A Fused Gromov-Wasserstein Framework for Unsupervised Knowledge Graph Entity Alignment

Jianheng Tang, Kangfei Zhao, Jia Li


Abstract
Entity alignment is the task of identifying corresponding entities across different knowledge graphs (KGs). Although recent embedding-based entity alignment methods have shown significant advancements, they still struggle to fully utilize KG structural information. In this paper, we introduce FGWEA, an unsupervised entity alignment framework that leverages the Fused Gromov-Wasserstein (FGW) distance, allowing for a comprehensive comparison of entity semantics and KG structures within a joint optimization framework. To address the computational challenges associated with optimizing FGW, we devise a three-stage progressive optimization algorithm. It starts with a basic semantic embedding matching, proceeds to approximate cross-KG structural and relational similarity matching based on iterative updates of high-confidence entity links, and ultimately culminates in a global structural comparison between KGs. We perform extensive experiments on four entity alignment datasets covering 14 distinct KGs across five languages. Without any supervision or hyper-parameter tuning, FGWEA surpasses 21 competitive baselines, including cutting-edge supervised entity alignment methods. Our code is available at https://github.com/squareRoot3/FusedGW-Entity-Alignment.
Anthology ID:
2023.findings-acl.205
Volume:
Findings of the Association for Computational Linguistics: ACL 2023
Month:
July
Year:
2023
Address:
Toronto, Canada
Editors:
Anna Rogers, Jordan Boyd-Graber, Naoaki Okazaki
Venue:
Findings
SIG:
Publisher:
Association for Computational Linguistics
Note:
Pages:
3320–3334
Language:
URL:
https://aclanthology.org/2023.findings-acl.205
DOI:
10.18653/v1/2023.findings-acl.205
Bibkey:
Cite (ACL):
Jianheng Tang, Kangfei Zhao, and Jia Li. 2023. A Fused Gromov-Wasserstein Framework for Unsupervised Knowledge Graph Entity Alignment. In Findings of the Association for Computational Linguistics: ACL 2023, pages 3320–3334, Toronto, Canada. Association for Computational Linguistics.
Cite (Informal):
A Fused Gromov-Wasserstein Framework for Unsupervised Knowledge Graph Entity Alignment (Tang et al., Findings 2023)
Copy Citation:
PDF:
https://preview.aclanthology.org/nschneid-patch-5/2023.findings-acl.205.pdf