Abstract
This paper presents system descriptions of our submitted outputs for WebNLG Challenge 2023. We use mT5 in multi-task and multilingual settings to generate more fluent and reliable verbalizations of the given RDF triples. Furthermore, we introduce a partial decoding technique to produce more elaborate yet simplified outputs. Additionally, we demonstrate the significance of employing better translation systems in creating training data.- Anthology ID:
- 2023.mmnlg-1.8
- Volume:
- Proceedings of the Workshop on Multimodal, Multilingual Natural Language Generation and Multilingual WebNLG Challenge (MM-NLG 2023)
- Month:
- September
- Year:
- 2023
- Address:
- Prague, Czech Republic
- Editors:
- Albert Gatt, Claire Gardent, Liam Cripwell, Anya Belz, Claudia Borg, Aykut Erdem, Erkut Erdem
- Venues:
- MMNLG | WS
- SIG:
- Publisher:
- Association for Computational Linguistics
- Note:
- Pages:
- 73–79
- Language:
- URL:
- https://aclanthology.org/2023.mmnlg-1.8
- DOI:
- Cite (ACL):
- Nalin Kumar, Saad Obaid Ul Islam, and Ondrej Dusek. 2023. Better Translation + Split and Generate for Multilingual RDF-to-Text (WebNLG 2023). In Proceedings of the Workshop on Multimodal, Multilingual Natural Language Generation and Multilingual WebNLG Challenge (MM-NLG 2023), pages 73–79, Prague, Czech Republic. Association for Computational Linguistics.
- Cite (Informal):
- Better Translation + Split and Generate for Multilingual RDF-to-Text (WebNLG 2023) (Kumar et al., MMNLG-WS 2023)
- PDF:
- https://preview.aclanthology.org/nschneid-patch-5/2023.mmnlg-1.8.pdf