Zied Elloumi


2018

pdf bib
Analyzing Learned Representations of a Deep ASR Performance Prediction Model
Zied Elloumi | Laurent Besacier | Olivier Galibert | Benjamin Lecouteux
Proceedings of the 2018 EMNLP Workshop BlackboxNLP: Analyzing and Interpreting Neural Networks for NLP

This paper addresses a relatively new task: prediction of ASR performance on unseen broadcast programs. In a previous paper, we presented an ASR performance prediction system using CNNs that encode both text (ASR transcript) and speech, in order to predict word error rate. This work is dedicated to the analysis of speech signal embeddings and text embeddings learnt by the CNN while training our prediction model. We try to better understand which information is captured by the deep model and its relation with different conditioning factors. It is shown that hidden layers convey a clear signal about speech style, accent and broadcast type. We then try to leverage these 3 types of information at training time through multi-task learning. Our experiments show that this allows to train slightly more efficient ASR performance prediction systems that - in addition - simultaneously tag the analyzed utterances according to their speech style, accent and broadcast program origin.

pdf
Prédiction de performance des systèmes de reconnaissance automatique de la parole à l’aide de réseaux de neurones convolutifs [Performance prediction of automatic speech recognition systems using convolutional neural networks]
Zied Elloumi | Benjamin Lecouteux | Olivier Galibert | Laurent Besacier
Traitement Automatique des Langues, Volume 59, Numéro 2 : Apprentissage profond pour le traitement automatique des langues [Deep Learning for natural language processing]

2017

pdf
Traitement des Mots Hors Vocabulaire pour la Traduction Automatique de Document OCRisés en Arabe (This article presents a new system that automatically translates images of Arabic documents)
Kamel Bouzidi | Zied Elloumi | Laurent Besacier | Benjamin Lecouteux | Mohamed-Faouzi Benzeghiba
Actes des 24ème Conférence sur le Traitement Automatique des Langues Naturelles. Volume 1 - Articles longs

Cet article présente un système original de traduction de documents numérisés en arabe. Deux modules sont cascadés : un système de reconnaissance optique de caractères (OCR) en arabe et un système de traduction automatique (TA) arabe-français. Le couplage OCR-TA a été peu abordé dans la littérature et l’originalité de cette étude consiste à proposer un couplage étroit entre OCR et TA ainsi qu’un traitement spécifique des mots hors vocabulaire (MHV) engendrés par les erreurs d’OCRisation. Le couplage OCR-TA par treillis et notre traitement des MHV par remplacement selon une mesure composite qui prend en compte forme de surface et contexte du mot, permettent une amélioration significative des performances de traduction. Les expérimentations sont réalisés sur un corpus de journaux numérisés en arabe et permettent d’obtenir des améliorations en score BLEU de 3,73 et 5,5 sur les corpus de développement et de test respectivement.

2016

pdf
Word2Vec vs DBnary: Augmenting METEOR using Vector Representations or Lexical Resources?
Christophe Servan | Alexandre Bérard | Zied Elloumi | Hervé Blanchon | Laurent Besacier
Proceedings of COLING 2016, the 26th International Conference on Computational Linguistics: Technical Papers

This paper presents an approach combining lexico-semantic resources and distributed representations of words applied to the evaluation in machine translation (MT). This study is made through the enrichment of a well-known MT evaluation metric: METEOR. METEOR enables an approximate match (synonymy or morphological similarity) between an automatic and a reference translation. Our experiments are made in the framework of the Metrics task of WMT 2014. We show that distributed representations are a good alternative to lexico-semanticresources for MT evaluation and they can even bring interesting additional information. The augmented versions of METEOR, using vector representations, are made available on our Github page.

pdf
Word2Vec vs DBnary ou comment (ré)concilier représentations distribuées et réseaux lexico-sémantiques ? Le cas de l’évaluation en traduction automatique (Word2Vec vs DBnary or how to bring back together vector representations and lexical resources ? A case study for machine translation evaluation)
Christophe Servan | Zied Elloumi | Hervé Blanchon | Laurent Besacier
Actes de la conférence conjointe JEP-TALN-RECITAL 2016. volume 2 : TALN (Articles longs)

Cet article présente une approche associant réseaux lexico-sémantiques et représentations distribuées de mots appliquée à l’évaluation de la traduction automatique. Cette étude est faite à travers l’enrichissement d’une métrique bien connue pour évaluer la traduction automatique (TA) : METEOR. METEOR permet un appariement approché (similarité morphologique ou synonymie) entre une sortie de système automatique et une traduction de référence. Nos expérimentations s’appuient sur la tâche Metrics de la campagne d’évaluation WMT 2014 et montrent que les représentations distribuées restent moins performantes que les ressources lexico-sémantiques pour l’évaluation en TA mais peuvent néammoins apporter un complément d’information intéressant à ces dernières.

2015

pdf
METEOR for multiple target languages using DBnary
Zied Elloumi | Hervé Blanchon | Gilles Serasset | Laurent Besacier
Proceedings of Machine Translation Summit XV: Papers