This is an internal, incomplete preview of a proposed change to the ACL Anthology.
For efficiency reasons, we generate only three BibTeX files per volume, and the preview may be incomplete in other ways, or contain mistakes.
Do not treat this content as an official publication.
How to evaluate the coding abilities of Large Language Models (LLMs) remains an open question. We find that existing benchmarks are poorly aligned with real-world code repositories and are insufficient to evaluate the coding abilities of LLMs.To address the knowledge gap, we propose a new benchmark named DevEval, which has three advances. (1) DevEval aligns with real-world repositories in multiple dimensions, e.g., code and dependency distributions. (2) DevEval is annotated by 13 developers and contains comprehensive annotations (e.g., requirements, original repositories, reference code, and reference dependencies). (3) DevEval comprises 1,825 testing samples from 115 repositories, covering 10 popular domains (e.g., Internet, Database). Based on DevEval, we propose repository-level code generation and evaluate 8 popular LLMs on DevEval (e.g., gpt-4, gpt-3.5, StarCoder 2, DeepSeek Coder, CodeLLaMa). Our experiments reveal these LLMs’ coding abilities in real-world code repositories. For example, the highest Pass@1 of gpt-4 only is 53.04% in our experiments. We also analyze LLMs’ failed cases and summarize their shortcomings. We hope DevEval can facilitate the development of LLMs in real code repositories. DevEval, prompts, and LLMs’ predictions have been released.
Most existing topic models rely on bag-of-words (BOW) representation, which limits their ability to capture word order information and leads to challenges with out-of-vocabulary (OOV) words in new documents. Contextualized word embeddings, however, show superiority in word sense disambiguation and effectively address the OOV issue. In this work, we introduce a novel neural topic model called the Contextlized Word Topic Model (CWTM), which integrates contextualized word embeddings from BERT. The model is capable of learning the topic vector of a document without BOW information. In addition, it can also derive the topic vectors for individual words within a document based on their contextualized word embeddings. Experiments across various datasets show that CWTM generates more coherent and meaningful topics compared to existing topic models, while also accommodating unseen words in newly encountered documents.
Recent developments in Multimodal Large Language Models (MLLMs) have shown rapid progress, moving towards the goal of creating versatile MLLMs that understand inputs from various modalities. However, existing methods typically rely on joint training with paired multimodal instruction data, which is resource-intensive and challenging to extend to new modalities. In this paper, we propose a new paradigm through the model composition of existing MLLMs to create a new model that retains the modal understanding capabilities of each original model. Our basic implementation, NaiveMC, demonstrates the effectiveness of this paradigm by reusing modality encoders and merging LLM parameters. Furthermore, we introduce DAMC to address parameter interference and mismatch issues during the merging process, thereby enhancing the model performance. To facilitate research in this area, we propose MCUB, a benchmark for assessing ability of MLLMs to understand inputs from diverse modalities. Experiments on this benchmark and four other multimodal understanding tasks show significant improvements over baselines, proving that model composition can create a versatile model capable of processing inputs from multiple modalities.
Human-in-the-loop topic modelling incorporates users’ knowledge into the modelling process, enabling them to refine the model iteratively. Recent research has demonstrated the value of user feedback, but there are still issues to consider, such as the difficulty in tracking changes, comparing different models and the lack of evaluation based on real-world examples of use. We developed a novel, interactive human-in-the-loop topic modeling system with a user-friendly interface that enables users compare and record every step they take, and a novel topic words suggestion feature to help users provide feedback that is faithful to the ground truth. Our system also supports not only what traditional topic models can do, i.e., learning the topics from the whole corpus, but also targeted topic modelling, i.e., learning topics for specific aspects of the corpus. In this article, we provide an overview of the system and present the results of a series of user studies designed to assess the value of the system in progressively more realistic applications of topic modelling.
Building models to detect vaccine attitudes on social media is challenging because of the composite, often intricate aspects involved, and the limited availability of annotated data. Existing approaches have relied heavily on supervised training that requires abundant annotations and pre-defined aspect categories. Instead, with the aim of leveraging the large amount of unannotated data now available on vaccination, we propose a novel semi-supervised approach for vaccine attitude detection, called VADet. A variational autoencoding architecture based on language models is employed to learn from unlabelled data the topical information of the domain. Then, the model is fine-tuned with a few manually annotated examples of user attitudes. We validate the effectiveness of VADet on our annotated data and also on an existing vaccination corpus annotated with opinions on vaccines. Our results show that VADet is able to learn disentangled stance and aspect topics, and outperforms existing aspect-based sentiment analysis models on both stance detection and tweet clustering.
Automatic Speech Recognition (ASR) is an efficient and widely used input method that transcribes speech signals into text. As the errors introduced by ASR systems will impair the performance of downstream tasks, we introduce a post-processing error correction method, PhVEC, to correct errors in text space. For the errors in ASR result, existing works mainly focus on fixed-length corrections, modifying each wrong token to a correct one (one-to-one correction), but rarely consider the variable-length correction (one-to-many or many-to-one correction). In this paper, we propose an efficient non-autoregressive (NAR) method for Chinese ASR error correction for both cases. Instead of conventionally predicting the sentence length in NAR methods, we propose a novel approach that uses phonological tokens to extend the source sentence for variable-length correction, enabling our model to generate phonetically similar corrections. Experimental results on datasets of different domains show that our method achieves significant improvement in word error rate reduction and speeds up the inference by 6.2 times compared with the autoregressive model.
For sentence-level extractive summarization, there is a disproportionate ratio of selected and unselected sentences, leading to flatting the summary features when maximizing the accuracy. The imbalanced classification of summarization is inherent, which can’t be addressed by common algorithms easily. In this paper, we conceptualize the single-document extractive summarization as a rebalance problem and present a deep differential amplifier framework. Specifically, we first calculate and amplify the semantic difference between each sentence and all other sentences, and then apply the residual unit as the second item of the differential amplifier to deepen the architecture. Finally, to compensate for the imbalance, the corresponding objective loss of minority class is boosted by a weighted cross-entropy. In contrast to previous approaches, this model pays more attention to the pivotal information of one sentence, instead of all the informative context modeling by recurrent or Transformer architecture. We demonstrate experimentally on two benchmark datasets that our summarizer performs competitively against state-of-the-art methods. Our source code will be available on Github.
To alleviate label scarcity in Named Entity Recognition (NER) task, distantly supervised NER methods are widely applied to automatically label data and identify entities. Although the human effort is reduced, the generated incomplete and noisy annotations pose new challenges for learning effective neural models. In this paper, we propose a novel dictionary extension method which extracts new entities through the type expanded model. Moreover, we design a multi-granularity boundary-aware network which detects entity boundaries from both local and global perspectives. We conduct experiments on different types of datasets, the results show that our model outperforms previous state-of-the-art distantly supervised systems and even surpasses the supervised models.