DFKI-MLST at DialAM-2024 Shared Task: System Description

Arne Binder, Tatiana Anikina, Leonhard Hennig, Simon Ostermann


Abstract
This paper presents the dfki-mlst submission for the DialAM shared task (Ruiz-Dolz et al., 2024) on identification of argumentative and illocutionary relations in dialogue. Our model achieves best results in the global setting: 48.25 F1 at the focused level when looking only at the related arguments/locutions and 67.05 F1 at the general level when evaluating the complete argument maps. We describe our implementation of the data pre-processing, relation encoding and classification, evaluating 11 different base models and performing experiments with, e.g., node text combination and data augmentation. Our source code is publicly available.
Anthology ID:
2024.argmining-1.9
Volume:
Proceedings of the 11th Workshop on Argument Mining (ArgMining 2024)
Month:
August
Year:
2024
Address:
Bangkok, Thailand
Editors:
Yamen Ajjour, Roy Bar-Haim, Roxanne El Baff, Zhexiong Liu, Gabriella Skitalinskaya
Venue:
ArgMining
SIG:
Publisher:
Association for Computational Linguistics
Note:
Pages:
93–102
Language:
URL:
https://aclanthology.org/2024.argmining-1.9
DOI:
10.18653/v1/2024.argmining-1.9
Bibkey:
Cite (ACL):
Arne Binder, Tatiana Anikina, Leonhard Hennig, and Simon Ostermann. 2024. DFKI-MLST at DialAM-2024 Shared Task: System Description. In Proceedings of the 11th Workshop on Argument Mining (ArgMining 2024), pages 93–102, Bangkok, Thailand. Association for Computational Linguistics.
Cite (Informal):
DFKI-MLST at DialAM-2024 Shared Task: System Description (Binder et al., ArgMining 2024)
Copy Citation:
PDF:
https://preview.aclanthology.org/nschneid-patch-5/2024.argmining-1.9.pdf