This is an internal, incomplete preview of a proposed change to the ACL Anthology.
For efficiency reasons, we generate only three BibTeX files per volume, and the preview may be incomplete in other ways, or contain mistakes.
Do not treat this content as an official publication.
Given a sentence and a particular aspect term, aspect-based sentiment analysis (ABSA) aims to predict the sentiment polarity towards this aspect term, which provides fine-grained analysis on sentiment understanding and it has attracted much attention in recent years. In order to achieve a good performance on ABSA, it is important for a model to appropriately encode contextual information, especially identifying salient features and eliminating noise in the context. To make incorrect predictions, most existing approaches employ powerful text encoders to locate important context features, as well as noises that mislead ABSA models. These approaches determine the noise in the text for ABSA by assigning low weights to context features or directly removing them from model input, which runs the risk of computing wrong weights or eliminating important context information. In this paper, we propose to improve ABSA with context denoising, where three types of word-level information are regarded as noise, namely, lexicographic noise, bag-of-words noise, and syntax noise. We utilize diffusion networks to perform the denoising process to gradually eliminate them so as to better predict sentiment polarities for given aspect terms. Our approach uses task-specific noise rather than the standard stochastic Gaussian noise in the diffusion networks. The experimental results on five widely used ABSA datasets demonstrate the validity and effectiveness of our approach.
In many practical scenarios, contents from different modalities are not semantically aligned; for instance, visual and textual information may conflict with each other, resulting in non-compositional expression effects such as irony or humor. Effective modeling and smooth integration of multimodal information are crucial for achieving good understanding of the contrast across modalities. Being focusing on image-text matching, most current studies face challenges in identifying such contrast, leading to limitations in exploring the extended semantics when images and texts do not match. In this paper, we propose an LLM-based approach for learning multimodal contrast following the encoding-decoding paradigm, enhanced by a memory module with reinforced contrast recognition, and use a series of tasks that have the nature of multimodal contrast to verify our approach. The memory module learns the integration between visual and textual features with trainable memory vectors and the reinforced contrast recognition uses self-rejection sampling to optimize the memory to further enhance learning multimodal contrast. The resulted information, accompanied with visual and text features, is finally fed into the LLM to predict corresponding labels. We experiment our approach on four English and Chinese benchmark datasets, where it outperforms strong baselines and state-of-the-art studies.
Recent progress in large language models (LLMs) has marked a notable milestone in the field of artificial intelligence. The conventional evaluation of LLMs primarily relies on existing tasks and benchmarks, raising concerns about test set contamination and the genuine comprehension abilities of LLMs. To address these concerns, we propose to evaluate LLMs by designing new tasks, automatically generating evaluation datasets for the tasks, and conducting detailed error analyses to scrutinize LLMs’ adaptability to new tasks, their sensitivity to prompt variations, and their error tendencies. We investigate the capacity of LLMs to adapt to new but simple tasks, especially when they diverge from the models’ pre-existing knowledge. Our methodology emphasizes the creation of straightforward tasks, facilitating a precise error analysis to uncover the underlying causes of LLM failures. This strategic approach also aims to uncover effective strategies for enhancing LLM performance based on the detailed error analysis of system output.
On social media platforms, users’ emotions are triggered when they encounter particular content from other users,where such emotions are different from those that spontaneously emerged, owing to the “responsive” nature. Analyzing the aforementioned responsive emotions from user interactions is a task of significant importance for understanding human cognition, the mechanisms of emotion generation, and behavior on the Internet, etc. Performing the task with artificial intelligence generally requires human-annotated data to help train a well-performing system, while existing data resources do not cover this specific area, with none of them focusing on responsive emotion analysis. In this paper, we propose a Chinese dataset named ResEmo for responsive emotion analysis, including 3813 posts with 68,781 comments collected from Weibo, the largest social media platform in China. ResEmo contains three types of human annotations with respect to responsive emotions, namely, responsive relationship, responsive emotion cause, and responsive emotion category. Moreover, to test this dataset, we build large language model (LLM) baseline methods for responsive relation extraction, responsive emotion cause extraction, and responsive emotion detection, which show the potential of the proposed ResEmo being a benchmark for future studies on responsive emotions.
The development of large language models (LLMs) brings significant changes to the field of natural language processing (NLP), enabling remarkable performance in various high-level tasks, such as machine translation, question-answering, dialogue generation, etc., under end-to-end settings without requiring much training data. Meanwhile, fundamental NLP tasks, particularly syntactic parsing, are also essential for language study as well as evaluating the capability of LLMs for instruction understanding and usage. In this paper, we focus on analyzing and improving the capability of current state-of-the-art LLMs on a classic fundamental task, namely constituency parsing, which is the representative syntactic task in both linguistics and natural language processing. We observe that these LLMs are effective in shallow parsing but struggle with creating correct full parse trees. To improve the performance of LLMs on deep syntactic parsing, we propose a three-step approach that firstly prompts LLMs for chunking, then filters out low-quality chunks, and finally adds the remaining chunks to prompts to instruct LLMs for parsing, with later enhancement by chain-of-thought prompting. Experimental results on English and Chinese benchmark datasets demonstrate the effectiveness of our approach on improving LLMs’ performance on constituency parsing.
Dialogue summarization is an important task that requires to generate highlights for a conversation from different aspects (e.g., content of various speakers). While several studies successfully employ large language models (LLMs) and achieve satisfying results, they are limited by using one model at a time or treat it as a black box, which makes it hard to discriminatively learn essential content in a dialogue from different aspects, therefore may lead to anticipation bias and potential loss of information in the produced summaries. In this paper, we propose an LLM-based approach with role-oriented routing and fusion generation to utilize mixture of experts (MoE) for dialogue summarization. Specifically, the role-oriented routing is an LLM-based module that selects appropriate experts to process different information; fusion generation is another LLM-based module to locate salient information and produce finalized dialogue summaries. The proposed approach offers an alternative solution to employing multiple LLMs for dialogue summarization by leveraging their capabilities of in-context processing and generation in an effective manner. We run experiments on widely used benchmark datasets for this task, where the results demonstrate the superiority of our approach in producing informative and accurate dialogue summarization.
Recently, the increasing demand for superior medical services has highlighted the discrepancies in the medical infrastructure. With big data, especially texts, forming the foundation of medical services, there is an exigent need for effective natural language processing (NLP) solutions tailored to the healthcare domain. Conventional approaches leveraging pre-trained models present promising results in this domain and current large language models (LLMs) offer advanced foundation for medical text processing. However, most medical LLMs are trained only with supervised fine-tuning (SFT), even though it efficiently empowers LLMs to understand and respond to medical instructions but is ineffective in learning domain knowledge and aligning with human preference. In this work, we propose ChiMed-GPT, a new benchmark LLM designed explicitly for Chinese medical domain, and undergoes a comprehensive training regime with pre-training, SFT, and RLHF. Evaluations on tasks including information extraction, question answering, and dialogue generation demonstrate ChiMed-GPT’s superior performance over general domain LLMs. Furthermore, we analyze possible biases through prompting ChiMed-GPT to perform attitude scales regarding discrimination of patients, so as to contribute to further responsible development of LLMs in the medical domain.
Having the difficulty of solving the semantic gap between images and texts for the image captioning task, conventional studies in this area paid some attention to treating semantic concepts as a bridge between the two modalities and improved captioning performance accordingly. Although promising results on concept prediction were obtained, the aforementioned studies normally ignore the relationship among concepts, which relies on not only objects in the image, but also word dependencies in the text, so that offers a considerable potential for improving the process of generating good descriptions. In this paper, we propose a structured concept predictor (SCP) to predict concepts and their structures, then we integrate them into captioning, so that enhance the contribution of visual signals in this task via concepts and further use their relations to distinguish cross-modal semantics for better description generation. Particularly, we design weighted graph convolutional networks (W-GCN) to depict concept relations driven by word dependencies, and then learns differentiated contributions from these concepts for following decoding process. Therefore, our approach captures potential relations among concepts and discriminatively learns different concepts, so that effectively facilitates image captioning with inherited information across modalities. Extensive experiments and their results demonstrate the effectiveness of our approach as well as each proposed module in this work.
End-to-end Aspect-based Sentiment Analysis (EASA) is a natural language processing (NLP) task that involves extracting aspect terms and identifying the sentiments for them, which provides a fine-grained level of text analysis and thus requires a deep understanding of the running text. Many previous studies leverage advanced text encoders to extract context information and use syntactic information, e.g., the dependency structure of the input sentence, to improve the model performance. However, such models may reach a bottleneck since the dependency structure is not designed to provide semantic information of the text, which is also important for identifying the sentiment and thus leave room for further improvement. Considering that combinatory categorial grammar (CCG) is a formalism that expresses both syntactic and semantic information of a sentence, it has the potential to be beneficial to EASA. In this paper, we propose a novel approach to improve EASA with CCG supertags, which carry the syntactic and semantic information of the associated words and serve as the most important part of the CCG derivation. Specifically, our approach proposes a CCG supertag decoding process to learn the syntactic and semantic information carried by CCG supertags and use the information to guide the attention over the input words so as to identify important contextual information for EASA. Furthermore, a gate mechanism is used in incorporating the weighted contextual information into the backbone EASA decoding process. We evaluate our approach on three publicly available English datasets for EASA, and show that it outperforms strong baselines and achieves state-of-the-art results on all datasets.
Dependency parsing is an important fundamental natural language processing task which analyzes the syntactic structure of an input sentence by illustrating the syntactic relations between words. To improve dependency parsing, leveraging existing dependency parsers and extra data (e.g., through semi-supervised learning) has been demonstrated to be effective, even though the final parsers are trained on inaccurate (but massive) data. In this paper, we propose a frustratingly easy approach to improve graph-based dependency parsing, where a structure-aware encoder is pre-trained on auto-parsed data by predicting the word dependencies and then fine-tuned on gold dependency trees, which differs from the usual pre-training process that aims to predict the context words along dependency paths. Experimental results and analyses demonstrate the effectiveness and robustness of our approach to benefit from the data (even with noise) processed by different parsers, where our approach outperforms strong baselines under different settings with different dependency standards and model architectures used in pre-training and fine-tuning. More importantly, further analyses find that only 2K auto-parsed sentences are required to obtain improvement when pre-training vanilla BERT-large based parser without requiring extra parameters.
Relation extraction (RE) is an important natural language processing task that predicts the relation between two given entities, where a good understanding of the contextual information is essential to achieve an outstanding model performance. Among different types of contextual information, the auto-generated syntactic information (namely, word dependencies) has shown its effectiveness for the task. However, most existing studies require modifications to the existing baseline architectures (e.g., adding new components, such as GCN, on the top of an encoder) to leverage the syntactic information. To offer an alternative solution, we propose to leverage syntactic information to improve RE by training a syntax-induced encoder on auto-parsed data through dependency masking. Specifically, the syntax-induced encoder is trained by recovering the masked dependency connections and types in first, second, and third orders, which significantly differs from existing studies that train language models or word embeddings by predicting the context words along the dependency paths. Experimental results on two English benchmark datasets, namely, ACE2005EN and SemEval 2010 Task 8 datasets, demonstrate the effectiveness of our approach for RE, where our approach outperforms strong baselines and achieve state-of-the-art results on both datasets.
Transliteration is an important task in natural language processing (NLP) which aims to convert a name in the source language to the target language without changing its pronunciation. Particularly, transliteration from English to Arabic is highly needed in many applications, especially in countries (e.g., United Arab Emirates (UAE)) whose most citizens are foreigners but the official language is Arabic. In such a task-oriented scenario, namely transliterating the English names to the corresponding Arabic ones, the performance of the transliteration model is highly important. However, most existing neural approaches mainly apply a universal transliteration model with advanced encoders and decoders to the task, where limited attention is paid to leveraging the phonemic association between English and Arabic to further improve model performance. In this paper, we focus on transliteration of people’s names from English to Arabic for the general public. In doing so, we collect a corpus named EANames by extracting high quality name pairs from online resources which better represent the names in the general public than linked Wikipedia entries that are always names of famous people). We propose a model for English-Arabic transliteration, where a memory module modeling the phonemic association between English and Arabic is used to guide the transliteration process. We run experiments on the collected data and the results demonstrate the effectiveness of our approach for English-Arabic transliteration.
Relation extraction (RE) is an important task in natural language processing which aims to annotate the relation between two given entities, which requires a deep understanding of the running text. To import model performance, existing approaches leverage syntactic information to facilitate the relation extraction process, where they mainly focus on dependencies among words while paying limited attention to other types of syntactic structure. Considering that combinatory categorial grammar (CCG) is a lexicalized grammatical formalism that carries the syntactic and semantic knowledge for text understanding, we propose an alternative solution for RE that takes advantage of CCG to detect the relation between entities. In doing so, we perform a multi-task learning process to learn from RE and auto-annotated CCG supertags, where an attention mechanism is performed over all input words to distinguish the important ones for RE with the attention weights guided by the supertag decoding process. We evaluate our model on two widely used English benchmark datasets (i.e., ACE2005EN and SemEval 2010 Task 8 datasets) for RE, where the effectiveness of our approach is demonstrated by the experimental results with our approach achieving state-of-the-art performance on both datasets.
Chinese word segmentation (CWS) and named entity recognition (NER) are two important tasks in Chinese natural language processing. To achieve good model performance on these tasks, existing neural approaches normally require a large amount of labeled training data, which is often unavailable for specific domains such as the Chinese medical domain due to privacy and legal issues. To address this problem, we have developed a Chinese medical corpus named ChiMST which consists of question-answer pairs collected from an online medical healthcare platform and is annotated with word boundary and medical term information. For word boundary, we mainly follow the word segmentation guidelines for the Penn Chinese Treebank (Xia, 2000); for medical terms, we define 9 categories and 18 sub-categories after consulting medical experts. To provide baselines on this corpus, we train existing state-of-the-art models on it and achieve good performance. We believe that the corpus and the baseline systems will be a valuable resource for CWS and NER research on the medical domain.
Relation extraction (RE) is a sub-field of information extraction, which aims to extract the relation between two given named entities (NEs) in a sentence and thus requires a good understanding of contextual information, especially the entities and their surrounding texts. However, limited attention is paid by most existing studies to re-modeling the given NEs and thus lead to inferior RE results when NEs are sometimes ambiguous. In this paper, we propose a RE model with two training stages, where adversarial multi-task learning is applied to the first training stage to explicitly recover the given NEs so as to enhance the main relation extractor, which is trained alone in the second stage. In doing so, the RE model is optimized by named entity recognition (NER) and thus obtains a detailed understanding of entity-aware context. We further propose the adversarial mechanism to enhance the process, which controls the effect of NER on the main relation extractor and allows the extractor to benefit from NER while keep focusing on RE rather than the entire multi-task learning. Experimental results on two English benchmark datasets for RE demonstrate the effectiveness of our approach, where state-of-the-art performance is observed on both datasets.
Aspect-based sentiment analysis (ABSA) aims to predict the sentiment polarity towards a given aspect term in a sentence on the fine-grained level, which usually requires a good understanding of contextual information, especially appropriately distinguishing of a given aspect and its contexts, to achieve good performance. However, most existing ABSA models pay limited attention to the modeling of the given aspect terms and thus result in inferior results when a sentence contains multiple aspect terms with contradictory sentiment polarities. In this paper, we propose to improve ABSA by complementary learning of aspect terms, which serves as a supportive auxiliary task to enhance ABSA by explicitly recovering the aspect terms from each input sentence so as to better understand aspects and their contexts. Particularly, a discriminator is also introduced to further improve the learning process by appropriately balancing the impact of aspect recovery to sentiment prediction. Experimental results on five widely used English benchmark datasets for ABSA demonstrate the effectiveness of our approach, where state-of-the-art performance is observed on all datasets.
As an important task to analyze the semantic structure of a sentence, semantic role labeling (SRL) aims to locate the semantic role (e.g., agent) of noun phrases with respect to a given predicate and thus plays an important role in downstream tasks such as dialogue systems. To achieve a better performance in SRL, a model is always required to have a good understanding of the context information. Although one can use advanced text encoder (e.g., BERT) to capture the context information, extra resources are also required to further improve the model performance. Considering that there are correlations between the syntactic structure and the semantic structure of the sentence, many previous studies leverage auto-generated syntactic knowledge, especially the dependencies, to enhance the modeling of context information through graph-based architectures, where limited attention is paid to other types of auto-generated knowledge. In this paper, we propose map memories to enhance SRL by encoding different types of auto-generated syntactic knowledge (i.e., POS tags, syntactic constituencies, and word dependencies) obtained from off-the-shelf toolkits. Experimental results on two English benchmark datasets for span-style SRL (i.e., CoNLL-2005 and CoNLL-2012) demonstrate the effectiveness of our approach, which outperforms strong baselines and achieves state-of-the-art results on CoNLL-2005.
Syntactic information, especially dependency trees, has been widely used by existing studies to improve relation extraction with better semantic guidance for analyzing the context information associated with the given entities. However, most existing studies suffer from the noise in the dependency trees, especially when they are automatically generated, so that intensively leveraging dependency information may introduce confusions to relation classification and necessary pruning is of great importance in this task. In this paper, we propose a dependency-driven approach for relation extraction with attentive graph convolutional networks (A-GCN). In this approach, an attention mechanism upon graph convolutional networks is applied to different contextual words in the dependency tree obtained from an off-the-shelf dependency parser, to distinguish the importance of different word dependencies. Consider that dependency types among words also contain important contextual guidance, which is potentially helpful for relation extraction, we also include the type information in A-GCN modeling. Experimental results on two English benchmark datasets demonstrate the effectiveness of our A-GCN, which outperforms previous studies and achieves state-of-the-art performance on both datasets.
Arabic diacritization is a fundamental task for Arabic language processing. Previous studies have demonstrated that automatically generated knowledge can be helpful to this task. However, these studies regard the auto-generated knowledge instances as gold references, which limits their effectiveness since such knowledge is not always accurate and inferior instances can lead to incorrect predictions. In this paper, we propose to use regularized decoding and adversarial training to appropriately learn from such noisy knowledge for diacritization. Experimental results on two benchmark datasets show that, even with quite flawed auto-generated knowledge, our model can still learn adequate diacritics and outperform all previous studies, on both datasets.
Aspect-level sentiment analysis (ASA) has received much attention in recent years. Most existing approaches tried to leverage syntactic information, such as the dependency parsing results of the input text, to improve sentiment analysis on different aspects. Although these approaches achieved satisfying results, their main focus is to leverage the dependency arcs among words where the dependency type information is omitted; and they model different dependencies equally where the noisy dependency results may hurt model performance. In this paper, we propose an approach to enhance aspect-level sentiment analysis with word dependencies, where the type information is modeled by key-value memory networks and different dependency results are selectively leveraged. Experimental results on five benchmark datasets demonstrate the effectiveness of our approach, where it outperforms baseline models on all datasets and achieves state-of-the-art performance on three of them.
Chinese word segmentation (CWS) and medical concept recognition are two fundamental tasks to process Chinese electronic medical records (EMRs) and play important roles in downstream tasks for understanding Chinese EMRs. One challenge to these tasks is the lack of medical domain datasets with high-quality annotations, especially medical-related tags that reveal the characteristics of Chinese EMRs. In this paper, we collected a Chinese EMR corpus, namely, ACEMR, with human annotations for Chinese word segmentation and EMR-related tags. On the ACEMR corpus, we run well-known models (i.e., BiLSTM, BERT, and ZEN) and existing state-of-the-art systems (e.g., WMSeg and TwASP) for CWS and medical concept recognition. Experimental results demonstrate the necessity of building a dedicated medical dataset and show that models that leverage extra resources achieve the best performance for both tasks, which provides certain guidance for future studies on model selection in the medical domain.
It is popular that neural graph-based models are applied in existing aspect-based sentiment analysis (ABSA) studies for utilizing word relations through dependency parses to facilitate the task with better semantic guidance for analyzing context and aspect words. However, most of these studies only leverage dependency relations without considering their dependency types, and are limited in lacking efficient mechanisms to distinguish the important relations as well as learn from different layers of graph based models. To address such limitations, in this paper, we propose an approach to explicitly utilize dependency types for ABSA with type-aware graph convolutional networks (T-GCN), where attention is used in T-GCN to distinguish different edges (relations) in the graph and attentive layer ensemble is proposed to comprehensively learn from different layers of T-GCN. The validity and effectiveness of our approach are demonstrated in the experimental results, where state-of-the-art performance is achieved on six English benchmark datasets. Further experiments are conducted to analyze the contributions of each component in our approach and illustrate how different layers in T-GCN help ABSA with quantitative and qualitative analysis.
Most recent studies for relation extraction (RE) leverage the dependency tree of the input sentence to incorporate syntax-driven contextual information to improve model performance, with little attention paid to the limitation where high-quality dependency parsers in most cases unavailable, especially for in-domain scenarios. To address this limitation, in this paper, we propose attentive graph convolutional networks (A-GCN) to improve neural RE methods with an unsupervised manner to build the context graph, without relying on the existence of a dependency parser. Specifically, we construct the graph from n-grams extracted from a lexicon built from pointwise mutual information (PMI) and apply attention over the graph. Therefore, different word pairs from the contexts within and across n-grams are weighted in the model and facilitate RE accordingly. Experimental results with further analyses on two English benchmark datasets for RE demonstrate the effectiveness of our approach, where state-of-the-art performance is observed on both datasets.
Aspect-based sentiment analysis (ABSA) predicts the sentiment polarity towards a particular aspect term in a sentence, which is an important task in real-world applications. To perform ABSA, the trained model is required to have a good understanding of the contextual information, especially the particular patterns that suggest the sentiment polarity. However, these patterns typically vary in different sentences, especially when the sentences come from different sources (domains), which makes ABSA still very challenging. Although combining labeled data across different sources (domains) is a promising solution to address the challenge, in practical applications, these labeled data are usually stored at different locations and might be inaccessible to each other due to privacy or legal concerns (e.g., the data are owned by different companies). To address this issue and make the best use of all labeled data, we propose a novel ABSA model with federated learning (FL) adopted to overcome the data isolation limitations and incorporate topic memory (TM) proposed to take the cases of data from diverse sources (domains) into consideration. Particularly, TM aims to identify different isolated data sources due to data inaccessibility by providing useful categorical information for localized predictions. Experimental results on a simulated environment for FL with three nodes demonstrate the effectiveness of our approach, where TM-FL outperforms different baselines including some well-designed FL frameworks.
Contextual features always play an important role in Chinese word segmentation (CWS). Wordhood information, being one of the contextual features, is proved to be useful in many conventional character-based segmenters. However, this feature receives less attention in recent neural models and it is also challenging to design a framework that can properly integrate wordhood information from different wordhood measures to existing neural frameworks. In this paper, we therefore propose a neural framework, WMSeg, which uses memory networks to incorporate wordhood information with several popular encoder-decoder combinations for CWS. Experimental results on five benchmark datasets indicate the memory mechanism successfully models wordhood information for neural segmenters and helps WMSeg achieve state-of-the-art performance on all those datasets. Further experiments and analyses also demonstrate the robustness of our proposed framework with respect to different wordhood measures and the efficiency of wordhood information in cross-domain experiments.
Chinese word segmentation (CWS) and part-of-speech (POS) tagging are important fundamental tasks for Chinese language processing, where joint learning of them is an effective one-step solution for both tasks. Previous studies for joint CWS and POS tagging mainly follow the character-based tagging paradigm with introducing contextual information such as n-gram features or sentential representations from recurrent neural models. However, for many cases, the joint tagging needs not only modeling from context features but also knowledge attached to them (e.g., syntactic relations among words); limited efforts have been made by existing research to meet such needs. In this paper, we propose a neural model named TwASP for joint CWS and POS tagging following the character-based sequence labeling paradigm, where a two-way attention mechanism is used to incorporate both context feature and their corresponding syntactic knowledge for each input character. Particularly, we use existing language processing toolkits to obtain the auto-analyzed syntactic knowledge for the context, and the proposed attention module can learn and benefit from them although their quality may not be perfect. Our experiments illustrate the effectiveness of the two-way attentions for joint CWS and POS tagging, where state-of-the-art performance is achieved on five benchmark datasets.
Existing approaches for named entity recognition suffer from data sparsity problems when conducted on short and informal texts, especially user-generated social media content. Semantic augmentation is a potential way to alleviate this problem. Given that rich semantic information is implicitly preserved in pre-trained word embeddings, they are potential ideal resources for semantic augmentation. In this paper, we propose a neural-based approach to NER for social media texts where both local (from running text) and augmented semantics are taken into account. In particular, we obtain the augmented semantic information from a large-scale corpus, and propose an attentive semantic augmentation module and a gate module to encode and aggregate such information, respectively. Extensive experiments are performed on three benchmark datasets collected from English and Chinese social media platforms, where the results demonstrate the superiority of our approach to previous studies across all three datasets.
Supertagging is conventionally regarded as an important task for combinatory categorial grammar (CCG) parsing, where effective modeling of contextual information is highly important to this task. However, existing studies have made limited efforts to leverage contextual features except for applying powerful encoders (e.g., bi-LSTM). In this paper, we propose attentive graph convolutional networks to enhance neural CCG supertagging through a novel solution of leveraging contextual information. Specifically, we build the graph from chunks (n-grams) extracted from a lexicon and apply attention over the graph, so that different word pairs from the contexts within and across chunks are weighted in the model and facilitate the supertagging accordingly. The experiments performed on the CCGbank demonstrate that our approach outperforms all previous studies in terms of both supertagging and parsing. Further analyses illustrate the effectiveness of each component in our approach to discriminatively learn from word pairs to enhance CCG supertagging.
End-to-end aspect-based sentiment analysis (EASA) consists of two sub-tasks: the first extracts the aspect terms in a sentence and the second predicts the sentiment polarities for such terms. For EASA, compared to pipeline and multi-task approaches, joint aspect extraction and sentiment analysis provides a one-step solution to predict both aspect terms and their sentiment polarities through a single decoding process, which avoid the mismatches in between the results of aspect terms and sentiment polarities, as well as error propagation. Previous studies, especially recent ones, for this task focus on using powerful encoders (e.g., Bi-LSTM and BERT) to model contextual information from the input, with limited efforts paid to using advanced neural architectures (such as attentions and graph convolutional networks) or leveraging extra knowledge (such as syntactic information). To extend such efforts, in this paper, we propose directional graph convolutional networks (D-GCN) to jointly perform aspect extraction and sentiment analysis with encoding syntactic information, where dependency among words are integrated in our model to enhance its ability of representing input sentences and help EASA accordingly. Experimental results on three benchmark datasets demonstrate the effectiveness of our approach, where D-GCN achieves state-of-the-art performance on all datasets.
Summarization is an important natural language processing (NLP) task in identifying key information from text. For conversations, the summarization systems need to extract salient contents from spontaneous utterances by multiple speakers. In a special task-oriented scenario, namely medical conversations between patients and doctors, the symptoms, diagnoses, and treatments could be highly important because the nature of such conversation is to find a medical solution to the problem proposed by the patients. Especially consider that current online medical platforms provide millions of public available conversations between real patients and doctors, where the patients propose their medical problems and the registered doctors offer diagnosis and treatment, a conversation in most cases could be too long and the key information is hard to be located. Therefore, summarizations to the patients’ problems and the doctors’ treatments in the conversations can be highly useful, in terms of helping other patients with similar problems have a precise reference for potential medical solutions. In this paper, we focus on medical conversation summarization, using a dataset of medical conversations and corresponding summaries which were crawled from a well-known online healthcare service provider in China. We propose a hierarchical encoder-tagger model (HET) to generate summaries by identifying important utterances (with respect to problem proposing and solving) in the conversations. For the particular dataset used in this study, we show that high-quality summaries can be generated by extracting two types of utterances, namely, problem statements and treatment recommendations. Experimental results demonstrate that HET outperforms strong baselines and models from previous studies, and adding conversation-related features can further improve system performance.
Chinese word segmentation (CWS) and part-of-speech (POS) tagging are two fundamental tasks for Chinese language processing. Previous studies have demonstrated that jointly performing them can be an effective one-step solution to both tasks and this joint task can benefit from a good modeling of contextual features such as n-grams. However, their work on modeling such contextual features is limited to concatenating the features or their embeddings directly with the input embeddings without distinguishing whether the contextual features are important for the joint task in the specific context. Therefore, their models for the joint task could be misled by unimportant contextual information. In this paper, we propose a character-based neural model for the joint task enhanced by multi-channel attention of n-grams. In the attention module, n-gram features are categorized into different groups according to several criteria, and n-grams in each group are weighted and distinguished according to their importance for the joint task in the specific context. To categorize n-grams, we try two criteria in this study, i.e., n-gram frequency and length, so that n-grams having different capabilities of carrying contextual information are discriminatively learned by our proposed attention module. Experimental results on five benchmark datasets for CWS and POS tagging demonstrate that our approach outperforms strong baseline models and achieves state-of-the-art performance on all five datasets.
Constituency parsing is a fundamental and important task for natural language understanding, where a good representation of contextual information can help this task. N-grams, which is a conventional type of feature for contextual information, have been demonstrated to be useful in many tasks, and thus could also be beneficial for constituency parsing if they are appropriately modeled. In this paper, we propose span attention for neural chart-based constituency parsing to leverage n-gram information. Considering that current chart-based parsers with Transformer-based encoder represent spans by subtraction of the hidden states at the span boundaries, which may cause information loss especially for long spans, we incorporate n-grams into span representations by weighting them according to their contributions to the parsing process. Moreover, we propose categorical span attention to further enhance the model by weighting n-grams within different length categories, and thus benefit long-sentence parsing. Experimental results on three widely used benchmark datasets demonstrate the effectiveness of our approach in parsing Arabic, Chinese, and English, where state-of-the-art performance is obtained by our approach on all of them.
Named entity recognition (NER) is highly sensitive to sentential syntactic and semantic properties where entities may be extracted according to how they are used and placed in the running text. To model such properties, one could rely on existing resources to providing helpful knowledge to the NER task; some existing studies proved the effectiveness of doing so, and yet are limited in appropriately leveraging the knowledge such as distinguishing the important ones for particular context. In this paper, we improve NER by leveraging different types of syntactic information through attentive ensemble, which functionalizes by the proposed key-value memory networks, syntax attention, and the gate mechanism for encoding, weighting and aggregating such syntactic information, respectively. Experimental results on six English and Chinese benchmark datasets suggest the effectiveness of the proposed model and show that it outperforms previous studies on all experiment datasets.
Question answering (QA) is a challenging task in natural language processing (NLP), especially when it is applied to specific domains. While models trained in the general domain can be adapted to a new target domain, their performance often degrades significantly due to domain mismatch. Alternatively, one can require a large amount of domain-specific QA data, but such data are rare, especially for the medical domain. In this study, we first collect a large-scale Chinese medical QA corpus called ChiMed; second we annotate a small fraction of the corpus to check the quality of the answers; third, we extract two datasets from the corpus and use them for the relevancy prediction task and the adoption prediction task. Several benchmark models are applied to the datasets, producing good results for both tasks.
Natural language inference (NLI) is challenging, especially when it is applied to technical domains such as biomedical settings. In this paper, we propose a hybrid approach to biomedical NLI where different types of information are exploited for this task. Our base model includes a pre-trained text encoder as the core component, and a syntax encoder and a feature encoder to capture syntactic and domain-specific information. Then we combine the output of different base models to form more powerful ensemble models. Finally, we design two conflict resolution strategies when the test data contain multiple (premise, hypothesis) pairs with the same premise. We train our models on the MedNLI dataset, yielding the best performance on the test set of the MEDIQA 2019 Task 1.