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Abstract

In long-term translation projects, like Parliamentary text, there is a desire to build machine translation systems
that can adapt to changes over time. We implement and examine a simple approach to continual learning
for neural machine translation, exploring tradeoffs between consistency, the model’s ability to learn from
incoming data, and the time a client would need to wait to obtain a newly trained translation system.

1 Introduction

There are many translation use cases in which trans-
lation is ongoing, i.e., new translations are being
produced by translators. We experiment with ap-
proaches to using the flow of new data produced
by translators to continually update neural machine
translation (NMT) systems indefinitely. The intu-
ition behind this is a desire to keep the system(s) up-
to-date and optimal for the task of translation over
time. This could include new topics that are being
discussed, changes to terminology, use of spelling
variants, or changes in translator/translation prefer-
ences; we specifically highlight terminology in this
work due to the ease of measurement.

Our planned continual learning approach is to
build a BASELINE-INITIAL system (trained on all
data up to a fixed point in time) and iteratively fine-
tune (continue training) it on chunks of new data,
which we refer to as stages. This simulates the real-
life scenario in which new translations are produced
and then the goal is to use them to improve the qual-

ity of the existing initial translation system.
We use the term “continual learning” in this

work, though we note that a number of different
terms have been used more or less interchange-
ably to refer to this concept in the machine trans-
lation (MT) and machine learning literature.1 In
the context of MT, they refer to the idea of using
the flow of new data to continue to train an MT
system indefinitely, producing systems that are al-
ways up-to-date: that learn new terms, phrases and
formulations, new concepts, changing translations
(of old terms—interestingly, this suggests that while
most old knowledge should be retained, some of it
should be forgotten/overwritten), etc., as they ap-
pear. Within this work we will refer to these ap-
proaches as continual learning (hereafter CL).

The research question we address is whether
a simple approach of regularly finetuning a base
model works successfully as a CL approach to NMT,
especially in a Parliamentary setting, where the do-
main may evolve over time, but is not expected to
suddenly change completely. We describe proof-

1Those include “continuous learning”, “lifelong learning”, “translation project adaptation”, as well as the related concepts of “online
learning” and “incremental learning” or “incremental updating”.
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of-concept experiments, in an idealized setting, but
with real data, where we compare with several base-
lines. While our work examines a realistic use
case, it is limited by our focus on one language pair
(English–French) and one domain (parliamentary
text). We examine tradeoffs with respect to ques-
tions of various measures of model performance,
and note areas where more study is needed to deter-
mine the usefulness of these approaches. We also
provide a brief discussion of the technical infras-
tructure that would be required to implement these
approaches in practice, with considerations around
feasibility and potential costs and risks.

2 Related Work

We provide a brief overview of related CL literature
from machine learning (more broadly) and machine
translation (more specifically).

2.1 CL for Natural Language Processing
In their survey on CL techniques in natural language
processing (NLP), Biesialska et al. (2020, p. 6524)
define CL as “a machine learning paradigm, whose
objective is to adaptively learn across time by lever-
aging previously learned tasks to improve general-
ization for future tasks.” Language usage and top-
ics of interest change over time due to various lin-
guistic and social processes and, as a result, ma-
chine learning models at the heart of NLP applica-
tions tend to become less accurate or stale. Peri-
odically training new models, using data that better
reflects the changing distribution of data, is an ef-
fective but often highly inefficient and costly solu-
tion. This motivates the need to find ways to “con-
tinue” the training of NLP models as new data be-
comes available. In practice, however, existing mod-
els often struggle to adapt to new information while
simultaneously retaining previously learned knowl-
edge, a problem which can eventually lead to catas-
trophic forgetting, where the improvement on a new
task or new data set simultaneously results in a dra-
matic degradation in quality on the original training
task or data (Goodfellow et al., 2014). This gives
rise to the stability-plasticity dilemma discussed in
Biesialska et al. (2020): the main challenge in CL is
to strike a balance between the model’s stability (its
ability to retain prior knowledge) and its plasticity
(its ability to adapt to new knowledge). That sur-
vey highlights three major approaches to this chal-

lenge: rehearsal approaches, where older training
samples are kept for each task and periodically re-
visited while updating a model; regularization ap-
proaches, which modify the learning objective to
aid knowledge consolidation while learning subse-
quent tasks, for example by slowing down the learn-
ing of parameters deemed important for previous
tasks; and architectural approaches, where changes
are made to a model’s architecture, making it possi-
ble to introduce task-specific parameters and isolate
or better control their effects.

2.2 CL for Machine Translation

In machine translation and computer-aided transla-
tion, updating MT models based on new transla-
tion data has been a recurring topic. This differs
from the broader definition of CL, where the task
itself may change: here the task of translation re-
mains the same but the data distribution changes in
potentially unpredictable ways. One type of data
that is of particular interest is professional transla-
tor feedback in the form of post-edited MT output.
Cettolo et al. (2014)—in the phrase-based statisti-
cal MT paradigm—proposed an approach that they
call “translation project adaptation.” In their set-
ting, a translator performed post-editing, and this
post-edited data was then used to adapt the MT sys-
tem for the future, iteratively improving the accu-
racy of translations. This concept was later adapted
to the neural machine translation (NMT) setting by
numerous researchers. For example, Álvaro Peris
and Casacuberta (2019) perform updates by finetun-
ing the parameters of a NMT model with every new
post-edited sentence (in simulation), yielding better
quality translations than the base model and reduc-
ing the human effort required to correct the system’s
output. Kothur et al. (2018) and Knowles (2019)
find similar results in simulations of finetuning on
individual sentences and document-specific dictio-
naries. As in other applications of CL, catastrophic
forgetting is a major concern.

The three major approaches to CL have also
been applied to MT by researchers, including re-
hearsal approaches (Chu et al., 2017; Zhang et al.,
2019; Bengio et al., 2009, i.a.), regularization ap-
proaches (Khayrallah et al., 2018; Kirkpatrick et al.,
2017; Cao et al., 2021, i.a.), and architectural ap-
proaches (Freitag and Al-Onaizan, 2016; Gu and
Feng, 2020; Gu et al., 2022; Li et al., 2020; Bapna
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and Firat, 2019; Wang et al., 2022, i.a.).
In this paper, we do not explore any of these

specifically proposed solutions to the catastrophic
forgetting problem; instead we simply aim to be
alert to the risks (by measuring performance on new
data and held-out original data). Since we examine
a scenario where we do expect gradual change over
time, there are likely some things that should be for-
gotten over time as others are learned (e.g., new pre-
ferred terminology or translations).

3 Data Setup

The general data setup for our experiments is de-
signed to mimic in a controlled fashion a real-world
scenario in which there exists a backlog of profes-
sional translations, and an incoming sequence of
additional new translation pairs that are generated
each day by translators. Translations are collected
regularly and used to incrementally update the MT
model, which is then used to produce future transla-
tions. We call each such collection period a “stage”.

All experiments are based on English–French
or French–English data from the proceedings of the
debates (a.k.a. ”Hansard”) in the Canadian House of
Commons, one of the two chambers of the Canadian
Parliament. This data ranges in time from 2006-
04-03 to 2023-09-29, is segmented into sentences,
and is timestamped so it can be ordered sequentially,
with 5-minute precision.2 We explain here how we
use this data for both hyperparameter-tuning exper-
iments and full data experiments where we train
and test the continual learning approach and several
baselines: (1) a BASELINE-INITIAL system (trained
in a standard, non-CL, manner on all data up to
an initial stopping point in time); (2) a BASELINE-
FINAL system (trained in a standard, non-CL, man-
ner on all data up to a final stopping point in time);
(3) a BASELINE-RECENCY model (a stronger BASE-
LINE, specially finetuned on the CL data).

3.1 Full Experiment Data
The bottom portion of Fig. 1 shows how we have set
up the data for our full experiments, while the top
portion shows how the subset of data used for the
hyperparameter tuning described in this work over-

laps with the full data. For building the BASELINE-
INITIAL system, we use all Hansard data from 2006-
04-03 until (but excluding) 2021-11-22 (A + B in
Fig. 1); this last date coincides with the beginning
of Canada’s 44th Parliament. It is partitioned into
training (A), development, and test splits (baseline-
initial-dev and baseline-initial-test, sampled from
B). Development and test splits for this model are
2000 sentences randomly sampled from the most re-
cent 40000 pairs of sentences (B in Fig. 1); whatever
remains is added to the training data. The baseline-
initial-test data is also used for examining the stabil-
ity of the CL systems.

All data that falls between 2021-11-22 and
2022-10-24 (inclusive; C + D in Fig. 1) is divided
into CL “stages”. We picked a fixed stage size of
3000 sentences, close to the average number of sen-
tences per day in the Hansard (2904).3 Due to the
small size of the stages, we choose a CL approach
where we do not use a development set for early
stopping; instead we use a fixed learning rate and
number of epochs for all stage training. These 3000-
sentence stages are used iteratively as test and then
training data in CL; once a stage has been trained
on, it is never again used as test.

Data for the BASELINE-FINAL system is built
analogously to the BASELINE-INITIAL system, us-
ing all data from 2006-04-03 until 2022-10-24 (A+
B+C+D in Fig. 1), including part of the data from
2022-10-24. Again, we partition this A+B+C+D
data into baseline-final-train, baseline-final-dev and
baseline-final-test by uniformly sampling 2000 sen-
tences each for the latter two from the most recent
40000 sentences (D in Fig. 1).

The rest of the data from 2022-10-24—i.e., that
which is not in set D—is included in the epilogue (E
in Fig. 1). In practice, for the remainder of this pa-
per, when we refer to epilogue-test data we only use
the first 40000 lines of the epilogue data.

See Table 1 and Appendix A for more informa-
tion on data set sizes.

3.2 Hyperparameter Tuning Data

Before experimenting on the full data set, we need
to select hyperparameters. We use fixed values for

2Re. duplicates: in order to evaluate system performance in a realistic usage scenario, duplicates or sentences that appear in training
are not removed from test and tuning sets (Appendix A). This allows us to monitor the “translation memory effects” in our systems.

3In this simplified, idealized setting, one day’s text may spreads across multiple stages, and a stage may include several days. Future
work may experiment with training on varying stage sizes.
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Figure 1: Data splits for hyperparameter tuning and full experiments. In the Full experiment data split, the
BASELINE-INITIAL system is trained on parts A and B; the BASELINE-FINAL system is trained on parts
A,B,C and D, but excluding baseline-initial-test. For both these BASELINE systems, tuning and test sets
(2000 sentence pairs each) are sampled from parts B and D respectively; all remaining data from each set is
used for training. Starting from the BASELINE-INITIAL system, CL systems are trained by iteratively fine-
tuning on data “stages”; each stage is used entirely for training or testing (with no held-out tuning set). The
epilogue (part E) is used for testing only. The Hyperparameter (HP) Tuning Split (at the top) is structured
similarly.

the learning rate and number of epochs during CL,
but in order to properly choose these hyperparam-
eters without train/test set contamination, the hy-
perparameter tuning data must be separate from the
data we use for our final CL experiments. For this,
we create a second data split, with the same struc-
ture as described above, but using data entirely con-
tained within that set’s baseline-initial data (A + B
in Fig. 1). We call this the Hyperparameter Tun-
ing data set: HP data for short. In the HP data,
the CL portion begins with the second session of the
43rd Parliament, on 2020-09-23 , and contains only
16 stages of 3000 sentences, ending on 2020-10-22.
The HP data is shown in the top portion of Fig. 1.
Parts A′, . . . , E′ in that data serve analogous func-
tions to A, . . . , E in the full data.

The HP-epilogue-test set consists of 4000 sen-
tences sampled from the 40000 sentences (approx-
imately 14 days between 2020-10-22 and 2020-11-
06) immediately following the HP CL data, rather
than simply the sentences immediately following the
end of the CL data as is done in our full experiments.

4 Performance Evaluation

We are interested in three main types of perfor-
mance evaluation: plasticity (improvement on new
data), stability (maintaining high performance on
past data), and volatility (whether the translations

change dramatically or incrementally between mod-
els). The goal for CL is high plasticity, high stability
(i.e., no catastrophic forgetting), and low volatility.

We study plasticity on two data sets: the
epilogue-test test set (used only for testing and never
in training or parameter setting) and the sequence of
intermediate test set stages. On the epilogue-test, we
measure translation quality (using automatic met-
rics) of the output produced by the BASELINE-
INITIAL system, each incremental CL system, and
the BASELINE-FINAL or BASELINE-RECENCY sys-
tem. We can compare these scores directly.

We also consider a stage-wise evaluation rep-
resentative of real-life applications. For this evalu-
ation, a stage is initially used as a test set, and then
the CL system trains on it, testing on the subsequent
stage, until reaching the epilogue; a stage is never
again used for testing after it has been trained on.
While we can compare the CL system with each of
the BASELINES on each stage, we cannot directly
compare the scores of the stages to one another (they
are different test sets and most automatic metrics are
not directly comparable across test sets). Instead, we
compare the difference in metric score between the
BASELINE-INITIAL system and any systems of in-
terest. We draw an idealized line between 0 at the
start of CL to the difference between BASELINE-
FINAL and BASELINE-INITIAL (measured on the
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Hyperparameter Tuning Full Experiments
Data for: Train Tune Test Train Tune Test

Baseline systems
BASELINE-INITIAL 4494960 2000 2000 4880109 2000 2000
BASELINE-FINAL 4540960 2000 2000 5262109 2000 2000

Continual learning
CL initial (same data as BASELINE-INITIAL) (same data as BASELINE-INITIAL)
per stage 3000 – 3000 3000 – 3000

(“next” stage) (“next” stage)
CL total 48000 – 45000 384000 – 381000

(16 stages) (128 stages)
epilogue-test set – – 4000 – – 367653

Table 1: Number of sentence pairs in hyperparameter tuning and full data sets.

epilogue-test) at the end of CL.
To measure stability (and whether catastrophic

forgetting occurs), we use the held-out baseline-
initial-test data set. If catastrophic forgetting occurs,
we might expect to see major decreases in quality on
this test, whereas if the CL approach is successful,
we might expect maintained quality (or small varia-
tion; there may be changes in terminology or other
such domain evolution features). This measurement
will also be done with automatic MT metrics.

We examine volatility during our HP search ex-
periments using the HP-epilogue-test set. A highly
volatile system would see major changes from sys-
tem to system; a less volatile system would likely
see most translations remain similar to one another.

5 Hyperparameter Tuning Experiments

Even using the simple CL approach we have se-
lected, we need to set some hyperparameters. We
limit these to the learning rate (LR) and the num-
ber of epochs. In this section we describe the setup
of our hyperparameter tuning experiments. We de-
scribe BASELINE models built specifically for HP
tuning in Section 5.1, the tuning procedure in Sec-
tion 5.2, performance over time in Section 5.3, and
volatility in Section 5.4. We note that for our HP
tuning data set, we are considering a smaller range
in time than in our full data set.

5.1 Baseline Models

We train the HP-BASELINE-INITIAL model on the
HP-baseline-initial-train data, with early stopping
done using the HP-baseline-initial-dev set. The
HP-BASELINE-FINAL is trained using the same set-
tings as the HP-BASELINE-INITIAL, using the rel-
evant HP data described in Fig. 1. We build a
stronger BASELINE with a recency bias, an oracle
finetuned model: HP-BASELINE-RECENCY. This
model is the HP-BASELINE-INITIAL finetuned on
all CL data, selected from a grid search of hyperpa-
rameters based on oracle performance (BLEU score)
on the HP-epilogue.

All models were trained using Sockeye (Hieber
et al., 2022), on 4 Tesla V100-SXM2-32GB GPUs.
Appendix B describes training in more detail.

5.2 Hyperparameter Tuning

Using the HP CL data set, we experiment with 6 dif-
ferent LRs between 1 × 10−6 and 3 × 10−4, and 8
values for the number of epochs, from 1 to 27. For
each experiment, these are fixed to avoid the risk of
using a validation set (e.g., for early-stopping) that is
too small to draw accurate conclusions from. When
training on a stage is complete, the resulting model
is used for translation of the test sets and as the start-
ing model parameters for finetuning using the sub-
sequent stage’s data. For each setting, we run exper-
iments on the sixteen stages, then compute BLEU
score4 gain at each stage, i.e., the difference between

4BLEU scores (Papineni et al., 2002) are computed using sacrebleu (Post, 2018) with a signature of
nrefs:1|case:mixed|eff:no|tok:13a|smooth:exp|version:2.3.2.
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the scores obtained with the CL system and the HP-
BASELINE-INITIAL system. For a CL system fine-
tuned on stage n, it can be tested on the held-out
HP-BASELINE-INITIAL test data, stage n + 1, and
the held-out epilogue-test data. Whenever we com-
pare scores of two or more systems, we compare
them on the same test set.

Rather than a single stand-out pair of hyperpa-
rameters from our grid search, we found a cluster
of similarly-performing ones. From this, we chose
a high-performing (high median BLEU score gain
over stages, relatively low standard deviation) set of
HPs with a low number of epochs (to decrease train-
ing time and cost).5 We selected the following HPs
for our full experiments: for EN-FR, LR=1.0×10−5

and 8 epochs, and for FR-EN, LR=3.0 × 10−6 and
8 epochs. We will perform our initial analyses us-
ing these parameters. We later also compare against
other settings. See Appendix C for additional details
on HP selection.

5.3 Performance Over Time

Figure 2: Empirical incremental (EN-FR) evalua-
tion on HP-epilogue-test set after training on each
stage.

Fig. 2 shows incremental evaluation on the HP-
epilogue-test set. The “selected CL” HPs were se-
lected as described above. For the “slow CL” and
“catastrophic CL” we chose a fixed LR with differ-
ent numbers of epochs. For the sake of readabil-
ity, we do not show the worst catastrophic forget-
ting model, as it drops off very quickly and would
dominate the plot. The catastrophic forgetting sce-

nario did occur, as expected, when the combination
of LR and epochs was too high, presumably lead-
ing to overfitting on the stage training data. Both
our “selected” and “slow” CL models outperform
the HP-BASELINE-FINAL model but do not reach
the score of the HP-BASELINE-RECENCY.

5.4 Volatility

We also want to know whether the translations are
changing substantially after each stage of training,
or whether they remain generally consistent while
capturing useful changes. This is likely relevant to
the translator experience; highly volatile systems,
where the translations of similar texts differ greatly
from day to day, may reasonably lose the trust of
translators or otherwise cause frustration. We exam-
ine this using the 4000-line HP-epilogue-test set.

Using the “selected” CL hyperparameter set-
tings for EN-FR, we look at pairs of outputs in se-
quence to check how many translations change. For
example, comparing the HP-BASELINE-INITIAL
model to the model trained on the first stage, 1244
lines differ in their translations, while 2756 remain
identical. Of all the pairs of models we examine,
this is the greatest number of differing lines; most
range between 1000 and 1100. Next we compute
BLEU scores between the pairs of models, on the
sets of sentences whose output translations differ.
We treat the earlier model’s output as the “refer-
ence” and the newer model’s output as the hypothe-
sis. These BLEU scores range from 79.5 to 82.4, in-
dicating very high overlap between these sentences,
and a visual inspection confirms this; the CL mod-
els exhibit low volatility. Performing the same tests
using the “catastrophic” settings from Fig. 2 (which
were not even the worst case we observed), the num-
ber of sentences that differ between adjacent mod-
els ranges from 1812 to 2056, and the BLEU scores
range from 76.3 to 79.0, indicating higher volatil-
ity. If we consider the worst “catastrophic” CL (LR
of 3.0 × 10−4 and 128 epochs), this is even more
extreme: 3754 to 3892 lines of output differ (mean-
ing only 246 to 108 lines remain the same) and the
BLEU scores between them drop to between 30.8
and 43.7.

Thus we find that with a strong set of HPs, we
observe relatively low levels of volatility, support-
ing our decision to focus more on other aspects in

5There are a number of different ways one could choose between these, this heuristic is only one possible approach.
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selecting the HPs. However, it would still be useful
to verify through user studies that translators using
the system find this behaviour satisfactory.

6 Full Data Experiments

Using the full experimental data set allows us to ex-
amine CL performance over a longer timespan and
to see whether it remains consistent,6 and whether
we need to build in additional safeguards, e.g. the
ability to roll back to an earlier model if a particular
update degrades quality. We also examine the var-
ious measures of plasticity, stability, and volatility
over a larger timespan.

We build BASELINE models using the same
configurations as the HP-BASELINES, but using the
larger data set. For the BASELINE-RECENCY model,
we finetuned the BASELINE-INITIAL model on all
but the last stage of the CL data, using a lower ini-
tial LR and using the last stage of CL as a validation
set for early stopping rather than an oracle.

We begin with the same preliminary experi-
ments that we produced for HP selection, which we
describe in Section 6.1. We then examine questions
of novel vocabulary in Section 6.2.

6.1 General Analysis
We examine the results obtained with the HPs we
selected for EN-FR: LR=1.0 × 10−5 and 8 epochs;
finding that our heuristics seem to have led us to se-
lect hyperparameters that are too aggressive, we ex-
amine a lower LR version as well: LR=3.0 × 10−6

and 8 epochs.7 As we see in Figs. 3a (original HPs)
and 3b (lower LR), only the lower LR HP success-
fully outperforms the BASELINE-FINAL model on
the epilogue-test data and has a clear upward trajec-
tory; neither outperform the BASELINE-RECENCY
model, though both outperform BASELINE-INITIAL.
In Fig. 3c, the stage-wise evaluation, we see the rela-
tive performance bouncing up and down, sometimes
dipping below the BASELINE-INITIAL. In contrast,
with the lower LR, Fig. 3d shows an upward trend

and less severe drops below the BASELINE.8 The
lower LR also shows better stability performance
(see Appendix D.2). This suggests that the lower LR
set of HPs is better, on the basis of our earlier goals.
However, there is a tradeoff: this system is slower to
learn translations of new terms (see Section 6.2).

6.2 New Terminology

As Kothur et al. (2018) suggest finetuning NMT
on new revised translations as an effective way of
incorporating new vocabulary, an interesting case
for CL is the appearance of new words or phrases
that appear in the CL data but that did not ap-
pear in the BASELINE-INITIAL system’s training
data (“out-of-vocabulary” or OOV). We examined
a number of such terms (see examples in Table 2),
both single words and multi-word terms that ap-
peared for the first time in parliamentary proceed-
ings between November 2021 and October 2022.
Where terms have multiple forms (e.g., plurals,
inflected forms), we manually clustered these to-
gether as appropriate. We then assessed to what
degree the BASELINE-INITIAL and CL systems pro-
duced the correct translations, as found either in Ter-
mium Plus9 or in the Parliament translators’ “Aide-
mémoire” (tip sheet), where translators consign rec-
ommendations for commonly encountered transla-
tion problems.

In Fig. 4, we show a visual representation of
terms and their translations over time. This allows
us to see how it often takes repeated instances of a
term and its translation appearing in training stages
before it starts to appear in the CL output. Addition-
ally, this highlights the difference between the two
CL models, as we see that the one with the lower
LR is slower to adapt to these new terms (this is the
broader trend across terms examined).

NMT systems are sometimes capable of han-
dling OOV proper names correctly, insofar as they
are written similarly in the source and target lan-
guages. However, casing differences can be a prob-

6We do note that there is an upper limit on performance; i.e., we cannot expect BLEU scores or BLEU score differences to continue
increasing forever, as they range from 0-100. Additionally, natural variation in language means that a “perfect” BLEU score of 100 is
not generally a desired or achievable goal. The same is generally true of other reference-based automatic metrics.

7Results in the FR-EN direction show similar trends given the same lower LR HP settings; we include these figures in Appendix D.1.
8We see a similar pair of trends when measuring with COMET (Rei et al., 2022) – version unbabel-comet==2.2.2 with model

Unbabel/wmt22-comet-da – instead of BLEU or chrF, with our initially selected hyperparameter settings even drifting below the
baseline, while the lower LR shows a positive upward trend; see Fig. 10 in Appendix D.

9Termium Plus is the Government of Canada’s terminology and linguistic data bank: https://www.btb.termiumplus.gc.ca

(Bernier-Colborne et al., 2017).
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(a) 1.0× 10−5 LR and 8 epochs (b) 3.0× 10−6 LR and 8 epochs

(c) 1.0× 10−5 LR and 8 epochs (d) 3.0× 10−6 LR and 8 epochs

Figure 3: Top: EN-FR incremental evaluation on the epilogue-test set after training on each stage of data,
compared against BASELINES, for two LRs. Bottom: EN-FR stage-wise evaluation showing relative perfor-
mance (∆BLEU between CL model and BASELINE-INITIAL model) on individual CL stages.

EN matches FR reference FR MT Accuracy “CL Priming”
EN Term FR Term seg. stg. consistency base.-init. CL seg. stg.

advergames publidivertissements ♡ 9 1 100% 0% 0% – –
crypto(-)asset crypto(-)actif ♡ 54 4 100% 0% 4% 52 2
divisive clivant(e)(s) 193 64 11% 0% 1% 166 48
freedom convoy convoi pour la liberté ♠ 80 33 75% 0% 61% 10 6
greedflation cupidiflation ♡♠ 43 11 72% 0% 0% – –
omicron Omicron ♠ 355 64 98% 3% 55% 50 8
vaccine passport(s) passeport(s) vaccin(al,aux) ♡ 61 36 100% 64% 93% 0 0

Table 2: Examples of English terms encountered in CL data, along with the recommended translation in
French. Translations marked ♡ are those prescribed by Termium Plus; those marked ♠ are those prescribed
in the Parliament translators’ “Aide-mémoire”. Reference consistency is the percentage of English term oc-
currences for which the corresponding French term appears in the reference translation. MT Accuracy is
computed over the full CL data, as the percentage of the time that the MT system (either BASELINE-INITIAL
or the CL system with hyperparameters 1.0 × 10−5 LR and 8 epochs) produces correct output for a given
source term. “CL Priming” refers to the amount of exposure of the CL system to a new term before it
produces a first correct translation for that term; it is reported in number of segments and number of stages
(when the system never successfully translates a term, this is indicated by “–”).
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Figure 4: Terminology learning over time. The area of each outer grey circle represents the number of times
the source term appeared in a stage; the darker overlapping inner circle represents the number of times its
translation appeared in the reference, BASELINE system, and two CL systems (tested stage-wise), respec-
tively. Each horizontal axis ranges from the first occurrence of the given term in the CL data to the last.

lem for the BASELINE-INITIAL system, as in the
COVID variant omicron, which must be written with
an initial capital in French. The CL system eventu-
ally catches this difference after 8 stages, containing
50 occurrences. In some cases, if multiple occur-
rences of a new term appear in the first few stages,
CL can respond more quickly. For example, it ap-
pears to learn the translation of cryptoasset after just
two stages, containing 51 occurrences of the term.
When all occurrences of a new term occur within
the same stage (e.g., advergames), the CL system
may learn the proposed translation, but never gets
the chance to demonstrate this. CL treatment of a
new term can be affected if its translation is not con-
sistent across all stages. For example, even though
the term greedflation appears 43 times in 11 stages,
CL fails to capture its proposed translation (cupidi-
flation), possibly because this is not used systemati-
cally in the reference (72%).10

For multi-word terms, the effectiveness of the
BASELINE-INITIAL and CL systems depends in part
on the term’s degree of lexicalization (or fixedness,
or more generally termhood). For example, for vac-
cine passport or vaccine passports, the BASELINE-

INITIAL system does produce the correct translation
(passeport vaccinal or passeports vaccinaux) 64%
of the time. But it also produces various alternatives,
such as passeport de vaccins, passeports pour les
vaccins, etc. In contrast, the CL system gets it right
93% of the time. In another instance, the BASELINE-
INITIAL system systematically fails to translate free-
dom convoy as convoi pour la liberté, preferring
convoi de la liberté. CL picks up the correct form
after six stages, containing 10 occurrences, and from
there produces the prescribed translation for 70% of
the remaining occurrences (61% global accuracy).
Other terms with a relatively complex translation,
for example rent-to-own programs – programmes de
location avec option d’achat and housing accelera-
tor fund – fonds pour accélérer la construction de
logements are particularly difficult for the baseline-
initial system; in this case, CL eventually produces
the correct translation, sometimes quite rapidly (af-
ter just two stages for rent-to-own programs), some-
times more slowly (after eight stages for housing ac-
celerator fund).

10Regarding the consistency of reference translations, it should be noted that in these experiments, systems were trained and tested
without regard for the original language in which texts were initially produced. Therefore, some apparently inconsistent translations
may instead be reflective of usage variations in the source language.
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7 Implementation and Future Work

All of these experiments were performed in sim-
ulation, and there are a number of additional fac-
tors that would need to be taken into account in or-
der to implement and run CL in a practical setting.
These include data collection (live rather than after
full publication), monitoring (automatically or man-
ually monitoring performance over time), roll-back
(to earlier versions before restarting CL), and inte-
gration into computer-aided translation tools.

All of these considerations come with costs and
risks. There are financial costs in terms of hard-
ware (e.g., GPU purchases or cloud costs) as well
as the maintenance and monitoring of the system.
There are risks in terms of volatility, instability, and
the possibility for catastrophic forgetting. Though
our setup has aimed to mitigate some of those risks,
a live system would need to incorporate monitor-
ing and failsafes for them. Finally, these costs and
risks would need to be weighed against the level
of improvements observed by translators in using
the tool: that is, are the benefits significant enough
to warrant that investment in hardware, system de-
velopment, and maintenance, as compared to other
less-dynamic approaches. This requires validation
through user studies, which will enable us to bet-
ter understand whether the desired goals are being
achieved, such as improving translations of novel
terms or learning from translator corrections, in ad-
dition to maintaining high translation quality. In par-
ticular, it will be important to examine whether the
changes we observe using automatic metrics are ac-
tually significant to users of the tool, and whether
they find them to be beneficial or not. We will be in-
terested to explore the impacts of plasticity, stability,
and volatility on translator satisfaction.

As we noted, our initial hyperparameter selec-
tion heuristics did not result in ideal performance.
Future work could more closely examine how to se-
lect the hyperparameters. Ideally this would be done
in consultation with the intended users of the sys-
tem, to ensure that we focus on the preferred proper-
ties of the system (whether that be consistency, rapid
adaptation to new terminology, or other factors). For
terminology, it may also be worth comparing against
dictionary-based methods, though (Knowles et al.,
2023) also note some challenges to that approach,
focusing on this same domain.

8 Conclusion

In conclusion, we have demonstrated in simulation
that a simple approach to CL can be effectively ap-
plied to Parliamentary machine translation systems.
We find that choosing a good set of hyperparame-
ters enables us to build models with high levels of
plasticity and stability, with low levels of volatility.
However, we also demonstrate tradeoffs: time, plas-
ticity, and performance. Our approach provides in-
cremental improvements over time, but a client who
is willing to wait longer for a better system may pre-
fer to opt for finetuning on a larger amount of recent
data rather than these incremental improvements.
Similarly, we see a tradeoff between rapidly learn-
ing new vocabulary and the overall performance.
While we have measured the success of our mod-
els using automatic metrics, future work will also be
needed to have human translators provide evaluation
and feedback.
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L., Vintar, Š., Khan, A. F., and Parvisi, A., editors,
Proceedings of Language, Ontology, Terminology and
Knowledge Structures Workshop (LOTKS 2017), Mont-
pellier, France. Association for Computational Linguis-
tics.

Proceedings of the 16th Conference of the Association for Machine Translation in the Americas,

Chicago, USA, September 30 - October 2, 2024. Volume 1: Research Papers

© 2024 His Majesty the King in Right of Canada, as represented by the National Research Council Canada



Biesialska, M., Biesialska, K., and Costa-jussà, M. R.
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Álvaro Peris and Casacuberta, F. (2019). Online learning
for effort reduction in interactive neural machine trans-
lation. Computer Speech & Language, 58:98–126.

A Data

Table 1 shows the sizes of the training, tuning, and
test sets for our HP tuning and experiments; we pro-
vide some additional notes here.

In order to keep our setup as realistic as possi-
ble, we do not deduplicate the data (and the Hansard
is known to have repetitive/boilerplate text). Re-
garding duplicates, within our 2000-sentence test
and tuning sets, about 7.5% of sentences (either
source or target) also appear in the training set.
Looking at pairs of sentences (source and target) in-
stead, this number falls to 4.75%. Internal repeti-
tion (sentences that repeat within a test or tuning set)
is about 1%. Repeated sentences tend to be short:
their average length is 10.3 words, compared to 20.1
words for all test and tuning sets.

B NMT Model Training

We train all models using Sockeye version 3.1.31
(Hieber et al., 2022), commit 13c63be5 with Py-
Torch 1.13.1 (Paszke et al., 2019). Table 3 lists
the parameter settings in our experiments that differ
from the Sockeye defaults. Training was performed
on 4 Tesla V100-SXM2-32GB GPUs.

For data preprocessing, a bilingual
SentencePieceUnigramTokenizer with a vocab-
ulary of 32k tokens was trained using Hugging-
Face’s tokenizers (Moi and Patry, 2022) library
version 0.14.1 on all of the 4498960 French and
4498960 English sentences from HP-BASELINE-
INITIAL. The tokenizer also applies a few normal-
izations done by Portage (Larkin et al., 2022). Our
vocabulary is augmented with generic tokens and
other domain-specific tokens (unused in these ex-
periments, but intended for future work on domain
adaptation); this yields a final vocabulary of 32123
tokens.

Name Value

amp True
grading clipping type abs
max sequence length 200:200

params previous model when CL

batch size 8192
batch type max-word

cache last best params 1
cache metric bleu

cache strategy last
checkpoint interval 107

decode and evaluate -1 (entire validation)
initial learning rate see Table 4

keep last params 1
learning rate scheduler type None

max epochs see Table 4
metrics perplexity & accuracy

min epochs Same as max epochs
optimizer Adam

optimizer Betas 0.9, 0.98
optimized metric BLEU

update interval 2
vocabulary size 32121

attention heads 16:16
shared vocabulary True
transformer FFN 4096:4096

transformer model size 1024:1024
weight tying True

Table 3: Differences between Sockeye’s default pa-
rameters and our HP configuration.

B.1 Baselines

The HP-BASELINE-INITIAL was trained on the HP-
baseline-initial-train data, with early stopping done
using the HP-baseline-initial-dev set.

The HP-BASELINE-FINAL was trained using
the same settings as the HP-BASELINE-INITIAL, us-
ing the relevant HP data described in Fig. 1 (i.e.,
early stopping based on HP-baseline-final-dev data).

To build an even stronger final BASELINE with
a recency bias (i.e., recently exposed to all the
HP CL data), we implemented an oracle finetuned
model which we call HP-BASELINE-RECENCY.
Using both the HP-BASELINE-INITIAL and HP-
BASELINE-FINAL models as starting points, we fine-
tuned them with the full set of CL data, using as the
LR and number of epochs the full set used in the hy-
perparameter search (described in Section 5.2). We
then selected the best finetuned model based on per-
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formance on the HP-epilogue data (thus making this
an oracle BASELINE). For EN-FR this was the one
trained with LR=3.0 × 10−5 and 4 epochs starting
from the HP-BASELINE-INITIAL model, while for
FR-EN this was LR=3.0× 10−6 and 64 epochs also
starting from the HP-BASELINE-INITIAL model.

Using the full data sets, we built BASELINE
models by applying the same approach as described
for the HP-BASELINE models. All models were
trained with the exact same configuration as for the
HP experiments but using their respective corpora.

We also note differences in how we trained the
BASELINE-RECENCY model for the full data. Using
BASELINE-INITIAL’s configuration, we lowered its
learning rate from 0.06325 to 0.006325 and initial-
ized its weights with those of BASELINE-INITIAL,
to finetune BASELINE-INITIAL on recent data. We
use all stages except the last one for its training cor-
pus. The last stage was used as a validation corpus
to control early stopping.

B.2 Continual Learning

We start CL from the BASELINE-INITIAL model
(either HP-BASELINE-INITIAL or BASELINE-
INITIAL). For our realistic CL setup, we choose not
to use a validation set and do not perform early stop-
ping; that is, we set a fixed number of epochs (train-
ing iterations over the full stage of data) and train
until those epochs have been completed. We also
keep the learning rate fixed throughout the training,
rather than using a variable learning rate. When
the training on a stage is complete, we select the
last saved model checkpoint (produced at the end of
training) to use for translation of the test sets and to
use as the starting model parameters for finetuning
on the subsequent stage’s data. The choice not to
use a validation set enables us to use the full stage
data (which is already fairly small) for training. By
doing this hyperparameter setting, we aim to pick a
learning rate and number of epochs that are at low
risk of overfitting to the data, while also provid-
ing desired improvements, thus aiming to achieve
the same desired end goal as using a validation set.
Also, this avoids the risk of using a validation set
that is too small to draw accurate conclusions from.

C Effects of Hyperparameters

Table 4 shows the set of learning rates and epochs
used for our hyperparameter grid search.

Parameter Values
initial learning rate 3e-4, 1e-4, 3e-5, 1e-5, 3e-6, 1e-6

max epochs 1, 2, 4, 8, 16, 32, 64, 128

Table 4: Grid search values for HP tuning.

In Fig. 5 (EN-FR), we can see how the com-
bination of learning rate and number of epochs im-
pacts performance.11 The subplots show the mini-
mum BLEU gain (with negative values indicating a
degradation in BLEU), the median BLEU gain, and
the maximum BLEU gain observed for a given set
of hyperparameters as measured across stages 2-16
after training on stages 1-15, respectively.

The first notable result from these plots is
that—as expected—we do see catastrophic forget-
ting if the learning rate, number of epochs, or both
are too high. This is apparent in the lower right
corner of all plots, where we see increasingly large
drops in BLEU scores from the HP-BASELINE-
INITIAL model to the CONTINUAL LEARNING mod-
els trained on various stages. A brief examination
of a sample of the output for the high learning rate
and large number of epochs suggests that the sys-
tems still retain the ability to generate output that
is generally fluent, but that there are substitutions
(likely due to overfitting on the previous stage) that
can heavily impact adequacy.

The second notable result is that we find similar
patterns between BLEU and chrF. Both are surface-
level automatic evaluation metrics, so it is not a
surprise to see this correlation, particularly for this
well-studied language pair. Nevertheless, this repli-
cation of similar results across metrics can make us
more confident that the observed patterns are real.
This is particularly important because the BLEU and
chrF differences are relatively small, and it is known
that such small differences may not always corre-
spond to perceivable significant differences if we
were to perform human judgments (Mathur et al.,
2020; Lo et al., 2023, i.a.). However, we do note
that in this particular case, where the model may

11We also examined this in the FR-EN direction and with chrF Popović (2015) implemented in sacre-
bleu Post (2018) with signatures BLEU: nrefs:1|case:mixed|eff:no|tok:13a|smooth:exp|version:2.3.2 and
chrF: nrefs:1|case:mixed|eff:yes|nc:6|nw:0|space:no|version:2.3.2, but found similar results.
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Figure 5: EN-FR results for BLEU score gains from CL (over HP-BASELINE-INITIAL model) as measured
over HP stages 2-16 (after finetuning on stages 1-15 respectively).

primarily be learning a new name or new term and
otherwise leaving the output fairly similar to previ-
ous output, there may be reason to expect that these
BLEU and chrF scores may capture genuine signal.
We explored this question of volatility in Section 5.4
and the question of new terminology in Section 6.2.

Finally, we observe that there is a cluster of
pairs of learning rates and number of epochs that
show similar performance. Given the concerns
about making decisions based on such small au-
tomatic score metric differences, we may instead
choose to select from the pool of top systems on
some other basis, such as training time required.

C.1 Selection of HPs
Our experimental setup is designed to let us ex-
plore the performance of different hyperparameter
settings without any test set contamination. How-
ever, our main goal is to actually perform this CL in
the longer-term, more realistic setting. To do this,
we want to be able to select hyperparameters based
on the results on the data used for our hyperparam-
eter search; then we wish to see how these perform
on the realistic data. We later run additional experi-
ments on the full data for comparison, but we would
like the initial run to be as realistic as possible: se-
lecting just one set of parameters.

In order to do this, we need to decide on an ap-
proach to hyperparameter selection. We have a clus-
ter of pairs of hyperparameters that perform simi-
larly, with very small differences in automatic met-
ric scores. For example, given a high-performing
pair of hyperparameters, we may also find that
a slightly larger number of epochs paired with a

slightly lower learning rate will perform similarly
(or vice versa). So how should we choose between
these? At first glance, we may wish to maximize the
minimum of some automatic metric over the stages
in our hyperparameter search; this, however, has the
downside of overemphasizing the impact of a sin-
gle stage (potentially problematic if one or more of
the stages are unusual in some way that impacts au-
tomatic metric scores). Alternatively we may aim
for consistency, selecting hyperparameters that ex-
hibit a low standard deviation in automatic metric
score differences; of course, this is no guarantee of
strong performance, as a very low-performing sys-
tem could also have a low standard deviation. And
a high median on its own also fails to tell the whole
story.

We are seeking to balance various interests in
our selection of hyperparameters. These include
plasticity (ability to learn from new data), stability
(maintaining high performance on past data), low
volatility (no dramatic changes from stage to stage),
and cost (i.e., time, compute resources, or both). We
also need to balance risk and reward, i.e., whether
we want a model that reaches the highest scores but
may also exhibit greater inconsistency or variance,
or a model that may not obtain the highest automatic
metric scores but is also fairly consistent in terms of
overall performance.

As was evident from the heatmaps (Fig. 5), we
have a number of different hyperparameter settings
that perform quite similarly, clustered along the di-
agonal. When we examine their distributions over
the hyperparameter tuning experiment stages via the
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boxplots in Fig. 6, the large overlaps in interquar-
tile range hammer home that these top perform-
ing hyperparameters are not significantly different
from one another. Thus, for our initial experiment,
we choose a high-performing (high median BLEU
score, relatively low standard deviation) set of hy-
perparameters with a low number of epochs (in or-
der to decrease training time and cost, particularly
since not all users of these tools may have access
to GPUs). For EN-FR this is 1.0 × 10−5 LR and
8 epochs. For FR-EN this is 3.0 × 10−6 LR and 8
epochs. We then also compare this against another
HP setting. As noted earlier, there are a number of
different ways one could choose between these, this
heuristic is only one possible approach.

Figure 6: EN-FR boxplot showing BLEU score dif-
ferences over stages with medians and interquartile
range (left vertical axis) as well as standard devia-
tion (red triangles and right vertical axis).

D Additional Figures

We provide additional figures in this section. Most
scalable figures in this paper are produced using
Matplotlib (Hunter, 2007), version 3.7.1.

D.1 French–English Figures
The results for FR-EN are similar to those from the
lower learning rate for EN-FR, as we observe in
Figs. 7 and 8.

D.2 Stability Figures
Fig. 9 shows the stability of CL models. Ide-
ally, performance would remain relatively constant.
With our initially selected learning rate performance

eventually begins to drop. This is not overly con-
cerning in and of itself: as new data comes in,
this may change preferred translations, potentially
causing mismatches with the original reference data
which would be viewed as improvements by the
users on later data. With the lower learning rate we
observe that, as expected, stability is improved and
performance even increases slightly.

D.3 English–French COMET Figures

Figs. 10a and 10b use COMET (Rei et al.,
2020) version unbabel-comet==2.2.2 with model
Unbabel/wmt22-comet-da to measure performance
on the epilogue-test. They correspond to the BLEU
score Figs. 3a and 3b, respectively.

Overall, we see similar trends between
COMET and the BLEU scores used in the rest of
the paper; if we had used COMET rather than BLEU
for our hyperparamter selection, we still would have
been choosing between a very similar set of top hy-
perparameters.

Figure 7: FR-EN incremental evaluation on the
epilogue-test set after training on each stage of data,
compared against BASELINES.

Figure 8: FR-EN stage-wise evaluation showing rel-
ative performance (∆BLEU between CL model and
BASELINE-INITIAL model) on individual CL stages.
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(a) 1.0× 10−5 LR and 8 epochs (b) 3.0× 10−6 LR and 8 epochs

Figure 9: EN-FR stability over CL stages, tested on held-out baseline-initial-test data.

(a) 1.0× 10−5 LR and 8 epochs (b) 3.0× 10−6 LR and 8 epochs

Figure 10: EN-FR incremental evaluation using COMET on the epilogue-test set after training on each stage
of data, compared against BASELINES, for two LRs.
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