2024
pdf
abs
ConceptMath: A Bilingual Concept-wise Benchmark for Measuring Mathematical Reasoning of Large Language Models
Yanan Wu
|
Jie Liu
|
Xingyuan Bu
|
Jiaheng Liu
|
Zhanhui Zhou
|
Yuanxing Zhang
|
Chenchen Zhang
|
ZhiqiBai ZhiqiBai
|
Haibin Chen
|
Tiezheng Ge
|
Wanli Ouyang
|
Wenbo Su
|
Bo Zheng
Findings of the Association for Computational Linguistics ACL 2024
This paper introduces ConceptMath, a bilingual (English and Chinese), fine-grained benchmark that evaluates concept-wise mathematical reasoning of Large Language Models (LLMs). Unlike traditional benchmarks that evaluate general mathematical reasoning with an average accuracy, ConceptMath systemically organizes math problems under a hierarchy of math concepts, so that mathematical reasoning can be evaluated at different granularity with concept-wise accuracies. Based on our ConcepthMath, we then evaluate a broad range of LLMs, and we observe existing LLMs, though achieving high average accuracies on traditional benchmarks, exhibit significant performance variations across different math concepts and may even fail catastrophically on the most basic ones. Besides, we also introduce an efficient fine-tuning strategy to enhance the weaknesses of existing LLMs. Finally, we hope ConceptMath could guide the developers to understand the fine-grained mathematical abilities of their models and facilitate the growth of foundation models. Code is available at https://github.com/conceptmath/conceptmath.
pdf
abs
Beyond One-Preference-Fits-All Alignment: Multi-Objective Direct Preference Optimization
Zhanhui Zhou
|
Jie Liu
|
Jing Shao
|
Xiangyu Yue
|
Chao Yang
|
Wanli Ouyang
|
Yu Qiao
Findings of the Association for Computational Linguistics ACL 2024
A single language model, even when aligned with labelers through reinforcement learning from human feedback (RLHF), may not suit all human preferences. Recent approaches therefore prefer customization, gathering multi-dimensional feedback, and creating distinct reward models for each dimension.Different language models are then optimized for various preferences using multi-objective RLHF (MORLHF) with varying reward weights.However, RL fine-tuning is unstable and resource-heavy, especially with diverse and usually conflicting objectives.In this paper, we present Multi-Objective Direct Preference Optimization (MODPO), an RL-free extension of Direct Preference Optimization (DPO) for multiple alignment objectives.Essentially, MODPO folds language modeling directly into reward modeling, training language models as implicit collective reward models that combine all objectives with specific weights. MODPO theoretically yields the same optimal solutions as MORLHF but is practically more stable and efficient.Empirical results in safety alignment and long-form question answering show that MODPO matches or outperforms existing methods, producing a Pareto front of language models catering to diverse preferences with three times less computational resources compared to MORLHF.Code is available at https://github.com/ZHZisZZ/modpo.
pdf
abs
Attacks, Defenses and Evaluations for LLM Conversation Safety: A Survey
Zhichen Dong
|
Zhanhui Zhou
|
Chao Yang
|
Jing Shao
|
Yu Qiao
Proceedings of the 2024 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers)
Large Language Models (LLMs) are now commonplace in conversation applications. However, their risks of misuse for generating harmful responses have raised serious societal concerns and spurred recent research on LLM conversation safety. Therefore, in this survey, we provide a comprehensive overview of recent studies, covering three critical aspects of LLM conversation safety: attacks, defenses, and evaluations. Our goal is to provide a structured summary that enhances understanding of LLM conversation safety and encourages further investigation into this important subject. For easy reference, we have categorized all the studies mentioned in this survey according to our taxonomy, available at: https://github.com/niconi19/LLM-conversation-safety.
pdf
abs
MT-Bench-101: A Fine-Grained Benchmark for Evaluating Large Language Models in Multi-Turn Dialogues
Ge Bai
|
Jie Liu
|
Xingyuan Bu
|
Yancheng He
|
Jiaheng Liu
|
Zhanhui Zhou
|
Zhuoran Lin
|
Wenbo Su
|
Tiezheng Ge
|
Bo Zheng
|
Wanli Ouyang
Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)
The advent of Large Language Models (LLMs) has drastically enhanced dialogue systems. However, comprehensively evaluating the dialogue abilities of LLMs remains a challenge. Previous benchmarks have primarily focused on single-turn dialogues or provided coarse-grained and incomplete assessments of multi-turn dialogues, overlooking the complexity and fine-grained nuances of real-life dialogues. To address this issue, we introduce MT-Bench-101, specifically designed to evaluate the fine-grained abilities of LLMs in multi-turn dialogues. By conducting a detailed analysis of real multi-turn dialogue data, we construct a three-tier hierarchical ability taxonomy comprising 4208 turns across 1388 multi-turn dialogues in 13 distinct tasks. We then evaluate 21 popular LLMs based on MT-Bench-101, conducting comprehensive analyses from both ability and task perspectives and observing differing trends in LLMs performance across dialogue turns within various tasks. Further analysis indicates that neither utilizing common alignment techniques nor chat-specific designs has led to obvious enhancements in the multi-turn abilities of LLMs. Extensive case studies suggest that our designed tasks accurately assess the corresponding multi-turn abilities. The data and code are available at https://github.com/mtbench101/mt-bench-101.