang, Yushuo Chen, Zhipeng Chen, Jinhao Jiang,
Ruiyang Ren, Yifan Li, Xinyu Tang, Zikang Liu,
Peiyu Liu, Jian-Yun Nie, and Ji-Rong Wen. 2023.
A survey of large language models. arXiv preprint
arXiv:2303.18223.

Qinqin Zhou, Kekai Sheng, Xiawu Zheng, Ke Li, Xing
Sun, Yonghong Tian, Jie Chen, and Rongrong Ji.
2022. Training-free transformer architecture search.
In CVPR, pages 10884–10893.

Qinqin Zhou, Kekai Sheng, Xiawu Zheng, Ke Li,
Yonghong Tian, Jie Chen, and Rongrong Ji. 2024.
Training-free transformer architecture search with
zero-cost proxy guided evolution. IEEE Transac-
tions on Pattern Analysis and Machine Intelligence.

Qiqi Zhou and Yichen Zhu. 2024. When training-free
nas meets vision transformers: A neural tangent ker-
nel perspective. In ICASSP, pages 7405–7409.

Wei Zhu. 2021. Autorc: Improving BERT based rela-
tion classification models via architecture search. In
ACL, pages 33–43.

Wei Zhu, Xiaoling Wang, Yuan Ni, and Guotong Xie.
2021. Autotrans: Automating transformer design
via reinforced architecture search. In NLPCC, pages
169–182.

A Appendix

A.1 Background

A.1.1 Standard Transformer
Assume a standard depth-L Transformer network
has one input embedding layer and L transformer
blocks. The input of the Transformer network is a
sequence of T tokens {xt ∈ [V]}Tt=1, where V is
the number of vocabulary tokens. The embedding

6791

http://arxiv.org/abs/2303.18223

layer transforms the input sequence {xt ∈ [V]}Tt=1

to T sequenced d1x-dimensional vectors z1
t , t ∈ [T],

which is defined as z1
t = WV xt + pt, where

WV ∈ Rd1x×V is the learned word-embedding
matrix, and pt is the positional embedding vec-
tor. After that, z1

t is recursively transformed into T
sequenced dlx-dimensional vectors zl

t, t ∈ [T], l ∈
[L] := {1, . . . , L} through L transformer blocks.
Each transformer block consists of two sublay-
ers, i.e., a multi-head self-attention sublayer and a
position-wise feed-forward sublayer. Each block
operation is defined as:

Attnl,ht = SM
{

1√
da

〈
W q,l,hzl

t,W
k,l,hzl

t′

〉}
,

(7)

f l,t
MHSA =

T∑

t′=1

H∑

h=1

Attnl,ht W o,l,hW v,l,hzl
t′ , (8)

f l,t
FFN = W l

FFN2 σ(W
l
FFN1 LN(f l,t

MHSA + zl
t)),

(9)

zl+1
t = LN(f l,t

FFN), (10)

where SM and LN represent the softmax and layer
normalization operations, respectively. Attnl,ht is
the attention score matrix between the vector zl

t

at position t ∈ [T] and other vectors zl
t′ at posi-

tion t′ ∈ [T] in the l-th transformer block. f l,t
MHSA

and f l,t
FFN are the outputs of the multi-head self-

attention sublayer and the point-wise feed-forward
sublayer in the l-th transformer block, respectively.
W q,l,h,W k,l,h,W v,l,h ∈ Rdlz×dla represent the
query, key, and value weight matrices, respec-
tively. W o,l,h ∈ Rdla×dlz represents the aggregated
weights across H heads. dla is the dimension of
the transformer block l, i.e., the width of the en-
tire block. H is the number of heads and the di-
mension of each head in the transformer block l
is dla = dlz/H . σ represents the ReLU activation
function. W l

FFN1 ∈ Rdlz×dlin ,W l
FFN2 ∈ Rdlin×dlz

represent the inner feed-forward weight matrices.
dlin is the inner dimension of the feed-forward sub-
layer, which is usually set to 4dlz. Unlike tradi-
tional transformer networks stacking blocks with
fixed sizes, in this study, we allow each transformer
block l to have different dlz and dlin dimensions,
enhancing its flexibility across different tasks.

A.1.2 Neural Tangent Kernel (NTK)
Formally, assume a deep neural network f parame-
terized by w has D output dimensions. Let (X ,Y)

be the training samples, and L the loss function.
The outputs of the network are f(X ,w) ∈ RND,
where N is the number of training samples. During
gradient descent training, the evolution of parame-
ters ws and output f(X ,ws) at time step s can be
expressed as follows:

ẇs= −η∇wf(X ,ws)
⊺∇f(X ,ws)L, (11)

ḟ(X ,ws)= ∇wf(X ,ws)ẇs

=−η∇wf(X ,ws)f(X ,ws)
⊺∇f(X ,ws)L

=−ηΘs(X ,X)∇f(X ,ws)L, (12)

where Θs(X ,X) ∈ RND×ND is the Neural Tan-
gent Kernel (NTK) at time step s, defined as:

Θs(X ,X) = ∇wf(X ,ws)∇wf(X ,ws)
⊺. (13)

The NTK exactly captures the training dynamics
of the network. Especially for the infinite wide net-
work, under the mean-squared loss and a constant
NTK assumption, i.e., Θs(X ,X) ≡ Θ0(X ,X),
Equation (12) has a closed-form solution:

f (X ,ws) =
(
I− e−ηΘ0s

)
Y + e−ηΘ0sf (X ,w0) ,

(14)

where f (X ,ws) represents the outputs of the
network at time step s, I is the identity matrix,
f (X ,w0) is the output of the network at initial-
ization, and η is the learning rate. This implies
that the output of the network is determined by
the training samples (X ,Y), the initial weights w0,
and the initial NTK f (X ,w0). Through the NTK
at initialization, we can estimate the training con-
vergence of a network. Arora et al. (2019) have
demonstrated that the training convergence speed
is faster in the direction corresponding to the larger
NTK eigenvalues of the network.

A.1.3 Separation Rank
Separation rank was first proposed by Beylkin
and Mohlenkamp (2002) for high-dimensional nu-
merical analysis, and then applied to various ar-
eas including machine learning (Ghassemi et al.,
2019), chemistry (Chinnamsetty et al., 2007), and
physics (Validi, 2014). Recently, it has been ap-
plied to measure the input dependencies modeled
by deep convolutional and recurrent networks (Co-
hen and Shashua, 2017; Cohen et al., 2016). Let
(A,B) be a partition of the input locations, i.e., A
and B are disjoint subsets of the input sequence
[T] := {1, . . . , T} and A ∪ B = [T]. The separa-
tion rank of a function f(x1, . . . ,xT) with respect

6792

to partition (A,B) is the minimal number of sum-
mands that together sum up to equal f , where each
summand is multiplicatively separable with respect
to the partition (A,B), i.e., each summand is equal
to a product of two functions — one that takes
in only inputs from the subset {xi : i ∈ A} and
another that intakes only inputs from the other sub-
set {xj : j ∈ B}. Formally, the separation rank
of f :

(
Rdx

)T → R with respect to the partition
(A,B) is defined as:

sep(A,B)(f) := min
{
R ∈ N ∪ {0} :

∃gA1 , . . . , gAR, gB1 , . . . , gBR :
(
Rdx

)N/2
→ R,

f(x1, . . . ,xT) =

R∑

r=1

gAr ({xi : i ∈ A}) gBr ({xj : j ∈ B})
}
.

(15)

The separation rank quantifies the amount of
input inter-dependency induced by the function
f(x1, . . . ,xT) with respect to partition (A,B). If
the separation rank of a function f(x1, . . . ,xT)
with respect to partition (A,B) is 1, the func-
tion f(x1, . . . ,xT) is multiplicatively separable
with respect to partition (A,B), meaning that
{xi : i ∈ A} and {xj : j ∈ B} are statistically
independent. The larger sep(A,B)(f) is, the more
it models inter-dependency between {xi : i ∈ A}
and {xj : j ∈ B}. In other words, it means that
the function f(x1, . . . ,xT) can learn higher corre-
lations between {xi : i ∈ A} and {xj : j ∈ B}.

A.2 Proof

Proof of Theorem 3.2. Under the vanilla stochas-
tic gradient descent (SGD) optimizer, the weight
parameter is updated as follows:

ws+1 = ws − ηs
∂L
∂w

∣∣∣∣
w=ws

(16)

Then, under the first-order Taylor expansion, the
mean of output over tokens at time step s+ 1 satis-
fies:

f̄s+1(X) = f̄s(X)− ηs(
∂L
∂w

∂f̄s(X)

∂w
)

= f̄s(X)− ηsL′(f̄s)(
∂f̄s(X)

∂w
)(
∂f̄s(X)

∂w
)⊺

= f̄s(X)− ηsL′(f̄s)K̄(X ,X). (17)

This reduces to a kernel gradient descent method.
Thus, the convergence rate of the network is de-
termined by the eigenstructure of the mean NTK
K̄(X ,X). If it can be diagonalized by eigenfunc-
tions with corresponding eigenvalues λi, the sum
of eigenvalues

∑
λi provides a upper bound for the

convergence of the network. Since the mean NTK
K̄(X ,X) matrix is symmetric and symmetric. The
trace of K̄(X ,X) i.e., NTKT is equal to the sum of
eigenvalues

∑
λi. Therefore, a larger NTKT score

of the Transformer network indicates it converge
faster.

Proof of Theorem 3.4. According to the Equa-
tion (4), the output of each block l can be expressed
as follows:

f l+1
t =

T∑

t′=1

H∑

h=1

〈
W q,l,hf l

t ,W
k,l,hf l

t′

〉
W o,l,hW v,l,hf l

t′ .

(18)

Let M l,h=W q,l,hf l
t f

lT
t W k,l,hT

, the Equation (4)
can be expressed as:

f l+1
t =

T∑

t′=1

H∑

h=1

W o,l,hM l,hW v,l,hf l
t′ . (19)

Assume there exits a balanced partition of the in-
put locations (A,B), i.e., each token index Pt ∈
{A,B}, A and B are disjoint subsets of input se-
quence [T] := {1, . . . , T} and A ∪ B = [T]. The
matrix multiplication in the M l,h can be divided
the sum over inputs indexed by A and B:

M l,h
r1,r2 =

T∑

t=1

[W q,l,hf l
t]r1,t[f

lT

t W k,l,hT

]t,r2

=
∑

t∈A
[W q,l,hf l

t]r1,t[f
lT

t W k,l,hT

]t,r2

+
∑

t∈B
[W q,l,hf l

t]r1,t[f
lT

t W k,l,hT

]t,r2 .

(20)

6793

Then the Equation (19) can be reformed as:

f l+1
t =

∑

h∈[H]

dla∑

r1,...,rT=1

∑

P1,...,PT

W o,l,hW v,l,hf l
t

(T∏

t=1

[W q,l,hf l
t]rt,t[f

lT

t W k,l,hT

]t,rt

)

=
∑

h∈[H]

dla∑

r1,...,rT=1

∑

P1,...,PT

W o,l,hW v,l,hf l
t

(∑

t∈A
[W q,l,hf l

t]rt,t[f
lT

t W k,l,hT

]t,rt

∑

t∈B
[W q,l,hf l

t]rt,t[f
lT

t W k,l,hT

]t,rt

)

≤
T∑

t=1

dla∑

r1,...,rt=1

H

=

T∑

t=1

(Hdla)
t =

T∑

t=1

(dlz)
t

= dlz
1− (dlz)

T+1

1− dlz
.

(21)

The separation rank at the l block satisfies:

log(
sep(f l+1

t)

sep(f l
t)

) ≤ log(dlz) + log(
1− (dlz)

T+1

1− dlz
)

(22)

Then, the separation rank at the last block L satis-
fies:

log(sep(fL
t))≤ log(

L∑

l=1

dlz)+log(
L∑

l=1

1− (dlz)
T+1

1− dlz
)

(23)

A.3 Algorithm Details of ETAS
To integrate our proposed NTSR zero-cost proxy
into the ETAS framework, we first randomly sam-
ple N0 networks from the Transformer search space
and compute the relative rankings of these N0 net-
works using NTSR. After that, we select the top n0

network structures with the highest NTSR scores
as the parent population and evaluate these net-
works to obtain their true performance. We add the
network-performance pairs to the observed set. For
each iteration m, we generate a pool of Nm candi-
date architectures by mutating the current parent

population and select the top nm architectures from
Nm based on their NTSR scores. We then evalu-
ate these nm architectures and add their network-
performance pairs to the current observed set. The
parent population is updated by selecting the top
n0 networks from the current observed set. Finally,
we select the top-performing architecture from the
observed set. This process continues until the max-
imum number of iterations M is reached or the
current best value has not improved for five suc-
cessive iterations. The detailed algorithm of our
proposed ETAS framework is summarized in Algo-
rithm 1. Note that our proposed ETAS framework
can also incorporate other zero-cost proxies.

Algorithm 1: ETAS
Input: Total number of iterations M ,

search space A, parent population =
⊘, observed population = ⊘

Output: The best-performing architecture
f∗

1 Randomly sample N0 networks from the
search space A;

2 Compute the relative ranking of N0 initial
networks by NTSR;

3 Select top n0 networks as the parent
population;

4 Evaluate n0 networks and add the
corresponding validation accuracy into the
observed population;

5 for m = 1 to M do
6 Generate Nm candidate architectures by

mutating the network from the parent
population;

7 Compute the relative ranking of Nm

initial networks by NTSR;
8 Select the top nm networks and evaluate

them to obtain the corresponding
validation accuracy;

9 Add the nm networks and their
corresponding validation accuracy into
the current observed set;

10 Update the parent population by
selecting the top n0 networks from the
current observed set;

11 end
12 return the best-performing architecture from

the observed set.

6794

A.4 Experimental settings

A.4.1 Experimental settings of Section 4.1

To evaluate the performance of zero-cost proxies in
the ImageNet-1K dataset, we compute Spearman’s
ρ (Krishnakumar et al., 2022b) and Kendall’s τ
(Ning et al., 2021) rank correlation between the
zero-cost proxy scores and the validation accuracy
of these sampled networks. We run each experi-
ment over 5 independent runs with different ran-
dom seeds and compute the mean and standard
deviation of rank correlations. As showed by Chen
et al. (2021a), the initial weight inherit from the
pre-trained supernet can achieve the performance
comparable to that of the retrained one, we obtain
the true accuracies of sampled network when they
inherit their weights from the pre-trained super-
net. During the search of ETAS, we first randomly
sample 500 networks from the Transformer search
space and compute the relative rankings of 500
networks in terms of the zero-cost proxy. After
that, we choose the top-3 network structures as the
parent population and evaluate these networks to
obtain their true performance. For each iteration
m, we generate a pool of 100 candidate architec-
tures by mutating the current parent population and
select the top-3 architectures from 100 candidate
architectures in terms of the zero-cost proxy. The
mutation probability is set to 0.4. The parent pop-
ulation is updated by selecting the top-3 networks
from the current observed set. We set the number
of iterations M to 10. We then find the optimal
ViT network from the observed set. At last, we fol-
low the training configuration in AutoFormer Chen
et al. (2021a) to train the optimal ViT network and
obtain its test accuracy on the test set of ImageNet-
1k dataset. All experiments are conducted in a
machine with an Intel Xeon Gold 5218R CPU and
two NVIDIA GeForce RTX 3090 GPUs.

A.4.2 Experimental settings of Section 4.2

We run each experiment over 5 independent runs
with different random seeds and compute the mean
and standard deviation of rank correlations. We
train each GPT-2 model from scratch following
the settings of Radford et al. (2019). Validation
perplexity is measured over a sequence length of
192 and 32 tokens for WikiText-103 and LM1B
datasets, respectively. We use the BPE tokenizer
and set the vocab size to 50264. For the WikiText-
103 dataset, we train the GPT-2 network for 4×104

steps using the LAMB (You et al., 2020) optimizer

with a batch size of 128, a learning rate of 1 ×
10−2 with a cosine scheduler, and attention dropout
set to 0.1. For the LM1B dataset, we train the
GPT-2 network for 1× 105 steps using the LAMB
optimizer with a batch size of 128, a learning rate
of 3× 10−4 with a cosine scheduler, and attention
dropout set to 0.1.

During the search of ETAS, we first randomly
sample 300 networks from the search space to
warm up the entire ETAS algorithm. We compute
the relative rankings of these networks in terms of
the zero-cost proxy. After that, we choose the top-
3 network structures as the parent population and
evaluate these networks to obtain their true perfor-
mance. For each iteration m, we generate a pool of
100 candidate architectures by mutating the current
parent population and select the top-3 architectures
from the 100 candidate architectures in terms of the
zero-cost proxy. The mutation probability is set to
0.3. The parent population is updated by selecting
the top-3 networks from the current observed set.
We set the number of iterations M to 10. All exper-
iments are conducted on a machine with an Intel
Xeon Gold 5218R CPU and two NVIDIA GeForce
RTX 3090 GPUs.

6795

