Task-aware Retrieval with Instructions
Akari Asai, Timo Schick, Patrick Lewis, Xilun Chen, Gautier Izacard, Sebastian Riedel, Hannaneh Hajishirzi, Wen-tau Yih
Abstract
We study the problem of retrieval with instructions, where users provide explicit descriptions of their intent along with their queries to guide a retrieval system. Our solution is a general-purpose task-aware retrieval system, trained using multi-task instruction tuning and can follow human-written instructions to find relevant documents to a given query. We introduce the first large-scale collection of 37 retrieval datasets with instructions, BERRI, and present TART, a single multi-task retrieval system trained on BERRI with instructions that can adapt to a new task without any parameter updates. TART advances the state of the art on two zero-shot retrieval benchmarks, BEIR and LOTTE, outperforming models up to three times larger. We further introduce a new evaluation setup, X2-Retrieval, to better reflect real-world scenarios in which diverse domains and tasks are pooled. TART significantly outperforms competitive baselines in this setup, further highlighting the effectiveness of guiding retrieval with instructions.- Anthology ID:
- 2023.findings-acl.225
- Volume:
- Findings of the Association for Computational Linguistics: ACL 2023
- Month:
- July
- Year:
- 2023
- Address:
- Toronto, Canada
- Editors:
- Anna Rogers, Jordan Boyd-Graber, Naoaki Okazaki
- Venue:
- Findings
- SIG:
- Publisher:
- Association for Computational Linguistics
- Note:
- Pages:
- 3650–3675
- Language:
- URL:
- https://aclanthology.org/2023.findings-acl.225
- DOI:
- 10.18653/v1/2023.findings-acl.225
- Cite (ACL):
- Akari Asai, Timo Schick, Patrick Lewis, Xilun Chen, Gautier Izacard, Sebastian Riedel, Hannaneh Hajishirzi, and Wen-tau Yih. 2023. Task-aware Retrieval with Instructions. In Findings of the Association for Computational Linguistics: ACL 2023, pages 3650–3675, Toronto, Canada. Association for Computational Linguistics.
- Cite (Informal):
- Task-aware Retrieval with Instructions (Asai et al., Findings 2023)
- PDF:
- https://preview.aclanthology.org/nschneid-patch-5/2023.findings-acl.225.pdf