Abstract
In this paper we present MisNet, a novel model for word level metaphor detection. MisNet converts two linguistic rules, i.e., Metaphor Identification Procedure (MIP) and Selectional Preference Violation (SPV) into semantic matching tasks. MIP module computes the similarity between the contextual meaning and the basic meaning of a target word. SPV module perceives the incongruity between target words and their contexts. To better represent basic meanings, MisNet utilizes dictionary resources. Empirical results indicate that MisNet achieves competitive performance on several datasets.- Anthology ID:
- 2022.coling-1.364
- Volume:
- Proceedings of the 29th International Conference on Computational Linguistics
- Month:
- October
- Year:
- 2022
- Address:
- Gyeongju, Republic of Korea
- Editors:
- Nicoletta Calzolari, Chu-Ren Huang, Hansaem Kim, James Pustejovsky, Leo Wanner, Key-Sun Choi, Pum-Mo Ryu, Hsin-Hsi Chen, Lucia Donatelli, Heng Ji, Sadao Kurohashi, Patrizia Paggio, Nianwen Xue, Seokhwan Kim, Younggyun Hahm, Zhong He, Tony Kyungil Lee, Enrico Santus, Francis Bond, Seung-Hoon Na
- Venue:
- COLING
- SIG:
- Publisher:
- International Committee on Computational Linguistics
- Note:
- Pages:
- 4149–4159
- Language:
- URL:
- https://aclanthology.org/2022.coling-1.364
- DOI:
- Cite (ACL):
- Shenglong Zhang and Ying Liu. 2022. Metaphor Detection via Linguistics Enhanced Siamese Network. In Proceedings of the 29th International Conference on Computational Linguistics, pages 4149–4159, Gyeongju, Republic of Korea. International Committee on Computational Linguistics.
- Cite (Informal):
- Metaphor Detection via Linguistics Enhanced Siamese Network (Zhang & Liu, COLING 2022)
- PDF:
- https://preview.aclanthology.org/nschneid-patch-5/2022.coling-1.364.pdf
- Code
- silasthu/misnet