Yuchen Lian
2023
Communication Drives the Emergence of Language Universals in Neural Agents: Evidence from the Word-order/Case-marking Trade-off
Yuchen Lian
|
Arianna Bisazza
|
Tessa Verhoef
Transactions of the Association for Computational Linguistics, Volume 11
Artificial learners often behave differently from human learners in the context of neural agent-based simulations of language emergence and change. A common explanation is the lack of appropriate cognitive biases in these learners. However, it has also been proposed that more naturalistic settings of language learning and use could lead to more human-like results. We investigate this latter account, focusing on the word-order/case-marking trade-off, a widely attested language universal that has proven particularly hard to simulate. We propose a new Neural-agent Language Learning and Communication framework (NeLLCom) where pairs of speaking and listening agents first learn a miniature language via supervised learning, and then optimize it for communication via reinforcement learning. Following closely the setup of earlier human experiments, we succeed in replicating the trade-off with the new framework without hard-coding specific biases in the agents. We see this as an essential step towards the investigation of language universals with neural learners.
2021
The Effect of Efficient Messaging and Input Variability on Neural-Agent Iterated Language Learning
Yuchen Lian
|
Arianna Bisazza
|
Tessa Verhoef
Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing
Natural languages display a trade-off among different strategies to convey syntactic structure, such as word order or inflection. This trade-off, however, has not appeared in recent simulations of iterated language learning with neural network agents (Chaabouni et al., 2019b). We re-evaluate this result in light of three factors that play an important role in comparable experiments from the Language Evolution field: (i) speaker bias towards efficient messaging, (ii) non systematic input languages, and (iii) learning bottleneck. Our simulations show that neural agents mainly strive to maintain the utterance type distribution observed during learning, instead of developing a more efficient or systematic language.
Search