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Abstract

In this work, we present InfiMM, an ad-
vanced Multimodal Large Language Model
that adapts to intricate vision-language tasks.
InfiMM, inspired by the Flamingo architec-
ture, distinguishes itself through the utiliza-
tion of large-scale training data, three-stage
training strategies, and diverse large language
models. This approach ensures the preserva-
tion of Flamingo’s foundational strengths while
simultaneously introducing augmented capa-
bilities. Empirical evaluations across a vari-
ety of benchmarks underscore InfiMM’s re-
markable capability in multimodal understand-
ing. The code and model can be found at:
https://huggingface.co/Infi-MM.

1 Introduction

Recently, Multimodal Large Language Models
(MLLMs) have shown a transformative evolution
through the integration of pretrained vision en-
coders with Large Language Models (LLMs). Sem-
inal contributions to this domain include Flamingo
(Alayrac et al., 2022), LLaVA (Liu et al., 2023b),
BLIP-2 (Li et al., 2023), and MiniGPT-4 (Zhu et al.,
2023a). MLLMs demonstrate exceptional profi-
ciency across a variety of tasks, including image
captioning, visual question answering, and more
complex activities such as generating code from
images, converting image plots into Markdown for-
mat tables, and simulating web browsing.

For effective integration of pretrained vision en-
coders with large language models, careful design
of vision-language connector modules is essential.
These modules play a critical role in transforming
and aligning visual tokens to formats compatible
with Large Language Models, as well as effectively
leveraging these tokens. Models like Flamingo
(Alayrac et al., 2022) and BLIP-2 (Li et al., 2023)
utilize Perceiver Resampler/Q-Former techniques,
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offering flexibility and nuanced alignment with lan-
guage counterparts. However, this approach can
incur high computational costs and risk informa-
tion loss (Cha et al., 2023). Conversely, models
such as LLaVA and MiniGPT-v2 employ simpler
Multi-Layer Perception (MLP) strategies, reducing
computational complexity but potentially sacrific-
ing nuanced representation of visual data.

In the utilization of the transformed tokens, archi-
tectures akin to Flamingo employ cross-attention
mechanisms, enabling nuanced interactions be-
tween token types without necessitating an expan-
sion of the token sequence length. This method ef-
fectively manages computational load. Conversely,
LLaVA-style models adopt a direct concatenation
approach, which, while straightforward, leads to an
augmentation in token sequence length and compu-
tational complexity.

Though efficient in the inference stage, few
works adopt the Flamingo-style architecture. Open-
Flamingo (Awadalla et al., 2023) and IDEFICS
(Laurençon et al., 2023a) are two reproductions
of the Flamingo. However, as they use less
capable language models and limited training
data, their performance could be improved. Fur-
ther we propose three-stage training strategies for
vision-language alignment, vqa knowleage injec-
tion and unreshing conversation abality. We utilize
a stronger vision encoder, language model, and
higher-quality data to build a stronger model. We
anticipate that this will foster development within
the field.

2 Related Work

Large language models (LLMs) have made signif-
icant advancements (OpenAI, 2023; Chowdhery
et al., 2022; Bai et al., 2022; Touvron et al., 2023;
Tunstall et al., 2023). These models are powerful
in chatting and can finish many tasks only with
different instructions. Though impressive, these
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models are limited to only the language domain
but not other modalities. They have subsequently
been extensively utilized in multimodal tasks such
as image-to-text generation and video-to-text gen-
eration (Zhang et al., 2023a; Xu et al., 2023; Huang
et al., 2023; Alayrac et al., 2022; Wang et al., 2022;
Li et al., 2023; Liu et al., 2023b), giving rise to a
new class of models called multimodal large lan-
guage model (MLLM).

Flamingo (Alayrac et al., 2022) leverages pre-
trained language models within the MLLM frame-
work, employing gated-cross attention to integrate
visual information into textual sequences. In con-
trast, BLIP-2 (Li et al., 2023), MiniGPT4 (Zhu
et al., 2023a), and LLaVA (Liu et al., 2023b) pro-
pose a novel approach by converting visual signals
into soft tokens and directly integrating them into
language models. Utilizing gated-cross attention as
a modality connector introduces more trainable pa-
rameters but can potentially reduce inference cost
as the visual signal will not be turned into soft to-
kens, thereby not increasing the sequence length of
large language models.

While numerous open-source projects have
emerged following the architectures of LLaVA
and BLIP-2, there needs to be more em-
phasis on the Flamingo-style architecture.
OpenFlamingo (Awadalla et al., 2023) and
IDEFICS (Laurençon et al., 2023a) represent two
open-source models adopting the Flamingo-style
approach. However, due to constraints imposed
by their language model and vision encoder, their
capabilities could be more remarkable.

In this study, we adopt the Flamingo framework
and harness a more potent combination of language
model and vision encoder to construct a robust
model. Additionally, we employ higher-quality
data for training, aiming to enhance the model’s
strength. These efforts will likely result in a more
formidable model and contribute to the advance-
ment of research in MLLMs.

3 Method

3.1 Model Architecture
We show our model architecture in Figure 1. In-
fiMM is inspried by Flamingo (Alayrac et al.,
2022). The details of our model will be discussed
in the following :

Large Language Model: InfiMM reveals the im-
pact of LLMs with different scales and architec-
tures. For the 7B setting, InfiMM adapts pretrained

Zephyr as a language model. For the 13B setting,
InfiMM adapts either LLaMA2 (Touvron et al.,
2023) or its finetuned version Vicuna (Chiang et al.,
2023) as the language model.

Vision Encoder: InfiMM utilizes the EVA2-
CLIP-G (Sun et al., 2023) as default vision encon-
der, which fixes the input resolution to 224× 224.

Connector: InfiMM adapts the Perceiver Resam-
pler and Gated Cross-attention as the V-L con-
nectors. Percevier Resampler consists of cross-
attention layers and learnable queries. This could
compress vision features to fixed 32 vision tokens.
Meanwhile, Gated Cross-attention layers are used
for vision-language interaction.

The woman wants to shield 
her eyes from the stinging and 

tears caused by onions.

Vision 
Encoder

Why is the person wearing a helmet?

LM Block 1

Gated Cross-Attn 1

...
LM Block n

Gated Cross-Attn n

Perceiver 
Resampler

The woman wants to shield her eyes from
the stinging and tears caused by onions.

Why is the person wearing a helmet?

LM Block 1

Gated Cross-Attn 1

...

LM Block n

Gated Cross-Attn n

Vision Encoder

Perceiver 
Resampler

Image Tokens

Figure 1: The overview architecture of InfiMM. InfiMM
consists of a vision encoder, a Perceiver Resampler, and
a large language model with a Gated Cross-attention
module.

3.2 Training details
We have established a three-stage training proce-
dure for improving InfiMM’s overall ability, as
shown in Figure 2. These stages are denoted as
Pretraining (PT), Multi-Task Training (MTT), and
Instruction Finetuning (IFT). The PT stage aims to
align vision-language modalities, MTT stage inte-
grates vision-language question-answering knowl-
edge, and IFT stage significantly improves the
model’s conversational abilities.

Pretraining Stage: This stage focuses on
the initial alignment of vision features and lan-
guage features. During this stage, both the vi-
sion encoder and large language model are frozen,
with only the Gated Cross-attention module and
the Perceiver Resampler being learnable. The
training dataset involves a diverse set of image-
text pairs (LAION (Schuhmann et al., 2022),
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Figure 2: The training pipeline of InfiMM. The language model is trainable only in the Instruction Finetuning Stage.
And ViT is frozen during the entire training process.

Table 1: Details on the training data of Pretraining
Stage.

Dataset Type of Data Samples

OBELICS Unstructured Web Docs 101M
MMC4 Unstructured Web Docs 53M
LAION Image-Text Pairs 115M
COYO Image-Text Pairs 238M
LAION-COCO Image-Text Pairs 140M
PMD Image-Text Pairs 20M

Total - 667M

COYO (Byeon et al., 2022), LAION-COCO,
PMD (Singh et al., 2022)) and unstructured multi-
modal web documents(OBELICS (Laurençon et al.,
2023a), MMC4 (Zhu et al., 2023b)), all sourced
from public domains and PMD is only used in 13B
LLMs. We have also filtered out low-quality data,
resulting in the following dataset utilized:

Multi-Task Training Stage (MTT) As the
dataset used in pretraining is mainly instance-level
alignment and has a lot of noise, we introduce
Multi-Task Training for higher-quality knowledge
injection. In this stage, we focus on supervised
training on different tasks, including image cap-
tions and visual question-answering. Also include
other domains, like scene-based datasets (Chen
et al., 2015), (Hudson and Manning, 2019), and
OCR based datasets (Sidorov et al., 2020), (Mishra
et al., 2019), (Zhang et al., 2023b) etc. We keep the
trainable parameters same with the first stage. De-
tailed information about training datasets is listed
in Table 2.

Instruction Finetuning Stage (IFT): In this
final stage, our goal is to make the model better
follow user instructions and develop the “chat” ver-

Table 2: Details on the training data of Multi-Task Train-
ing Stage.

Task Dataset Samples

Image Caption
COCO Caption (Chen et al., 2015) 410k
TextCaps (Sidorov et al., 2020) 110k
VizWiz Caption (Gurari et al., 2020) 110k

General VQA

VQAV2 (Antol et al., 2015) 443k
OKVQA (Marino et al., 2019) 9k
VizWiz VQA (Gurari et al., 2018) 20k
GQA (Hudson and Manning, 2019) 471k
A-OKQA (Schwenk et al., 2022) 17k

Text-oriented VQA

TextVQA (Singh et al., 2019) 34k
OCRVQA (Mishra et al., 2019) 166k
STVQA (Biten et al., 2019) 26k
DocVQA (Mathew et al., 2021) 63k
LLaVAR (Zhang et al., 2023b) 16k

Total - 1.86M

sion of InfiMM. We only keep the ViT frozen while
all the other parameters are trainable. In this stage,
we utilize the LLaVA-665k (Liu et al., 2023a) in-
struction finetuning dataset for training.

4 Experiment

We evaluate InfiMM across a diverse array of tasks.
For image caption, we test our model with COCO
and Flickr30k. For general VQA tasks, we leverage
benchmarks such as OKVQA (Marino et al., 2019),
VQAV2 (Antol et al., 2015) and TextVQA (Singh
et al., 2019). On these dataset, we only evaluate
the pretrained model in a zero-shot and few-shots
manner. Results can be found in Table 4.

We also assess the logical reasoning capabil-
ities of our model by employing newly intro-
duced benchmarks, including MM-VET (Yu et al.,
2023), MME (Fu et al., 2023), MMbench (Liu
et al., 2023c), InfiMM-Eval (Han et al., 2023), and
MMMU (Yue et al., 2023). Notably, the MMMU
(Yue et al., 2023) presents challenging tasks that de-
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Table 3: Results of InfiMM-Chat on general VQA task.

Model ScienceQA-Img MME MMVet InfiMM-Eval MMbench MMMU-Val MMMU-test

Otter-9B - 1292/306 24.6 32.2 - 22.69 -
IDEFICS-9B-Instruct 60.6 -/- - - - 24.53 -
LLaVA-1.5 71.6 1531/295 35.4 32.6 67.7 36.4 33.6
QWen-VL-Chat 68.2 1488/361 - 37.4 60.6 35.9 32.9
InfiMM-Zephyr-7B-Chat 71.1 1406/327 32.8 36.0 59.7 39.4 35.5
InfiMM-Vicuna-13B-Chat 74.0 1461/324 36.0 40.0 66.7 37.6 34.6
InfiMM-Llama-13b-Chat 73.0 1445/338 39.2 41.4 66.4 39.1 35.2

Table 4: Results on general VQA task. Here we report
zero-shot and four-shots result of InfiMM.

Model Shots COCO Flickr30k OKVQA VQAv2 TextVQA

IDEFICS-9B
0 46 27.3 38.4 50.9 25.9
4 93 59.7 45.5 55.4 27.6

IDEFICS-80B
0 91.8 53.7 45.2 60 30.9
4 110.3 73.7 52.4 64.6 34.4

InfiMM-Zephyr-7B
0 78.8 60.7 17.1 33.7 15.2
4 108.6 71.9 50.5 59.1 34.3

InfiMM-Vicuna13B
0 69.6 49.6 49.2 60.4 32.8
4 118.1 81.4 53.7 64.2 38.4

InfiMM-Llama2-13B
0 85.4 54.6 26.4 51.6 24.2
4 125.2 87.1 55.5 66.1 38.2

mand advanced subject knowledge and deliberate
reasoning at a collegiate level. These tasks span di-
verse fields such as physics, chemistry, and biology.
The MM-VET benchmark assesses the integrated
capabilities of models.

4.1 In-context Learning Ability
We conduct a comparative analysis of InfiMM’s
capacity for in-context learning against that of
IDEFICS (Laurençon et al., 2023b) in Table 4,
which represents the original leading Flamingo-
style architecture model under zero or four-shot
conditions. Our findings reveal that InfiMM out-
performs IDEFICS across all benchmark metrics.
Notably, even our 13B model demonstrates superi-
ority over IDEFICS’ 80B model, underscoring the
efficacy of our training methodology.

4.2 General Logical Reasoning Benchmarks
In Table 3, we compare our method with various
methods. InfiMM shows competitive performance
on both benchmarks, especially the MMMU bench-
mark, which needs complicated vision and lan-
guage understanding capability. We are superior to
most of the previous models in both the validation
dataset and testing dataset.

4.3 Influence of Training Stage
Analysis of Table 5 reveals that the introduction
of MTT significantly enhances the model’s knowl-
edge assimilation, which shows a significant im-

provement in VQA tasks like OKVQA, VQAv2,
TextVQA, and GQA (Hudson and Manning, 2019).
However, constrained by the limited response for-
mat inherent in MTT, the model exhibits subpar
performance in open-ended tasks (as observed in
InfiMM-Eval). Notably, following Instruction Fine-
tuning, the model demonstrates improved profi-
ciency in handling more diverse and flexible tasks.

Table 5: Ablation study on training stages. MTT and
IFT mean Multi-Task Training and Instruction Finetun-
ing Stage.

Model MTT IFT OKVQA VQAv2 TextVQA GQA MMMU InfiMM-Eval

InfiMM-Llama13B ✓ 61.2 75.0 41.3 57.9 37.1 36.3
InfiMM-Llama13B ✓ 63.4 76.9 45.0 62.0 36.1 28.3
InfiMM-Llama13B-Chat ✓ ✓ 62.3 78.5 44.6 61.2 39.2 41.4

5 Limitations

Although InfiMM demonstrates robust perfor-
mance in vision-language modeling while main-
taining a balanced computational load for process-
ing multiple images, its efficacy is hampered by the
constraint of limited image size, thereby restrict-
ing its ability to address complex visual content
effectively.

6 Conclusion

In this study, we introduce InfiMM, an advanced
multimodal large language model that significantly
advances the field of visual language understand-
ing. InfiMM’s architecture, inspired by Flamingo
and enhanced by our methodological innovations,
demonstrates a delicate balance between computa-
tional efficiency and the capacity to handle nuanced
visual-language tasks. Evaluation on various bench-
marks highlights InfiMM’s remarkable ability to
understand complex scenes and shows good rea-
soning ability. InfiMM represents a significant step
forward in the multimodal understanding domain.
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Ethics Statement

Our MLLMs are constructed upon pre-trained
LLMs. Consequently, our models inherit the po-
tential risks associated with LLMs, such as the
generation of biased, inappropriate, discriminatory,
offensive, misleading, or even harmful contents.

Additionally, our models undergo training on
publicly accessible datasets including LAION,
COYO, LAION-COCO, PMD, MMC4, and oth-
ers. Despite the extensive usage of these datasets,
the presence of discriminatory, biased, or sensitive
content cannot be ruled out. Given that our mod-
els inherently assimilate such information during
the training process, prudence is warranted in their
application.
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A Summary of Evaluation Benchmarks

We provided a detailed summary of evaluation benchmarks we used and their corresponding metrics in
Table 6.

Table 6: Details on the test dataset.

Task Dataset Description Split Metric

General VQA

VQAV2 VQA on natural images test-dev VQA Score(↑)
OKVQA VQA on natural images but need world knowledge val VQA Score(↑)

GQA VQA on scene understandig and reasoning test-dev EM(↑)
TextVQA VQA about text in natural scene val VQA Score(↑)

Other Benchmarks

MME Evalutaion for MLLM on perception and cognition Perception and Cognition Accuracy(↑)
MM-VET Dialog style VQA on integrated ability test GPT-4 score(↑)
MMbench Comprehensive evalutaion with multi choice VQA test Accuracy(↑) score(↑)

InfiMM-Eval Complex Open-ended Reasoning test GPT-4 score(↑)
MMMU College-level multi choice VQA val and test Accuracy(↑)

A.1 Training Configuration

Table 7: Details of the training Configuration.

Configuration Pretraining Multi-Task Training Instruction Finetuning

ViT init. EVA2-CLIP2-g EVA2-CLIP2-g EVA2-CLIP2-g
LLM init. LLaMA2-13b LLaMA2-13b LLaMA2-13b

Gated Cross-attention init. random InfiMM 1st stage InfiMM 2rd stage
Image resolution 224

ViT sequence length 257
Perceiver Resampler length 64

LLM sequence length 32 (IT);384 (IIT) 128 512
Optimizer AdamW

Optimizer hyperparameter β1 = 0.9, β2 = 0.95, eps = 1e−8 β1 = 0.9, β2 = 0.999, eps = 1e−5

Peak learning rate 1e−4 1e−5 5e−6

Minimum learning rate 1e−4 1e−6 5e−7

Learning rate schedule cosine decay
Weight decay 0.1
Gradient clip 1.0
Training steps 285k 10k 6k

warm steps 6k 500 300
Global batch size 5120 256 64

Gradient accumulation steps 2 1 1
Gradient ACC. 2 1 2

Numerical precision bfloat16
Gradient checkpointing × ✓ ×
Deepspeed Zero Stage 2

Training resource 40 NVIDIA A100-SXM-80GB 32 NVIDIA A100-SXM-80GB
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