
Findings of the Association for Computational Linguistics: ACL 2024, pages 2943–2956
August 11-16, 2024 ©2024 Association for Computational Linguistics

Character-Level Chinese Dependency Parsing via Modeling Latent
Intra-Word Structure

Yang Hou and Zhenghua Li*

School of Computer Science and Technology,
Soochow University, China

yhou1@stu.suda.edu.cn zhli13@suda.edu.cn

Abstract

Revealing the syntactic structure of sentences
in Chinese poses significant challenges for
word-level parsers due to the absence of clear
word boundaries. To facilitate a transition from
word-level to character-level Chinese depen-
dency parsing, this paper proposes modeling
latent internal structures within words. In this
way, each word-level dependency tree is inter-
preted as a forest of character-level trees. A
constrained Eisner algorithm is implemented
to ensure the compatibility of character-level
trees, guaranteeing a single root for intra-word
structures and establishing inter-word depen-
dencies between these roots. Experiments on
Chinese treebanks demonstrate the superiority
of our method over both the pipeline frame-
work and previous joint models. A detailed
analysis reveals that a coarse-to-fine parsing
strategy empowers the model to predict more
linguistically plausible intra-word structures.

1 Introduction

In the field of natural language processing, depen-
dency parsing plays a crucial role in revealing the
syntactic structure of sentences, thereby forming
the foundation for numerous downstream applica-
tions such as machine translation (Shen et al., 2008;
Wu et al., 2017), information extraction (Culotta
and Sorensen, 2004; Gamallo et al., 2012), and sen-
timent analysis (Nakagawa et al., 2010; Sun et al.,
2019).

This task, although straightforward in space-
delimited languages, encounters significant chal-
lenges in languages like Chinese, where explicit
word boundaries are absent. Traditional Chinese
parsing methods rely heavily on word-level tree-
banks, necessitating the segmentation of text into
distinct words before parsing. This prerequisite
not only adds an additional layer of complexity

* Corresponding author

but also makes the parsing outcome vulnerable to
inaccuracies in segmentation.

The need to address these issues has prompted a
transition from word-level to character-level Chi-
nese dependency parsing. However, the lack of
character-level Chinese treebanks presents a chal-
lenge. As a workaround, researchers have endeav-
ored to derive character-level dependency trees
from word-level ones (Hatori et al., 2012; Zhang
et al., 2014, 2015; Kurita et al., 2017; Li et al.,
2018; Yan et al., 2020; Wu and Zhang, 2021).

Zhang et al. (2014) pioneered the integration
of character- and word-level annotations. Figure 1
demonstrates a fully depicted character-level depen-
dency tree (Figure 1b) by combining the word-level
tree (Figure 1a) with annotated intra-word struc-
tures. Nonetheless, the application of this method
is constrained by the non-trivial task of deriving
linguistically coherent intra-word structures.

Some researchers have opted for a simpler ap-
proach by defining pseudo intra-word structures
(Hatori et al., 2012; Yan et al., 2020). As illustrated
in Figure 1c, these structures utilize a left-wavy pat-
tern, with the rightmost character acting as the root
and other characters headed by their right-adjacent
characters. Although this method circumvents the
labor-intensive annotation process, it may not ac-
curately represent the syntactic roles of characters.

This paper proposes a new approach to character-
level Chinese dependency parsing via modeling
latent intra-word structure. As illustrated in Fig-
ure 1d, our approach allows for the implicit repre-
sentation of all potential internal structures within
words. For example, for the word “发展 (de-
velop)”, both “发 (grow)→展 (expand)” and “发
(grow)←展 (expand)” are acceptable structures. In
this way, each word-level dependency tree is inter-
preted as a forest of character-level trees.

Central to our approach is a constrained Eisner
algorithm (Eisner, 1996), crafted to maintain the
compatibility of character-level trees it generates.

2943

上海 计划 发展 金融业

root

nsubj ccomp dobj

Shanghai plans to develop the financial sector

(a) A word-level dependency tree

上 海 计 划 发 展 金 融 业

root

frag
nsubj

app
ccomp

coo
app

app
dobj

up sea plan plot grow expand gold current sector

(b) Zhang et al. (2014): annotated intra-word structure

上 海 计 划 发 展 金 融 业

root

app
nsubj

app app
ccomp

app app
dobj

up sea plot plan launch expand gold fuse sector

(c) Yan et al. (2020): pseudo leftward intra-word structure

上 海 计 划 发 展 金 融 业
up sea plan plot grow expand gold current sector

root
nsubj ccomp dobj

app app app appapp app

(d) Ours: latent intra-word structure

Figure 1: A word-level dependency tree and corresponding character-level trees with three types of intra-word
structure. Intra-word dependencies are represented by dashed arcs and their labels are omitted.

This algorithm enforces two critical constraints:
the single-root subtree constraint and the root-as-
head constraint, which together guarantee that each
word corresponds to a single-root subtree and that
inter-word dependencies link to root characters of
subtrees. Furthermore, we introduce a coarse-to-
fine parsing strategy to refine the parsing process.
Our primary contributions include:
• This work explores modeling latent intra-word

structure for character-level Chinese dependency
parsing.

• By implementing a novel, linguistically informed
algorithm, the compatibility of character-level
trees with their word-level counterparts is en-
sured.

• We devise a coarse-to-fine parsing strategy that
improves parsing accuracy and generates more
linguistically plausible intra-word structures.

• Experiment results on Chinese treebanks demon-
strate that our approach outperforms both the
pipeline model and previous joint models. Ad-
ditionally, we provide insightful analyses of the
predicted intra-word structures.

We will release our code at https://github.com/
ironsword666/CharDepParsing.

2 Parsing with Latent Structure

2.1 Word-level Tree to Char-level Forest

Latent Structure. To transform word-level trees
into character-level trees, previous studies typically
defined fixed internal structures for each word, ei-
ther annotated by human experts (Zhang et al.,
2014) or generated through rules (Yan et al., 2020).
Our approach does not explicitly define intra-word

structures. Instead, it allows for the representation
of all possible internal structures within each word.
This method acknowledges the multifaceted nature
of language, where a single word may have multi-
ple structures, especially for words with multiple
parts of speech and coordinate characters (Gong
et al., 2021). The implicit representation of intra-
word structures empowers the model to identify the
most plausible structure based on context.

Conversion. The latent nature of the intra-word
structures facilitates a flexible construction of
character-level dependencies, which are catego-
rized into intra-word and inter-word for clarity.
Within a given word, any two characters can form
an intra-word dependency. Conversely, given a
head-modifier pair, an inter-word dependency can
originate from any characters in the head word to
any characters in the modifier word. In this way,
a word-level dependency tree can be interpreted
as a forest comprising various potential character-
level trees, as illustrated by the specific examples
in Figures 1b and 1c for the forest in Figure 1d.

2.2 Compatibility: Two Constraints

The aforementioned conversion process is struc-
turally sound, indicating there are no conflicts be-
tween dependencies in the converted character-
level trees and dependencies in the original word-
level trees. However, ensuring the character-level
trees faithfully represent both the internal struc-
ture of words and the syntactic relationships be-
tween them requires addressing compatibility is-
sues. These issues, while not explicitly defined,
adhere to certain linguistic principles. To this end,

2944

https://github.com/ironsword666/CharDepParsing
https://github.com/ironsword666/CharDepParsing

发 展 金 融 业
grow expand gold current sector

(a) Two root characters:
“金(gold)” and “业(sector)”

发 展 金 融 业
grow expand gold current sector

(b) Non-root character
“展(expand)” as head

发 展 金 融 业
grow expand gold current sector

(c) An inter-word arc underlies an intra-word arc

Figure 2: Examples containing illegal arcs. Incorrect
characters and arcs are highlighted in red. Triangles
represent complete spans, while trapezoids represent
incomplete spans. Dashed or solid lines are used to
indicate intra-word or inter-word.

we introduce two constraints:
(1) The single-root subtree constraint. This

constraint upholds the linguistic principle that each
word corresponds to a single-root subtree within
the character-level trees. It implies several aspects:
(i) characters in the word form a subtree; (ii) there
is a single, most important character representing
the word, selected as the root of the subtree; (iii) all
other characters are descendants of this root char-
acter; (iv) given the single-headed nature of depen-
dency trees, the root character—and only the root
character—can modify a character from another
word, resulting in an inter-word dependency. An
illustration showing a word erroneously assigned
two root characters is provided in Figure 2a.

(2) The root-as-head constraint. While the
single-root subtree constraint guarantees that only
the root character can act as the modifier in an inter-
word dependency, it is possible that a root character
of one word modifies a non-root character in an-
other word, as shown in Figure 2b. To accurately
reflect the relation between intra-word structures,
we require that only the root character of a word
can serve as the head in an inter-word dependency.

The two constraints collectively assert that a root
character not only represents the central syntactic
role of the word but also exclusively participates in
forming inter-word dependencies.

2.3 The Constrained Eisner Algorithm

Outline. This work integrates the proposed con-
straints into both the Eisner algorithm (Eisner,

Algorithm 1 Constrained Eisner Algorithm.
1: Input: arc scores s(i, j)
2: ▷ arc scores conflicting with gold-standard segmenta-

tion are masked to −∞ ◁
3: Define: I, C ∈ Rn×n

4: Initialize: Ci→i = 0, 1 ≤ i ≤ n
5: for w = 1, . . . , n do
6: for i = 1, . . . , n− w do
7: j = i+ w

8: Ii→j = max
i≤k<j

(s(i, j) + Ci→k + Ck+1←j)

9: Ii←j = max
i≤k<j

(s(j, i) + Ci→k + Ck+1←j)

10: Ci→j = max
i<k≤j

(Ii→k + Ck→j)

11: ▷ j belongs to the right boundaries of the words ◁
12: ▷ if (i,k) inside a word, (k,j) also inside this word ◁

13: Ci←j = max
i≤k<j

(Ci←k + Ik←j)

14: ▷ i belongs to the left boundaries of the words ◁
15: ▷ if (k,j) inside a word, (i,k) also inside this word ◁
16: return C1→n

1996) and the Inside algorithm (Eisner, 2016). Dur-
ing training, we employ the constrained Inside al-
gorithm on word-level trees to compute the training
loss. During inference, the vanilla Eisner algorithm
is applied to character sequences to derive optimal
character-level trees, while the constrained Eisner
algorithm is used on word sequences for analyt-
ical purposes. In the following part, we use the
Eisner algorithm as an example to demonstrate the
implementation of these constraints.

Eisner algorithm. The Eisner algorithm, a clas-
sic dynamic programming approach, iteratively
combines smaller spans into larger ones to con-
struct a complete dependency tree. It distinguishes
between two types of spans: complete spans and in-
complete spans. Complete spans consist of a head
word and all its descendants located on one side,
while incomplete spans include a head-modifier de-
pendency and the region between the head and the
modifier.

Given all scores of character-level dependencies,
obtaining an optimal character-level tree using the
vanilla Eisner algorithm is straightforward. How-
ever, deriving an optimal character-level tree that
is compatible with a given word sequence is more
complex. To address this, we propose a constrained
Eisner algorithm, detailed in Algorithm 1.1

Constraint enforcement. To clarify the imple-
mentation of two constraints, we first differentiate
spans into two types: intra-word and inter-word.
Intra-word spans consist solely of intra-word de-

1Similarly, the constrained Inside algorithm can be imple-
mented by replacing max-product with sum-product.

2945

pendencies, spanning either part or the entirety of
a word. Inter-word spans contain at least one inter-
word dependency, spanning multiple words. Please
refer to the examples in Figure 2.

For the single-root subtree constraint, we ob-
serve that cases of multi-roots arise from inter-word
complete spans including residual characters from
a word (see Figure 2a for an example). Inspired by
recent work (Zhang et al., 2021, 2022), we stipulate
that inter-word complete spans must terminate at
word boundaries.

For the root-as-head constraint, based on our ob-
servations, instances where non-characters become
the heads of inter-word dependencies arise when
combining an intra-word incomplete span with an
inter-word complete span. An example is provided
in Figure 2b. Therefore, we prohibit all such combi-
nation operations. To the best of our knowledge, we
are the first to address the root-as-head constraint
in graph-based dependency parsing.

The implementation of two constraint rules is
straightforward by using auxiliary mask tensors.
The additional time complexity is O(n3) but be-
comes negligible when accelerated by GPUs.

2.4 A Coarse-to-Fine Parsing Strategy

In the absence of the word-level trees, determining
the intra-word and inter-word roles for a depen-
dency in the character-level trees is not straightfor-
ward. Since the Eisner algorithm conflates two dis-
tinct roles, identifying these roles is only possible
after the arc labeling step (described in Section 3).
This can lead to instances where an intra-word de-
pendency arc overlies an inter-word dependency
arc (see Figure 2c). These illegal arcs hinder the
recovery from character-level trees to word-level
trees (see Appendix A.1 for details).

To ensure the validity of output trees, we pro-
pose a coarse-to-fine parsing strategy, explicitly
assigning each arc two scores for intra-word and
inter-word roles. The core idea is to first construct
intra-word spans and then inter-word spans, thus
ensuring that intra-word dependency arcs underlie
the inter-word dependency arcs. The deduction
rules are depicted in Figure 3. We refer interested
readers to Algorithm 2 in the appendix for details.

3 Model

Notations. Given a sentence x = c0c1 . . . cn,
where ci represents the ith character of x and c0
denotes an artificial ROOT token, a labeled depen-

LINK(WI,WI→WI): LINK(WI,WI→WE): LINK(WI,WE→WE):

i k

Ci,k

k + 1 j

Cj,k+1

i j

Ii,j

i k

Ci,k

k + 1 j

Cj,k+1

i j

Ii,j

i k

Ci,k

k + 1 j

Cj,k+1

i j

Ii,j

LINK(WE,WI→WE): LINK(WE,WE→WE): COMB(WI,WI→WI):

i k

Ci,k

k + 1 j

Cj,k+1

i j

Ii,j

i k

Ci,k

k + 1 j

Cj,k+1

i j

Ii,j

i k

Ii,k

k j

Ck,j

i j

Ci,j

COMB(WI,WE→WE): COMB(WE,WI→WE): COMB(WE,WE→WE):

i k

Ii,k

k j

Ck,j

i j

Ci,j

i k

Ii,k

k j

Ck,j

i j

Ci,j

i k

Ii,k

k j

Ck,j

i j

Ci,j

Figure 3: Deduction rules for coarse-to-fine parsing.
Dashed or solid lines are used to indicate intra-word
spans (WI) or inter-word spans (WE). The highlighted
rule can be ignored to satisfy the root-as-head constraint.
We present only R-rules, omitting the symmetric L-rules
and initial conditions for brevity.

dency tree for x is denoted as t. We view t as a
set of labeled dependency arcs, using (i, j, l) ∈ t
to indicate an arc from character ci to cj with a
label l ∈ L, where L is the set of dependency la-
bels.2 Additionally, an unlabeled dependency tree
is denoted as y and an unlabeled dependency arc
is denoted as (i, j).

3.1 Parsing Modeling
Adhering to Dozat and Manning (2017), we employ
a two-stage parsing framework that first predicts
unlabeled trees and then labels the arcs in these
trees. The score of an unlabeled dependency tree
is the cumulative sum of its unlabeled arc scores:

s(x,y) =
∑

(i,j)∈y
s(i, j) (1)

The conditional probability of a unlabeled tree
y is defined as:

p(y|x) = es(x,y)

Z(x) ≡ ∑
y′∈Y(x)

es(x,y′)
(2)

where Z(x) is known as the partition term, and
2An additional INTRA label is used to indicate the intra-

word dependency arcs.

2946

Y(x) denotes the set of all possible (projective)
trees for x.

Forest probability. The forest, denoted as F ,
comprises dependency trees that meet compatibility
constraints. The probability of F is the aggregate
probability of each tree y within F .

p(F|x) =
∑

y∈F
p(y|x)

=

Z(x,F) ≡ ∑
y∈F

es(x,y)

Z(x)

(3)

where Z(x,F) can be computed via a constrained
Inside algorithm, by substituting the max-product
in Algorithm 1 with the sum-product.

3.2 Training
During training, the loss for a sentence x is com-
posed of two parts: (unlabeled) tree loss and label
loss.

L(x) = Ltree(x) + Llabel(x) (4)

Tree loss. Given a sentence x, the tree loss is
naturally defined as the negative log-probability of
the forest F :

Ltree(x) = − log p(F|x) (5)

Label loss. The probability of assigning label l
to an unlabeled arc (i, j) is defined as:

p(l|i, j) = es(i,j,l)∑
l′∈L e

s(i,j,l′)
(6)

The label loss is the sum of negative log proba-
bilities of correctly labeling each arc in the forest
F .3

Llabel(x) =
∑

y∈F

∑

(i,j)∈y
− log p(l|i, j) (7)

3.3 Inference
To parse a sentence x, the model first selects the
highest-scoring unlabeled tree ŷ via (vanilla) Eis-
ner algorithm.

ŷ = argmax
y∈Y(x)

s(x,y) (8)

Subsequently, the optimal label for each arc
(i, j) ∈ ŷ is determined.

l̂ = argmax
l∈L

s(i, j, l) (9)

3Refer to Appendix A.2 for the enumeration of these arcs.

3.4 Network Architecture
Encoding. The sentence x is directly input into
the pre-trained BERT model, and the output from
the last layer is used as the representation of char-
acters.

. . . ,hi, · · · = BERT(. . . , ci, . . .) (10)

Scoring. To score dependency arcs, we utilize the
biaffine attention mechanism as outlined by Dozat
and Manning (2017). In the coarse-to-fine parsing,
intra- and inter-word arcs are scored separately
through distinct biaffine attentions. More details
are provided in Appendix A.3.

4 Experiments

Data. We conduct experiments on three ver-
sions of the Penn Chinese Treebank (CTB): CTB5,
CTB6, and CTB7.4 The split of train, development,
and test sets follows established practices (Zhang
and Clark, 2010; Yang and Xue, 2012; Wang et al.,
2011). Table 5 in the appendix provides detailed
statistics. The conversion from phrase structures
to dependency structures is performed using two
methods: (1) the Stanford parser v3.3.05 with Stan-
ford Dependencies (SD) (de Marneffe et al., 2006);
(2) the Penn2Malt tool6 with the head-finding rules
as described by Zhang and Clark (2008), hence-
forth referred to as Z&C. Only projective trees are
retained during training. An intra-word structure
dataset annotated by Gong et al. (2021) on CTB5
is utilized for experiments and analysis.7

Evaluation metrics. For Chinese word segmen-
tation (CWS), we employ standard F1 measures
(F1seg). For dependency parsing, evaluation is con-
ducted at the word level, using word-level F1 scores
(UFdep and LFdep) as the evaluation metrics (Yan
et al., 2020). A dependency arc is considered cor-
rect only if the head-modifier word pair is correctly
segmented. Punctuation is excluded during the
evaluation of dependency parsing.

Baseline and proposed models. The evaluation
includes the following models:
• TreeCRF: A word-level biaffine parsing model

with a CRF loss, detailed in Zhang et al. (2020).
• Pipeline: This framework first performs CWS

by assigning ‘BMES’ tags to characters and then
feeds the segmented results into TreeCRF.

4https://catalog.ldc.upenn.edu/LDC2010T07
5https://nlp.stanford.edu/software/lex-parser.shtml
6https://cl.lingfil.uu.se/~nivre/research/Penn2Malt.html
7https://github.com/SUDA-LA/wist

2947

https://catalog.ldc.upenn.edu/LDC2010T07
https://nlp.stanford.edu/software/lex-parser.shtml
https://cl.lingfil.uu.se/~nivre/research/Penn2Malt.html
https://github.com/SUDA-LA/wist

Model
CTB5 CTB6 CTB7

F1seg UFdep LFdep F1seg UFdep LFdep F1seg UFdep LFdep

w/ head-finding rules of SD
Yan et al. (2020) 98.46 89.59 85.94 – – – 97.06 85.06 80.71

Pipeline 98.72 90.93 88.39 97.23 87.09 83.86 97.16 85.77 82.00
Leftward 98.76 90.91 88.37 97.30 87.21 84.04 97.22 85.85 82.17
Latent (Ours) 98.76 91.06 88.49 97.28 87.22 84.03 97.17 85.74 82.04
Latent-c2f (Ours) 98.79 90.95 88.34 97.33 87.30 84.12 97.22 85.90 82.23

w/ head-finding rules of Z&C
Hatori et al. (2012)† 97.75 81.56 – 95.45 74.88 – 95.42 73.58 –
Zhang et al. (2014)† 97.67 81.63 – 95.63 76.75 – 95.53 75.63 –
Zhang et al. (2015)† 98.04 82.01 – – – – – – –
Kurita et al. (2017)† 98.37 81.42 – – – – 95.86 74.04 –
Wu and Zhang (2021)‡ 98.57 91.79 90.38 97.32 88.44 86.49 97.25 86.93 84.68

Pipeline 98.72 92.00 91.04 97.23 87.71 86.77 97.16 86.39 85.19
Leftward 98.67 91.98 91.03 97.39 88.02 87.06 97.26 86.48 85.30
Latent (Ours) 98.74 92.16 91.25 97.37 87.99 87.06 97.22 86.50 85.33
Latent-c2f (Ours) 98.77 92.03 91.08 97.37 88.10 87.14 97.26 86.55 85.37

Table 1: Results on CTB5, CTB6, and CTB7 test sets. The best results are in bold. † indicates using additional
POS tag information. ‡: Wu and Zhang (2021) consider a dependency arc correct even if the head word is wrongly
segmented; thus, the reported results are not directly comparable to ours.

• Leftward: A model uses pseudo leftward intra-
word structures as described by Yan et al. (2020).

• Latent: The proposed model uses latent intra-
word structures. The constrained Eisner algo-
rithm is used to ensure compatibility.

• Latent-c2f: Enhancing Latent with a coarse-to-
fine parsing strategy, as described in Section 2.4.

Results using pseudo rightward structures and an-
notated structures are provided in Appendix B.1.

Hyper-parameters. All models utilize the “bert-
base-chinese”8 as the encoder to obtain contextual
representations. For word-level models, word rep-
resentations are derived by averaging the corre-
sponding character representations. The configu-
ration of the scoring layer adheres to Zhang et al.
(2020). Refer to Appendix A.4 for detailed hyper-
parameter settings and optimization procedures.
All results are averaged over four runs with dif-
ferent random seeds.

4.1 Main Results

Comparison with the pipeline framework. As
shown in Table 1, our latent models (Latent and
Latent-c2f) consistently outperform the pipeline

8https://huggingface.co/bert-base-chinese

model across all metrics, except for LFdep on
CTB5 using SD, where Latent-c2f is lower by
0.05%. Latent-c2f achieves absolute improvements
of 0.27% and 0.37% in LFdep score on CTB6 across
two dependency representations. Similar improve-
ments are observed on CTB5 and CTB7. The
results demonstrate the efficacy of our proposed
latent parsing method in mitigating the error propa-
gation problem.

Comparison with previous joint models. Ta-
ble 1 also compares our method against previous
joint models. The majority of prior models rely on
traditional discrete features or static embeddings,
resulting in performance lag compared to our latent
models. The exception is Yan et al. (2020), which
utilizes pre-trained BERT. Nevertheless, our latent
models achieve substantial improvements, e.g., a
1.52% increase in LFdep on CTB7.

Notably, Leftward can be considered a reim-
plementation of Yan et al. (2020), employing the
same network architecture and hyper-parameter
settings as our latent models. In comparison, La-
tent achieves comparable parsing performance and
Latent-c2f achieves better parsing performance.

2948

https://huggingface.co/bert-base-chinese

Model
CTB5 CTB7

UAS LAS UAS LAS

w/ head-finding rules of SD
TreeCRF 92.83 90.14 90.14 85.89

Leftward 92.69 89.91 89.08 84.77
Latent (Ours) 92.99 90.19 89.29 84.99
Latent-c2f (Ours) 92.84 89.99 89.69 85.45

w/ head-finding rules of Z&C
TreeCRF 93.95 92.90 90.52 89.16

Leftward 93.77 92.70 89.67 88.26
Latent (Ours) 93.96 93.00 89.86 88.46
Latent-c2f (Ours) 93.88 92.89 90.06 88.70

Table 2: Results using gold-standard segmentation on
CTB5 and CTB7 test sets. Best results are in bold.

Parsing with gold-standard segmentation. To
isolate the impact of word segmentation errors on
parsing performance, we also conduct experiments
using gold-standard segmentation with the con-
strained Eisner algorithm, employing attachment
score metrics (UAS and LAS).

As shown in Table 2, character-level models lag
behind the word-level model (TreeCRF) by a signif-
icant margin, except for Latent on CTB5.9 Among
character-level models, Latent-c2f significantly en-
hances the performance of Latent on CTB7 and
two latent models consistently outperform Left-
ward. This suggests that our latent models possess
a superior ability in identifying head characters of
words, and enforcing the rightmost character as
the word head may not be the best practice.

4.2 Analysis

Impact of proposed constraints. Ablation stud-
ies are conducted to investigate the individual and
combined effects of the single-root subtree and
root-as-head constraints on the constrained Inside
algorithm. Complete match (CM) scores for the
entire dependency tree are also provided. The re-
moval of both constraints, as shown in Table 3,
results in the lowest LFdep score. The individual
application of each constraint is less effective than
using both constraints together. Notably, the ab-
sence of the single-root subtree constraint leads to

9This discrepancy may be attributed to the utilization of
word-level information. Unlike word-level models that can
directly utilize word representations, character-level models
are merely aware of word boundaries.

Model
CTB7

F1seg UFdep LFdep CM

w/ head-finding rules of SD
Latent-c2f 97.12 85.59 81.87 29.22
- single-root 96.89 85.31 81.57 28.16
- root-as-head 97.07 85.52 81.79 28.59
- both constraints 96.80 85.21 81.48 27.26

Table 3: Ablation study on CTB7 dev set. “CM”: Com-
plete match of labeled dependency trees.

Structure
Latent Latent-c2f

Annt.
SD Z&C SD Z&C

99.52 99.70 49.32 50.26 48.07
0.48 0.30 50.68 49.74 51.93

91.34 91.32 41.04 42.39 34.67
0.02 0.02 4.67 1.64 34.20
0.01 0.00 40.20 37.64 1.87

54.06 55.34 10.07 9.28 7.24
0.00 0.00 21.33 30.83 0.07
2.77 2.66 1.78 0.98 15.45
0.00 0.00 5.27 2.48 7.20

Table 4: Distribution of intra-word structures predicted
by our latent models on CTB6 test set. “Annt.” denotes
annotated structures. Only high-frequency structures
are provided. Filled dots represent root characters.

a more significant decline in performance. This
is justified by the fact that the single-root subtree
constraint minimizes the segmentation of words
into disjoint parts. The application of the root-
as-head constraint alone offers a modest 0.08%
improvement in LFdep but leads to a substantial
0.63% increase in CM. The results indicate that
an accurate representation of intra-word structures
and their syntactic relationships is beneficial for
parsing performance and tree completeness.

Distribution of predicted intra-word structures.
A unique feature of our method is its capacity to
infer complex intra-word structures. We assess
the distribution of predicted structures by the con-
strained Eisner algorithm, grouping them by word
length to evaluate common patterns.10 We focus on
words of two, three, and four characters, as longer
words are infrequent. A reference distribution of

10The complete match evaluation is presented in Ap-
pendix B.2.

2949

1 2 3 ≥4

84

86

88

90

Word Length

U
A

S
Leftward Latent Latent-c2f

Figure 4: The unlabeled attachment score (UAS) for
words of different lengths on CTB7 test set using SD.

annotated structures by Gong et al. (2021) is also
provided. High-frequency structures are shown in
Figure 4. A comprehensive overview is available
in Table 6 in the appendix.

For Latent, a prevalent left-wavy pattern emerges
across words of varying lengths. Latent-c2f al-
leviates this leftward bias. For two-character
words, the left-headed and right-headed structures
in Latent-c2f are balanced, closely aligning with
the annotated ones. For three- and four-character
words, Latent-c2f can predict right-branched struc-
tures, which are seldom or never observed in La-
tent.

The leftward bias in Latent deserves further dis-
cussion. The Latent model, employing the Eis-
ner algorithm, does not distinctly differentiate be-
tween intra- and inter-word dependencies. Con-
sequently, this conflation unintentionally transfers
the arc direction bias from the inter-word depen-
dencies—derived from word-level trees—to the
inherently latent intra-word dependencies. Given
that Chinese is a left-branching language, CTB ex-
hibits a predominant occurrence of leftward arcs
over rightward ones, with a distribution of 60%
on SD and 70% on Z&C. The Latent-c2f model
utilizes dual biaffine attention mechanisms for scor-
ing dependencies, which serves to selectively filter
arc direction information, thereby mitigating the
inherent leftward bias observed in Latent.

Performance across word lengths. We further
investigate the performance of character-level mod-
els across words of different lengths. The results in
Figure 4 are obtained using gold-standard segmen-
tation. Latent-c2f exhibits the best performance for
words of lengths 1, 2, and 3. However, for words
with a length greater than or equal to 4, Latent-c2f
performs worse than Latent, suggesting that coarse-

to-fine parsing may not be advantageous for longer
words. Interestingly, the performance difference
between Leftward and Latent is marginal for words
of length 2 and 3. This is consistent with the in-
formation in Table 4, where intra-word structures
of lengths 2 and 3 primarily exhibit a left-wavy
pattern for Latent, nearly identical to Leftward.

5 Related Work

Intra-word structure. Zhao (2009) were the first
to explore intra-word structures in Chinese through
unlabeled dependency forms. Li (2011) and Zhang
et al. (2013) extended this work by introducing
constituency trees to depict these structures, which
were further refined by Zhang et al. (2014) through
their conversion of constituency trees into depen-
dency trees. Gong et al. (2021) went on to investi-
gate intra-word (labeled) dependencies, positioning
the parsing of these structures as a distinct task.

Character-level dependency parsing. The area
of character-level dependency parsing, especially
within the context of Chinese, has undergone signif-
icant evolution. Hatori et al. (2012) led the initial
efforts by introducing a transition-based parser that
leveraged pseudo intra-word structures. This was
followed by Zhang et al. (2014), who integrated an-
notated intra- and inter-word dependencies. Subse-
quent studies aimed to enhance the transition-based
parsers with neural networks (Kurita et al., 2017;
Li et al., 2018). Yan et al. (2020) were the first to
adopt the graph-based parsing approach.

Span constraints. The dependency structure is
closely related to spans (not limited to phrases and
words). Spitkovsky et al. (2010) demonstrated how
naturally annotated spans could be transformed into
dependency structures by applying various parsing
constraints. For transition-based parsers, Nivre
et al. (2014) emphasized the necessity of a single-
root subtree over the input spans. Similarly, Zhang
et al. (2022) framed span-based semantic role la-
beling as dependency parsing, enforcing semantic
arguments corresponding to single-root subtrees.

Character-level Dependency Annotation of Chi-
nese A Truly Joint Neural Architecture for Segmen-
tation and Parsing

6 Conclusion

This paper explores modeling latent intra-word
structures for character-level Chinese dependency

2950

parsing. Our approach, underpinned by the con-
strained Eisner algorithm, ensures the compatibility
of constructed character-level trees. The incorpo-
ration of a coarse-to-fine parsing strategy further
enhances the effectiveness and rationality of the
parsing process. Our experiments and detailed anal-
yses reveal the following findings:
• Our method outperforms not only the pipeline

model but also previous joint models in character-
level Chinese dependency parsing.

• Given gold-standard segmentation, our latent
models, especially the coarse-to-fine one, demon-
strate superior capability in identifying the head
character of a word, suggesting that designating
the rightmost character as the head of the word
may not be optimal.

• The proposed compatibility constraints can im-
prove both parsing accuracy and the complete-
ness of tree structures.

• The intra-word structures predicted by the latent
model tend to exhibit a left-wavy shape. The
coarse-to-fine strategy alleviates the leftward bias
and produces structures more aligned with manu-
ally annotated ones.

Limitations

Projectivity. Our method treats intra-word struc-
tures as latent, offering a flexible and rich repre-
sentation of internal word structures. However, it
operates within the confines of projective parsing
due to the inherent nature of the Eisner algorithm.
This constraint might limit the applicability of the
model in accurately parsing non-projective trees.

Computational Efficiency. The introduction of
constraints into the Eisner algorithm undoubtedly
increases its complexity. Although auxiliary ten-
sors and GPU utilization help mitigate the addi-
tional time burden, computational efficiency re-
mains a concern, particularly as the necessity to cal-
culate inside scores twice doubles the training du-
ration. Moreover, the incorporation of a coarse-to-
fine strategy, while beneficial for parsing accuracy,
further compounds the computational demands.

Ethics Statement

We are committed to upholding high ethical stan-
dards throughout this paper. Our research focuses
on Chinese dependency parsing, utilizing the Penn
Chinese Treebank (LDC2010T07) for experimental
purposes. We have obtained the necessary permis-
sions and licenses for the acquisition of the data,

and we strictly adhere to the terms of use associated
with it. Researchers with access to the treebank can
replicate our experiments using our provided code.
Moreover, the annotated intra-word structures used
for analysis are openly accessible and do not im-
pose any acquisition or usage requirements. We
believe that the utilization of these datasets will not
compromise the confidentiality or integrity of indi-
viduals, nor will it contain offensive content. Ad-
ditionally, given that our work primarily explores
syntactic methodologies, we do not foresee any
potential risks associated with our research.

Acknowledgements

We thank all the anonymous reviewers for their
valuable comments. We also thank Houquan Zhou
and Cheng Gong for their helpful suggestions dur-
ing the paper writing process. This work was sup-
ported by National Natural Science Foundation of
China (Grant No. 62176173 and 62336006), and a
Project Funded by the Priority Academic Program
Development (PAPD) of Jiangsu Higher Education
Institutions.

References
Aron Culotta and Jeffrey Sorensen. 2004. Dependency

tree kernels for relation extraction. In Proceedings
of the 42nd Annual Meeting of the Association for
Computational Linguistics (ACL-04), pages 423–429,
Barcelona, Spain.

Marie-Catherine de Marneffe, Bill MacCartney, and
Christopher D. Manning. 2006. Generating typed
dependency parses from phrase structure parses. In
Proceedings of the Fifth International Conference
on Language Resources and Evaluation (LREC’06),
Genoa, Italy. European Language Resources Associ-
ation (ELRA).

Timothy Dozat and Christopher D. Manning. 2017.
Deep biaffine attention for neural dependency pars-
ing. In 5th International Conference on Learning
Representations, ICLR 2017, Toulon, France, April
24-26, 2017, Conference Track Proceedings. Open-
Review.net.

Jason Eisner. 2016. Inside-outside and forward-
backward algorithms are just backprop (tutorial pa-
per). In Proceedings of the Workshop on Structured
Prediction for NLP, pages 1–17, Austin, TX. Associ-
ation for Computational Linguistics.

Jason M. Eisner. 1996. Three new probabilistic models
for dependency parsing: An exploration. In COLING
1996 Volume 1: The 16th International Conference
on Computational Linguistics.

2951

https://doi.org/10.3115/1218955.1219009
https://doi.org/10.3115/1218955.1219009
http://www.lrec-conf.org/proceedings/lrec2006/pdf/440_pdf.pdf
http://www.lrec-conf.org/proceedings/lrec2006/pdf/440_pdf.pdf
https://openreview.net/forum?id=Hk95PK9le
https://openreview.net/forum?id=Hk95PK9le
https://doi.org/10.18653/v1/W16-5901
https://doi.org/10.18653/v1/W16-5901
https://doi.org/10.18653/v1/W16-5901
https://aclanthology.org/C96-1058
https://aclanthology.org/C96-1058

Pablo Gamallo, Marcos Garcia, and Santiago Fernández-
Lanza. 2012. Dependency-based open information
extraction. In Proceedings of the Joint Workshop
on Unsupervised and Semi-Supervised Learning in
NLP, pages 10–18, Avignon, France. Association for
Computational Linguistics.

Chen Gong, Saihao Huang, Houquan Zhou, Zhenghua
Li, Min Zhang, Zhefeng Wang, Baoxing Huai, and
Nicholas Jing Yuan. 2021. An in-depth study on
internal structure of Chinese words. In Proceedings
of the 59th Annual Meeting of the Association for
Computational Linguistics and the 11th International
Joint Conference on Natural Language Processing
(Volume 1: Long Papers), pages 5823–5833, Online.
Association for Computational Linguistics.

Jun Hatori, Takuya Matsuzaki, Yusuke Miyao, and
Jun’ichi Tsujii. 2012. Incremental joint approach
to word segmentation, POS tagging, and dependency
parsing in Chinese. In Proceedings of the 50th An-
nual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 1045–
1053, Jeju Island, Korea. Association for Computa-
tional Linguistics.

Mark Johnson. 2007. Why doesn’t EM find good HMM
POS-taggers? In Proceedings of the 2007 Joint Con-
ference on Empirical Methods in Natural Language
Processing and Computational Natural Language
Learning (EMNLP-CoNLL), pages 296–305, Prague,
Czech Republic. Association for Computational Lin-
guistics.

Shuhei Kurita, Daisuke Kawahara, and Sadao Kuro-
hashi. 2017. Neural joint model for transition-based
Chinese syntactic analysis. In Proceedings of the
55th Annual Meeting of the Association for Com-
putational Linguistics (Volume 1: Long Papers),
pages 1204–1214, Vancouver, Canada. Association
for Computational Linguistics.

Haonan Li, Zhisong Zhang, Yuqi Ju, and Hai Zhao.
2018. Neural character-level dependency parsing for
chinese. In Proceedings of AAAI, pages 5205–5212.

Zhongguo Li. 2011. Parsing the internal structure of
words: A new paradigm for Chinese word segmenta-
tion. In Proceedings of the 49th Annual Meeting of
the Association for Computational Linguistics: Hu-
man Language Technologies, pages 1405–1414, Port-
land, Oregon, USA. Association for Computational
Linguistics.

Ilya Loshchilov and Frank Hutter. 2019. Decoupled
weight decay regularization. In 7th International
Conference on Learning Representations, ICLR 2019,
New Orleans, LA, USA, May 6-9, 2019. OpenRe-
view.net.

Tetsuji Nakagawa, Kentaro Inui, and Sadao Kurohashi.
2010. Dependency tree-based sentiment classifica-
tion using CRFs with hidden variables. In Human
Language Technologies: The 2010 Annual Confer-
ence of the North American Chapter of the Associa-
tion for Computational Linguistics, pages 786–794,

Los Angeles, California. Association for Computa-
tional Linguistics.

Joakim Nivre, Yoav Goldberg, and Ryan McDonald.
2014. Squibs: Constrained arc-eager dependency
parsing. Computational Linguistics, 40(2):249–257.

Libin Shen, Jinxi Xu, and Ralph Weischedel. 2008.
A new string-to-dependency machine translation al-
gorithm with a target dependency language model.
In Proceedings of ACL-08: HLT, pages 577–585,
Columbus, Ohio. Association for Computational Lin-
guistics.

Valentin I. Spitkovsky, Daniel Jurafsky, and Hiyan Al-
shawi. 2010. Profiting from mark-up: Hyper-text
annotations for guided parsing. In Proceedings of
the 48th Annual Meeting of the Association for Com-
putational Linguistics, pages 1278–1287, Uppsala,
Sweden. Association for Computational Linguistics.

Kai Sun, Richong Zhang, Samuel Mensah, Yongyi Mao,
and Xudong Liu. 2019. Aspect-level sentiment analy-
sis via convolution over dependency tree. In Proceed-
ings of the 2019 Conference on Empirical Methods
in Natural Language Processing and the 9th Inter-
national Joint Conference on Natural Language Pro-
cessing (EMNLP-IJCNLP), pages 5679–5688, Hong
Kong, China. Association for Computational Linguis-
tics.

Ke M. Tran, Yonatan Bisk, Ashish Vaswani, Daniel
Marcu, and Kevin Knight. 2016. Unsupervised neu-
ral hidden Markov models. In Proceedings of the
Workshop on Structured Prediction for NLP, pages
63–71, Austin, TX. Association for Computational
Linguistics.

Yiou Wang, Jun’ichi Kazama, Yoshimasa Tsuruoka,
Wenliang Chen, Yujie Zhang, and Kentaro Torisawa.
2011. Improving Chinese word segmentation and
POS tagging with semi-supervised methods using
large auto-analyzed data. In Proceedings of 5th In-
ternational Joint Conference on Natural Language
Processing, pages 309–317, Chiang Mai, Thailand.
Asian Federation of Natural Language Processing.

Linzhi Wu and Meishan Zhang. 2021. Deep graph-
based character-level chinese dependency parsing.
TASLP, 29:1329–1339.

Shuangzhi Wu, Dongdong Zhang, Nan Yang, Mu Li,
and Ming Zhou. 2017. Sequence-to-dependency neu-
ral machine translation. In Proceedings of the 55th
Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 698–707,
Vancouver, Canada. Association for Computational
Linguistics.

Hang Yan, Xipeng Qiu, and Xuanjing Huang. 2020. A
graph-based model for joint Chinese word segmen-
tation and dependency parsing. Transactions of the
Association for Computational Linguistics, 8:78–92.

2952

https://aclanthology.org/W12-0702
https://aclanthology.org/W12-0702
https://doi.org/10.18653/v1/2021.acl-long.452
https://doi.org/10.18653/v1/2021.acl-long.452
https://aclanthology.org/P12-1110
https://aclanthology.org/P12-1110
https://aclanthology.org/P12-1110
https://aclanthology.org/D07-1031
https://aclanthology.org/D07-1031
https://doi.org/10.18653/v1/P17-1111
https://doi.org/10.18653/v1/P17-1111
https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/17076
https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/17076
https://aclanthology.org/P11-1141
https://aclanthology.org/P11-1141
https://aclanthology.org/P11-1141
https://openreview.net/forum?id=Bkg6RiCqY7
https://openreview.net/forum?id=Bkg6RiCqY7
https://aclanthology.org/N10-1120
https://aclanthology.org/N10-1120
https://doi.org/10.1162/COLI_a_00184
https://doi.org/10.1162/COLI_a_00184
https://aclanthology.org/P08-1066
https://aclanthology.org/P08-1066
https://aclanthology.org/P10-1130
https://aclanthology.org/P10-1130
https://doi.org/10.18653/v1/D19-1569
https://doi.org/10.18653/v1/D19-1569
https://doi.org/10.18653/v1/W16-5907
https://doi.org/10.18653/v1/W16-5907
https://aclanthology.org/I11-1035
https://aclanthology.org/I11-1035
https://aclanthology.org/I11-1035
https://doi.org/10.1109/TASLP.2021.3067212
https://doi.org/10.1109/TASLP.2021.3067212
https://doi.org/10.18653/v1/P17-1065
https://doi.org/10.18653/v1/P17-1065
https://doi.org/10.1162/tacl_a_00301
https://doi.org/10.1162/tacl_a_00301
https://doi.org/10.1162/tacl_a_00301

Yaqin Yang and Nianwen Xue. 2012. Chinese comma
disambiguation for discourse analysis. In Proceed-
ings of the 50th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers),
pages 786–794, Jeju Island, Korea. Association for
Computational Linguistics.

Liwen Zhang, Ge Wang, Wenjuan Han, and Kewei
Tu. 2021. Adapting unsupervised syntactic pars-
ing methodology for discourse dependency parsing.
In Proceedings of the 59th Annual Meeting of the
Association for Computational Linguistics and the
11th International Joint Conference on Natural Lan-
guage Processing (Volume 1: Long Papers), pages
5782–5794, Online. Association for Computational
Linguistics.

Meishan Zhang, Yue Zhang, Wanxiang Che, and Ting
Liu. 2013. Chinese parsing exploiting characters.
In Proceedings of the 51st Annual Meeting of the
Association for Computational Linguistics (Volume
1: Long Papers), pages 125–134, Sofia, Bulgaria.
Association for Computational Linguistics.

Meishan Zhang, Yue Zhang, Wanxiang Che, and Ting
Liu. 2014. Character-level Chinese dependency pars-
ing. In Proceedings of the 52nd Annual Meeting of
the Association for Computational Linguistics (Vol-
ume 1: Long Papers), pages 1326–1336, Baltimore,
Maryland. Association for Computational Linguis-
tics.

Yu Zhang, Zhenghua Li, and Min Zhang. 2020. Effi-
cient second-order TreeCRF for neural dependency
parsing. In Proceedings of the 58th Annual Meet-
ing of the Association for Computational Linguistics,
pages 3295–3305, Online. Association for Computa-
tional Linguistics.

Yu Zhang, Qingrong Xia, Shilin Zhou, Yong Jiang, Guo-
hong Fu, and Min Zhang. 2022. Semantic role la-
beling as dependency parsing: Exploring latent tree
structures inside arguments. In Proceedings of the
29th International Conference on Computational Lin-
guistics, pages 4212–4227, Gyeongju, Republic of
Korea. International Committee on Computational
Linguistics.

Yuan Zhang, Chengtao Li, Regina Barzilay, and Ka-
reem Darwish. 2015. Randomized greedy inference
for joint segmentation, POS tagging and dependency
parsing. In Proceedings of the 2015 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, pages 42–52, Denver, Colorado. Associa-
tion for Computational Linguistics.

Yue Zhang and Stephen Clark. 2008. A tale of two
parsers: Investigating and combining graph-based
and transition-based dependency parsing. In Pro-
ceedings of the 2008 Conference on Empirical Meth-
ods in Natural Language Processing, pages 562–571,
Honolulu, Hawaii. Association for Computational
Linguistics.

Yue Zhang and Stephen Clark. 2010. A fast decoder
for joint word segmentation and POS-tagging using
a single discriminative model. In Proceedings of the
2010 Conference on Empirical Methods in Natural
Language Processing, pages 843–852, Cambridge,
MA. Association for Computational Linguistics.

Hai Zhao. 2009. Character-level dependencies in Chi-
nese: Usefulness and learning. In Proceedings of
the 12th Conference of the European Chapter of the
ACL (EACL 2009), pages 879–887, Athens, Greece.
Association for Computational Linguistics.

A Implementation Details

A.1 Char-Tree to Word-Tree Recovery
After predicting an optimal character-level tree, a
word-level tree can be recovered from it. The first
step is to identify all subtrees corresponding to
words, which must satisfy two conditions: (1) con-
tain only intra-word dependency arcs (indicated by
an INTRA label); (2) be linked by an inter-word
dependency arc (indicated by common syntactic
labels). Next, these subtrees are collapsed into
words. Finally, the character-level inter-word arcs
are revived into word-level arcs.

A.2 Loss Function
To calculate the label loss, we need to enumerate
each arc in each tree in the forest, which is expo-
nential in the worst case. Inspired by Zhang et al.
(2022), we find this enumeration can be integrated
into the computation of the tree loss.

First, we define the probability of assigning the
labels to all arcs in the unlabeled tree y as:

p(r|x,y) =
∏

(i,j)∈y
p(l|i, j) (11)

where r is the set of labels for all arcs in y.
Then, we define the probability of the labeled

tree t of a given sentence x as:

p(t|x) = p(y|x) · p(r|x,y) (12)

Finally, the loss function is defined as the nega-
tive log-likelihood of the labeled forest T :

L(x) = − log p(T |x)
p(T |x) =

∑

t∈T
p(t|x)

=

∑
y∈F es(x,y) · p(r|x,y)

Z(x)

=

∑
y∈F

∏
(i,j)∈y e

s(i,j)+log p(l|i,j)

Z(x)

(13)

2953

https://aclanthology.org/P12-1083
https://aclanthology.org/P12-1083
https://doi.org/10.18653/v1/2021.acl-long.449
https://doi.org/10.18653/v1/2021.acl-long.449
https://aclanthology.org/P13-1013
https://doi.org/10.3115/v1/P14-1125
https://doi.org/10.3115/v1/P14-1125
https://doi.org/10.18653/v1/2020.acl-main.302
https://doi.org/10.18653/v1/2020.acl-main.302
https://doi.org/10.18653/v1/2020.acl-main.302
https://aclanthology.org/2022.coling-1.370
https://aclanthology.org/2022.coling-1.370
https://aclanthology.org/2022.coling-1.370
https://doi.org/10.3115/v1/N15-1005
https://doi.org/10.3115/v1/N15-1005
https://doi.org/10.3115/v1/N15-1005
https://aclanthology.org/D08-1059
https://aclanthology.org/D08-1059
https://aclanthology.org/D08-1059
https://aclanthology.org/D10-1082
https://aclanthology.org/D10-1082
https://aclanthology.org/D10-1082
https://aclanthology.org/E09-1100
https://aclanthology.org/E09-1100

Dataset Train Dev Test

CTB5 18,104 352 348
CTB6 23,420 2,079 2,796
CTB7 31,112 10,043 10,292

Table 5: Data statistics. We present the number of
sentences in the training, development, and test sets.

Structure
Latent Latent-c2f

Annt.
SD Z&C SD Z&C

99.52 99.70 49.32 50.26 48.07
0.48 0.30 50.68 49.74 51.93

91.34 91.32 41.04 42.39 34.67
0.02 0.02 4.67 1.64 34.20
7.03 8.10 8.15 7.31 5.78
0.01 0.00 40.20 37.64 1.87
0.02 0.01 2.96 9.14 7.02
0.96 0.19 2.37 1.60 15.30

54.06 55.34 10.07 9.28 7.24
12.37 22.33 9.28 12.08 9.39

0.44 1.98 18.72 14.79 0.57
0.00 0.00 21.33 30.83 0.07
0.04 0.00 6.19 3.92 11.94
2.77 2.66 1.78 0.98 15.45
0.00 0.00 5.27 2.48 7.20
0.32 0.20 0.20 0.00 7.13

Table 6: Distribution of intra-word structures predicted
by our latent models on the CTB6 test set. “Annt.” de-
notes annotated structures. Filled dots represent root
characters.

By adding the log probability of labels to the arc
scores, the label loss is naturally integrated into the
tree loss via the constrained Inside algorithm.

A.3 Coarse-to-fine Scoring

To score a dependency arc i→ j, we first feed the
output from encoder h into two MLPs to obtain the
representations of character as head and modifier.
Then, to distinguish the intra-word and inter-word
roles, the arc is scored by two different biaffine

layers.

h
(arc−head)
i = MLP(arc−head)(hi)

h
(arc−mod)
j = MLP(arc−mod)(hj)

s(intra)(i, j) = h
(arc−head)
i W (intra)h

(arc−mod)
j

s(inter)(i, j) = h
(arc−head)
i W (inter)h

(arc−mod)
j

(14)

A.4 Hyper-parameter Details

We utilize the default parameter configurations for
pre-trained BERT and directly fine-tune the entire
model. The configuration of the scoring layer ad-
heres to Zhang et al. (2020). We employ AdamW
(Loshchilov and Hutter, 2019) for parameter opti-
mization with β1 = 0.9, β2 = 0.9, ϵ = 1× 10−12,
and weight decay of 0. The learning rate is set
to 5× 10−5 for the encoder and 1× 10−3 for the
scorer. The dropout rate is set to 0.1 for the encoder
and 0.33 for the scorer. We train the model for 10
epochs with 1,000 tokens per batch.

B Supplementary Results

B.1 Additional Models

Two additional models are included in the compar-
ison, employing different strategies to handle the
internal structures of words:
• Rightward: A model uses pseudo intra-word

structures in a right-wavy pattern, which is sim-
ilar to the leftward pattern but in the opposite
direction.

• Annotated: A model uses annotated intra-word
structures by Gong et al. (2021). If no annotated
structure is available for a word, the latent struc-
ture is employed.
The results are presented in Table 7. Right-

ward achieves performance similar to Leftward.
Specifically, it performed slightly better on SD but
slightly worse on Z&C. Surprisingly, Annotated
only achieves comparable performance to Pipeline.
Comparing Annotated and Latent, the use of anno-
tated structures does not improve performance and
even degrades it. This finding is consistent with
Wu and Zhang (2021), who observed that using
annotated structures by Zhang et al. (2014) is detri-
mental to neural dependency parsers. Two points
can be concluded from the results:
• Both leftward and rightward intra-word struc-

tures are effective for the joint CWS and depen-
dency parsing task.

2954

Model
CTB5 CTB6 CTB7

F1seg UFdep LFdep F1seg UFdep LFdep F1seg UFdep LFdep

w/ head-finding rules of SD
Pipeline 98.72 90.93 88.39 97.23 87.09 83.86 97.16 85.77 82.00
Annotated 98.68 90.74 88.05 97.30 87.10 83.87 97.17 85.70 81.95
Leftward 98.76 90.91 88.37 97.30 87.21 84.04 97.22 85.85 82.17
Rightward 98.76 90.83 88.24 97.35 87.34 84.12 97.23 85.89 82.23
Latent (Ours) 98.76 91.06 88.49 97.28 87.22 84.03 97.17 85.74 82.04
Latent-c2f (Ours) 98.79 90.95 88.34 97.33 87.30 84.12 97.22 85.90 82.23

w/ head-finding rules of Z&C
Pipeline 98.72 92.00 91.04 97.23 87.71 86.77 97.16 86.39 85.19
Annotated 98.66 91.85 90.92 97.34 87.87 86.90 97.23 86.35 85.17
Leftward 98.67 91.98 91.03 97.39 88.02 87.06 97.26 86.48 85.30
Rightward 98.72 91.65 90.71 97.33 87.84 86.90 97.26 86.46 85.28
Latent (Ours) 98.74 92.16 91.25 97.37 87.99 87.06 97.22 86.50 85.33
Latent-c2f (Ours) 98.77 92.03 91.08 97.37 88.10 87.14 97.26 86.55 85.37

Table 7: Results on CTB5, CTB6, and CTB7 test sets. The best results are in bold.

Model CM CMM-1

Latent (SD) 42.86 44.20
Latent (Z&C) 42.77 44.11
Latent-c2f (SD) 44.26 85.00
Latent-c2f (Z&C) 42.41 84.36

Table 8: Complete match (CM) of intra-word structures
on CTB6 test set.

• The usefulness of annotated structures in the deep
learning era is questionable and deserves further
investigation.

B.2 Complete Match of Structures
In addition to investigating the distribution of intra-
word structures, we utilize the complete match
(CM) metric to evaluate the performance of our
latent models in predicting intra-word structures.
The complete match measures the percentage of
words with correct whole structures. Here, we re-
fer to the intra-word structures annotated by Gong
et al. (2021) as the gold standard. We calculate
the average of the results from four seed models.
Additionally, since no gold-standard structures are
employed during training, the evaluation can be
regarded as unsupervised. Following studies on
unsupervised POS tagging (Johnson, 2007; Tran
et al., 2016), we employ a many-to-one (M-1) map-
ping to align the predicted structures with the gold
standard. Specifically, if any predicted structure by

a seed model matches the gold standard, it is con-
sidered a complete match. The results are shown in
Table 8. Compared to Latent, Latent-c2f achieves
a similar CM score but higher M-1 mapping re-
sults. This is because Latent-c2f favors leftward
arcs in some seed models and rightward arcs in
others. When employing a many-to-one mapping,
more structures predicted by Latent-c2f align with
their gold-standard counterparts.

2955

Algorithm 2 Coarse-to-fine Eisner Algorithm.

1: Input: intra-word arc scores ŝ(i, j) and inter-word arc scores s(i, j)
2: Define: Î , I, Ĉ, C ∈ Rn×n ▷ The hat symbol denotes an intra-word span
3: Initialize: Ĉi→i = 0, Ci→i = −∞, 1 ≤ i ≤ n
4: for w = 1, . . . , n do
5: for i = 1, . . . , n− w do
6: j = i+ w

7: Îi→j = max
i≤k<j

(ŝ(i, j) + Ĉi→k + Ĉk+1←j)

8:
Ii→j = max

i≤k<j
(s(i, j) + Ĉi→k + Ĉk+1←j , s(i, j) + Ĉi→k + Ck+1←j ,

s(i, j) + Ci→k + Ĉk+1←j , s(i, j) + Ci→k + Ck+1←j)

9: Îi←j = max
i≤k<j

(ŝ(j, i) + Ĉi→k + Ĉk+1←j)

10:
Ii←j = max

i≤k<j
(s(j, i) + Ĉi→k + Ĉk+1←j , s(j, i) + Ĉi→k + Ck+1←j ,

s(j, i) + Ci→k + Ĉk+1←j , s(j, i) + Ci→k + Ck+1←j)

11: Ĉi→j = max
i<k≤j

(Îi→k + Ĉk→j)

12: Ci→j = max
i<k≤j

(Îi→k + Ck→j , Ii→k + Ĉk→j , Ii→k + Ck→j)

13: Ĉi←j = max
i≤k<j

(Ĉi←k + Îk←j)

14: Ci←j = max
i≤k<j

(Ci←k + Îk←j , Ĉi←k + Ik←j , Ci←k + Ik←j)

15: return C1→n

2956

