Yong Jiang


2024

pdf
Balancing Speciality and Versatility: a Coarse to Fine Framework for Supervised Fine-tuning Large Language Model
Hengyuan Zhang | Yanru Wu | Dawei Li | Sak Yang | Rui Zhao | Yong Jiang | Fei Tan
Findings of the Association for Computational Linguistics ACL 2024

Aligned Large Language Models (LLMs) showcase remarkable versatility, capable of handling diverse real-world tasks. Meanwhile, aligned LLMs are also expected to exhibit speciality, excelling in specific applications. However, fine-tuning with extra data, a common practice to gain speciality, often leads to catastrophic forgetting (CF) of previously acquired versatility, hindering the model’s performance across diverse tasks. In response to this challenge, we propose CoFiTune, a coarse to fine framework in an attempt to strike the balance between speciality and versatility. At the coarse-grained level, an empirical tree-search algorithm is utilized to pinpoint and update specific modules that are crucial for speciality, while keeping other parameters frozen; at the fine-grained level, a soft-masking mechanism regulates the update to the LLMs, mitigating the CF issue without harming speciality. In an overall evaluation of both speciality and versatility, CoFiTune consistently outperforms baseline methods across diverse tasks and model scales. Compared to the full-parameter SFT, CoFiTune leads to about 14% versatility improvement and marginal speciality loss on a 13B model. Lastly, based on further analysis, we provide a speculative insight into the information forwarding process in LLMs, which helps explain the effectiveness of the proposed method. The code is available at https://github.com/rattlesnakey/CoFiTune.

pdf
Improving Retrieval Augmented Open-Domain Question-Answering with Vectorized Contexts
Zhuo Chen | Xinyu Wang | Yong Jiang | Pengjun Xie | Fei Huang | Kewei Tu
Findings of the Association for Computational Linguistics ACL 2024

In the era of large language models, applying techniques such as Retrieval Augmented Generation can better address Open-Domain Question-Answering problems. Due to constraints including model sizes and computing resources, the length of context is often limited, and it becomes challenging to empower the model to cover overlong contexts while answering questions from open domains. This paper proposes a general and convenient method to cover longer contexts in Open-Domain Question-Answering tasks. %It leverages a small encoder language model that effectively encodes contexts, and the encoding applies cross-attention with origin inputs.It leverages a small encoder and cross-attention mechanism and effectively encodes contexts. With our method, the original language models can cover several times longer contexts while keeping the computing requirements close to the baseline. Our experiments demonstrate that after fine-tuning, there is improved performance across two held-in datasets, four held-out datasets, and also in two In Context Learning settings. Our code will be released at https://github.com/Alibaba-NLP/Vec-RA-ODQA.

pdf
Exploring Key Point Analysis with Pairwise Generation and Graph Partitioning
Xiao Li | Yong Jiang | Shen Huang | Pengjun Xie | Gong Cheng | Fei Huang
Proceedings of the 2024 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers)

Key Point Analysis (KPA), the summarization of multiple arguments into a concise collection of key points, continues to be a significant and unresolved issue within the field of argument mining. Existing models adapt a two-stage pipeline of clustering arguments or generating key points for argument clusters. This approach rely on semantic similarity instead of measuring the existence of shared key points among arguments. Additionally, it only models the intra-cluster relationship among arguments, disregarding the inter-cluster relationship between arguments that do not share key points. To address these limitations, we propose a novel approach for KPA with pairwise generation and graph partitioning. Our objective is to train a generative model that can simultaneously provide a score indicating the presence of shared key point between a pair of arguments and generate the shared key point. Subsequently, to map generated redundant key points to a concise set of key points, we proceed to construct an arguments graph by considering the arguments as vertices, the generated key points as edges, and the scores as edge weights. We then propose a graph partitioning algorithm to partition all arguments sharing the same key points to the same subgraph. Notably, our experimental findings demonstrate that our proposed model surpasses previous models when evaluated on both the ArgKP and QAM datasets.

pdf bib
Quantized Side Tuning: Fast and Memory-Efficient Tuning of Quantized Large Language Models
Zhengxin Zhang | Dan Zhao | Xupeng Miao | Gabriele Oliaro | Zhihao Zhang | Qing Li | Yong Jiang | Zhihao Jia
Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Finetuning large language models (LLMs) has been empirically effective on a variety of downstream tasks. Existing approaches to finetuning an LLM either focus on parameter-efficient finetuning, which only updates a small number of trainable parameters, or attempt to reduce the memory footprint during the training phase of the finetuning. Typically, the memory footprint during finetuning stems from three contributors: model weights, optimizer states, and intermediate activations. However, existing works still require considerable memory, and none can simultaneously mitigate the memory footprint of all three sources. In this paper, we present quantized side tuing (QST), which enables memory-efficient and fast finetuning of LLMs by operating through a dual-stage process. First, QST quantizes an LLM’s model weights into 4-bit to reduce the memory footprint of the LLM’s original weights. Second, QST introduces a side network separated from the LLM, which utilizes the hidden states of the LLM to make task-specific predictions. Using a separate side network avoids performing back-propagation through the LLM, thus reducing the memory requirement of the intermediate activations. Finally, QST leverages several low-rank adaptors and gradient-free downsample modules to significantly reduce the trainable parameters, so as to save the memory footprint of the optimizer states. Experiments show that QST can reduce the total memory footprint by up to 2.3× and speed up the finetuning process by up to 3× while achieving competent performance compared with the state-of-the-art. When it comes to full finetuning, QST can reduce the total memory footprint up to 7×.

pdf
Towards Real-World Writing Assistance: A Chinese Character Checking Benchmark with Faked and Misspelled Characters
Yinghui Li | Zishan Xu | Shaoshen Chen | Haojing Huang | Yangning Li | Shirong Ma | Yong Jiang | Zhongli Li | Qingyu Zhou | Hai-Tao Zheng | Ying Shen
Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Writing assistance aims to improve the correctness and quality of input texts, with character checking being crucial in detecting and correcting wrong characters. In the real world where handwriting occupies the vast majority, characters that humans get wrong include faked characters (i.e., untrue characters created due to writing errors) and misspelled characters (i.e., true characters used incorrectly due to spelling errors). However, existing datasets and related studies only focus on misspelled characters that can be represented by computer text encoding systems, thereby ignoring faked characters which are more common and difficult. To break through this dilemma, we present Visual-C3, a human-annotated Visual Chinese Character Checking dataset with faked and misspelled Chinese characters. To the best of our knowledge, Visual-C3 is the first real-world visual and the largest human-crafted dataset for the Chinese character checking scenario. Additionally, we also propose and evaluate novel baseline methods on Visual-C3. Extensive empirical results and analyses show that Visual-C3 is high-quality yet challenging. As the first study focusing on Chinese faked characters, the dataset and the baseline methods are publicly available at https://github.com/THUKElab/Visual-C3.

2023

pdf
DAMO-NLP at SemEval-2023 Task 2: A Unified Retrieval-augmented System for Multilingual Named Entity Recognition
Zeqi Tan | Shen Huang | Zixia Jia | Jiong Cai | Yinghui Li | Weiming Lu | Yueting Zhuang | Kewei Tu | Pengjun Xie | Fei Huang | Yong Jiang
Proceedings of the 17th International Workshop on Semantic Evaluation (SemEval-2023)

The MultiCoNER II shared task aims to tackle multilingual named entity recognition (NER) in fine-grained and noisy scenarios, and it inherits the semantic ambiguity and low-context setting of the MultiCoNER I task. To cope with these problems, the previous top systems in the MultiCoNER I either incorporate the knowledge bases or gazetteers. However, they still suffer from insufficient knowledge, limited context length, single retrieval strategy. In this paper, our team DAMO-NLP proposes a unified retrieval-augmented system (U-RaNER) for fine-grained multilingual NER. We perform error analysis on the previous top systems and reveal that their performance bottleneck lies in insufficient knowledge. Also, we discover that the limited context length causes the retrieval knowledge to be invisible to the model. To enhance the retrieval context, we incorporate the entity-centric Wikidata knowledge base, while utilizing the infusion approach to broaden the contextual scope of the model. Also, we explore various search strategies and refine the quality of retrieval knowledge. Our system wins 9 out of 13 tracks in the MultiCoNER II shared task. Additionally, we compared our system with ChatGPT, one of the large language models which have unlocked strong capabilities on many tasks. The results show that there is still much room for improvement for ChatGPT on the extraction task.

pdf
Assisting Language Learners: Automated Trans-Lingual Definition Generation via Contrastive Prompt Learning
Hengyuan Zhang | Dawei Li | Yanran Li | Chenming Shang | Chufan Shi | Yong Jiang
Proceedings of the 18th Workshop on Innovative Use of NLP for Building Educational Applications (BEA 2023)

The standard definition generation task requires to automatically produce mono-lingual definitions (e.g., English definitions for English words), but ignores that the generated definitions may also consist of unfamiliar words for language learners. In this work, we propose a novel task of Trans-Lingual Definition Generation (TLDG), which aims to generate definitions in another language, i.e., the native speaker’s language. Initially, we explore the unsupervised manner of this task and build up a simple implementation of fine-tuning the multi-lingual machine translation model. Then, we develop two novel methods, Prompt Combination and Contrastive Prompt Learning, for further enhancing the quality of the generation. Our methods are evaluated against the baseline Pipeline method in both rich- and low-resource settings, and we empirically establish its superiority in generating higher-quality trans-lingual definitions.

pdf
Entity-to-Text based Data Augmentation for various Named Entity Recognition Tasks
Xuming Hu | Yong Jiang | Aiwei Liu | Zhongqiang Huang | Pengjun Xie | Fei Huang | Lijie Wen | Philip S. Yu
Findings of the Association for Computational Linguistics: ACL 2023

Data augmentation techniques have been used to alleviate the problem of scarce labeled data in various NER tasks (flat, nested, and discontinuous NER tasks). Existing augmentation techniques either manipulate the words in the original text that break the semantic coherence of the text, or exploit generative models that ignore preserving entities in the original text, which impedes the use of augmentation techniques on nested and discontinuous NER tasks. In this work, we propose a novel Entity-to-Text based data augmentation technique named EnTDA to add, delete, replace or swap entities in the entity list of the original texts, and adopt these augmented entity lists to generate semantically coherent and entity preserving texts for various NER tasks. Furthermore, we introduce a diversity beam search to increase the diversity during the text generation process. Experiments on thirteen NER datasets across three tasks (flat, nested, and discontinuous NER tasks) and two settings (full data and low resource settings) show that EnTDA could bring more performance improvements compared to the baseline augmentation techniques.

pdf
COMBO: A Complete Benchmark for Open KG Canonicalization
Chengyue Jiang | Yong Jiang | Weiqi Wu | Yuting Zheng | Pengjun Xie | Kewei Tu
Proceedings of the 17th Conference of the European Chapter of the Association for Computational Linguistics

Open knowledge graph (KG) consists of (subject, relation, object) triples extracted from millions of raw text. The subject and object noun phrases and the relation in open KG have severe redundancy and ambiguity and need to be canonicalized. Existing datasets for open KG canonicalization only provide gold entity-level canonicalization for noun phrases. In this paper, we present COMBO, a Complete Benchmark for Open KG canonicalization. Compared with existing datasets, we additionally provide gold canonicalization for relation phrases, gold ontology-level canonicalization for noun phrases, as well as source sentences from which triples are extracted. We also propose metrics for evaluating each type of canonicalization. On the COMBO dataset, we empirically compare previously proposed canonicalization methods as well as a few simple baseline methods based on pretrained language models. We find that properly encoding the phrases in a triple using pretrained language models results in better relation canonicalization and ontology-level canonicalization of the noun phrase. We release our dataset, baselines, and evaluation scripts at path/to/url.

pdf
Do PLMs Know and Understand Ontological Knowledge?
Weiqi Wu | Chengyue Jiang | Yong Jiang | Pengjun Xie | Kewei Tu
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Ontological knowledge, which comprises classes and properties and their relationships, is integral to world knowledge. It is significant to explore whether Pretrained Language Models (PLMs) know and understand such knowledge. However, existing PLM-probing studies focus mainly on factual knowledge, lacking a system- atic probing of ontological knowledge. In this paper, we focus on probing whether PLMs store ontological knowledge and have a semantic un- derstanding of the knowledge rather than rote memorization of the surface form. To probe whether PLMs know ontological knowledge, we investigate how well PLMs memorize: (1) types of entities; (2) hierarchical relationships among classes and properties, e.g., Person is a subclass of Animal and Member of Sports Team is a subproperty of Member of ; (3) domain and range constraints of properties, e.g., the subject of Member of Sports Team should be a Person and the object should be a Sports Team. To further probe whether PLMs truly understand ontological knowledge beyond memorization, we comprehensively study whether they can reliably perform logical reasoning with given knowledge according to ontological entailment rules. Our probing results show that PLMs can memorize certain ontological knowledge and utilize implicit knowledge in reasoning. How- ever, both the memorizing and reasoning per- formances are less than perfect, indicating in- complete knowledge and understanding.

pdf
MANNER: A Variational Memory-Augmented Model for Cross Domain Few-Shot Named Entity Recognition
Jinyuan Fang | Xiaobin Wang | Zaiqiao Meng | Pengjun Xie | Fei Huang | Yong Jiang
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

This paper focuses on the task of cross domain few-shot named entity recognition (NER), which aims to adapt the knowledge learned from source domain to recognize named entities in target domain with only a few labeled examples. To address this challenging task, we propose MANNER, a variational memory-augmented few-shot NER model. Specifically, MANNER uses a memory module to store information from the source domain and then retrieve relevant information from the memory to augment few-shot task in the target domain. In order to effectively utilize the information from memory, MANNER uses optimal transport to retrieve and process information from memory, which can explicitly adapt the retrieved information from source domain to target domain and improve the performance in the cross domain few-shot setting. We conduct experiments on English and Chinese cross domain few-shot NER datasets, and the experimental results demonstrate that MANNER can achieve superior performance.

pdf
Recall, Expand, and Multi-Candidate Cross-Encode: Fast and Accurate Ultra-Fine Entity Typing
Chengyue Jiang | Wenyang Hui | Yong Jiang | Xiaobin Wang | Pengjun Xie | Kewei Tu
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Ultra-fine entity typing (UFET) predicts extremely free-formed types (e.g., president, politician) of a given entity mention (e.g., Joe Biden) in context. State-of-the-art (SOTA) methods use the cross-encoder (CE) based architecture. CE concatenates a mention (and its context) with each type and feeds the pair into a pretrained language model (PLM) to score their relevance. It brings deeper interaction between the mention and the type to reach better performance but has to perform N (the type set size) forward passes to infer all the types of a single mention. CE is therefore very slow in inference when the type set is large (e.g., N=10k for UFET). % Cross-encoder also ignores the correlation between different types.To this end, we propose to perform entity typing in a recall-expand-filter manner. The recall and expansion stages prune the large type set and generate K (typically much smaller than N) most relevant type candidates for each mention. At the filter stage, we use a novel model called {pasted macro ‘NAME’} to concurrently encode and score all these K candidates in only one forward pass to obtain the final type prediction. We investigate different model options for each stage and conduct extensive experiments to compare each option, experiments show that our method reaches SOTA performance on UFET and is thousands of times faster than the CE-based architecture. We also found our method is very effective in fine-grained (130 types) and coarse-grained (9 types) entity typing. Our code is available at {pasted macro ‘CODE’}.

pdf
Improving Low-resource Named Entity Recognition with Graph Propagated Data Augmentation
Jiong Cai | Shen Huang | Yong Jiang | Zeqi Tan | Pengjun Xie | Kewei Tu
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers)

Data augmentation is an effective solution to improve model performance and robustness for low-resource named entity recognition (NER). However, synthetic data often suffer from poor diversity, which leads to performance limitations. In this paper, we propose a novel Graph Propagated Data Augmentation (GPDA) framework for Named Entity Recognition (NER), leveraging graph propagation to build relationships between labeled data and unlabeled natural texts. By projecting the annotations from the labeled text to the unlabeled text, the unlabeled texts are partially labeled, which has more diversity rather than synthetic annotated data. To strengthen the propagation precision, a simple search engine built on Wikipedia is utilized to fetch related texts of labeled data and to propagate the entity labels to them in the light of the anchor links. Besides, we construct and perform experiments on a real-world low-resource dataset of the E-commerce domain, which will be publicly available to facilitate the low-resource NER research. Experimental results show that GPDA presents substantial improvements over previous data augmentation methods on multiple low-resource NER datasets.

2022

pdf
Domain-Specific NER via Retrieving Correlated Samples
Xin Zhang | Yong Jiang | Xiaobin Wang | Xuming Hu | Yueheng Sun | Pengjun Xie | Meishan Zhang
Proceedings of the 29th International Conference on Computational Linguistics

Successful Machine Learning based Named Entity Recognition models could fail on texts from some special domains, for instance, Chinese addresses and e-commerce titles, where requires adequate background knowledge. Such texts are also difficult for human annotators. In fact, we can obtain some potentially helpful information from correlated texts, which have some common entities, to help the text understanding. Then, one can easily reason out the correct answer by referencing correlated samples. In this paper, we suggest enhancing NER models with correlated samples. We draw correlated samples by the sparse BM25 retriever from large-scale in-domain unlabeled data. To explicitly simulate the human reasoning process, we perform a training-free entity type calibrating by majority voting. To capture correlation features in the training stage, we suggest to model correlated samples by the transformer-based multi-instance cross-encoder. Empirical results on datasets of the above two domains show the efficacy of our methods.

pdf
Semantic Role Labeling as Dependency Parsing: Exploring Latent Tree Structures inside Arguments
Yu Zhang | Qingrong Xia | Shilin Zhou | Yong Jiang | Guohong Fu | Min Zhang
Proceedings of the 29th International Conference on Computational Linguistics

Semantic role labeling (SRL) is a fundamental yet challenging task in the NLP community. Recent works of SRL mainly fall into two lines: 1) BIO-based; 2) span-based. Despite ubiquity, they share some intrinsic drawbacks of not considering internal argument structures, potentially hindering the model’s expressiveness. The key challenge is arguments are flat structures, and there are no determined subtree realizations for words inside arguments. To remedy this, in this paper, we propose to regard flat argument spans as latent subtrees, accordingly reducing SRL to a tree parsing task. In particular, we equip our formulation with a novel span-constrained TreeCRF to make tree structures span-aware and further extend it to the second-order case. We conduct extensive experiments on CoNLL05 and CoNLL12 benchmarks. Results reveal that our methods perform favorably better than all previous syntax-agnostic works, achieving new state-of-the-art under both end-to-end and w/ gold predicates settings.

pdf
Named Entity and Relation Extraction with Multi-Modal Retrieval
Xinyu Wang | Jiong Cai | Yong Jiang | Pengjun Xie | Kewei Tu | Wei Lu
Findings of the Association for Computational Linguistics: EMNLP 2022

Multi-modal named entity recognition (NER) and relation extraction (RE) aim to leverage relevant image information to improve the performance of NER and RE. Most existing efforts largely focused on directly extracting potentially useful information from images (such as pixel-level features, identified objects, and associated captions).However, such extraction processes may not be knowledge aware, resulting in information that may not be highly relevant.In this paper, we propose a novel Multi-modal Retrieval based framework (MoRe).MoRe contains a text retrieval module and an image-based retrieval module, which retrieve related knowledge of the input text and image in the knowledge corpus respectively.Next, the retrieval results are sent to the textual and visual models respectively for predictions.Finally, a Mixture of Experts (MoE) module combines the predictions from the two models to make the final decision.Our experiments show that both our textual model and visual model can achieve state-of-the-art performance on four multi-modal NER datasets and one multi-modal RE dataset.With MoE, the model performance can be further improved and our analysis demonstrates the benefits of integrating both textual and visual cues for such tasks.

pdf
DAMO-NLP at SemEval-2022 Task 11: A Knowledge-based System for Multilingual Named Entity Recognition
Xinyu Wang | Yongliang Shen | Jiong Cai | Tao Wang | Xiaobin Wang | Pengjun Xie | Fei Huang | Weiming Lu | Yueting Zhuang | Kewei Tu | Wei Lu | Yong Jiang
Proceedings of the 16th International Workshop on Semantic Evaluation (SemEval-2022)

The MultiCoNER shared task aims at detecting semantically ambiguous and complex named entities in short and low-context settings for multiple languages. The lack of contexts makes the recognition of ambiguous named entities challenging. To alleviate this issue, our team DAMO-NLP proposes a knowledge-based system, where we build a multilingual knowledge base based on Wikipedia to provide related context information to the named entity recognition (NER) model. Given an input sentence, our system effectively retrieves related contexts from the knowledge base. The original input sentences are then augmented with such context information, allowing significantly better contextualized token representations to be captured. Our system wins 10 out of 13 tracks in the MultiCoNER shared task.

pdf
ITA: Image-Text Alignments for Multi-Modal Named Entity Recognition
Xinyu Wang | Min Gui | Yong Jiang | Zixia Jia | Nguyen Bach | Tao Wang | Zhongqiang Huang | Kewei Tu
Proceedings of the 2022 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies

Recently, Multi-modal Named Entity Recognition (MNER) has attracted a lot of attention. Most of the work utilizes image information through region-level visual representations obtained from a pretrained object detector and relies on an attention mechanism to model the interactions between image and text representations. However, it is difficult to model such interactions as image and text representations are trained separately on the data of their respective modality and are not aligned in the same space. As text representations take the most important role in MNER, in this paper, we propose Image-text Alignments (ITA) to align image features into the textual space, so that the attention mechanism in transformer-based pretrained textual embeddings can be better utilized. ITA first aligns the image into regional object tags, image-level captions and optical characters as visual contexts, concatenates them with the input texts as a new cross-modal input, and then feeds it into a pretrained textual embedding model. This makes it easier for the attention module of a pretrained textual embedding model to model the interaction between the two modalities since they are both represented in the textual space. ITA further aligns the output distributions predicted from the cross-modal input and textual input views so that the MNER model can be more practical in dealing with text-only inputs and robust to noises from images. In our experiments, we show that ITA models can achieve state-of-the-art accuracy on multi-modal Named Entity Recognition datasets, even without image information.

pdf
Modeling Label Correlations for Ultra-Fine Entity Typing with Neural Pairwise Conditional Random Field
Chengyue Jiang | Yong Jiang | Weiqi Wu | Pengjun Xie | Kewei Tu
Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing

Ultra-fine entity typing (UFET) aims to predict a wide range of type phrases that correctly describe the categories of a given entity mention in a sentence. Most recent works infer each entity type independently, ignoring the correlations between types, e.g., when an entity is inferred as a president, it should also be a politician and a leader. To this end, we use an undirected graphical model called pairwise conditional random field (PCRF) to formulate the UFET problem, in which the type variables are not only unarily influenced by the input but also pairwisely relate to all the other type variables. We use various modern backbones for entity typing to compute unary potentials, and derive pairwise potentials from type phrase representations that both capture prior semantic information and facilitate accelerated inference. We use mean-field variational inference for efficient type inference on very large type sets and unfold it as a neural network module to enable end-to-end training. Experiments on UFET show that the Neural-PCRF consistently outperforms its backbones with little cost and results in a competitive performance against cross-encoder based SOTA while being thousands of times faster. We also find Neural-PCRF effective on a widely used fine-grained entity typing dataset with a smaller type set. We pack Neural-PCRF as a network module that can be plugged onto multi-label type classifiers with ease and release it in .

2021

pdf
Structural Knowledge Distillation: Tractably Distilling Information for Structured Predictor
Xinyu Wang | Yong Jiang | Zhaohui Yan | Zixia Jia | Nguyen Bach | Tao Wang | Zhongqiang Huang | Fei Huang | Kewei Tu
Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers)

Knowledge distillation is a critical technique to transfer knowledge between models, typically from a large model (the teacher) to a more fine-grained one (the student). The objective function of knowledge distillation is typically the cross-entropy between the teacher and the student’s output distributions. However, for structured prediction problems, the output space is exponential in size; therefore, the cross-entropy objective becomes intractable to compute and optimize directly. In this paper, we derive a factorized form of the knowledge distillation objective for structured prediction, which is tractable for many typical choices of the teacher and student models. In particular, we show the tractability and empirical effectiveness of structural knowledge distillation between sequence labeling and dependency parsing models under four different scenarios: 1) the teacher and student share the same factorization form of the output structure scoring function; 2) the student factorization produces more fine-grained substructures than the teacher factorization; 3) the teacher factorization produces more fine-grained substructures than the student factorization; 4) the factorization forms from the teacher and the student are incompatible.

pdf
Improving Named Entity Recognition by External Context Retrieving and Cooperative Learning
Xinyu Wang | Yong Jiang | Nguyen Bach | Tao Wang | Zhongqiang Huang | Fei Huang | Kewei Tu
Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers)

Recent advances in Named Entity Recognition (NER) show that document-level contexts can significantly improve model performance. In many application scenarios, however, such contexts are not available. In this paper, we propose to find external contexts of a sentence by retrieving and selecting a set of semantically relevant texts through a search engine, with the original sentence as the query. We find empirically that the contextual representations computed on the retrieval-based input view, constructed through the concatenation of a sentence and its external contexts, can achieve significantly improved performance compared to the original input view based only on the sentence. Furthermore, we can improve the model performance of both input views by Cooperative Learning, a training method that encourages the two input views to produce similar contextual representations or output label distributions. Experiments show that our approach can achieve new state-of-the-art performance on 8 NER data sets across 5 domains.

pdf
Automated Concatenation of Embeddings for Structured Prediction
Xinyu Wang | Yong Jiang | Nguyen Bach | Tao Wang | Zhongqiang Huang | Fei Huang | Kewei Tu
Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers)

Pretrained contextualized embeddings are powerful word representations for structured prediction tasks. Recent work found that better word representations can be obtained by concatenating different types of embeddings. However, the selection of embeddings to form the best concatenated representation usually varies depending on the task and the collection of candidate embeddings, and the ever-increasing number of embedding types makes it a more difficult problem. In this paper, we propose Automated Concatenation of Embeddings (ACE) to automate the process of finding better concatenations of embeddings for structured prediction tasks, based on a formulation inspired by recent progress on neural architecture search. Specifically, a controller alternately samples a concatenation of embeddings, according to its current belief of the effectiveness of individual embedding types in consideration for a task, and updates the belief based on a reward. We follow strategies in reinforcement learning to optimize the parameters of the controller and compute the reward based on the accuracy of a task model, which is fed with the sampled concatenation as input and trained on a task dataset. Empirical results on 6 tasks and 21 datasets show that our approach outperforms strong baselines and achieves state-of-the-art performance with fine-tuned embeddings in all the evaluations.

pdf
Multi-View Cross-Lingual Structured Prediction with Minimum Supervision
Zechuan Hu | Yong Jiang | Nguyen Bach | Tao Wang | Zhongqiang Huang | Fei Huang | Kewei Tu
Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers)

In structured prediction problems, cross-lingual transfer learning is an efficient way to train quality models for low-resource languages, and further improvement can be obtained by learning from multiple source languages. However, not all source models are created equal and some may hurt performance on the target language. Previous work has explored the similarity between source and target sentences as an approximate measure of strength for different source models. In this paper, we propose a multi-view framework, by leveraging a small number of labeled target sentences, to effectively combine multiple source models into an aggregated source view at different granularity levels (language, sentence, or sub-structure), and transfer it to a target view based on a task-specific model. By encouraging the two views to interact with each other, our framework can dynamically adjust the confidence level of each source model and improve the performance of both views during training. Experiments for three structured prediction tasks on sixteen data sets show that our framework achieves significant improvement over all existing approaches, including these with access to additional source language data.

pdf
Towards Emotional Support Dialog Systems
Siyang Liu | Chujie Zheng | Orianna Demasi | Sahand Sabour | Yu Li | Zhou Yu | Yong Jiang | Minlie Huang
Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers)

Emotional support is a crucial ability for many conversation scenarios, including social interactions, mental health support, and customer service chats. Following reasonable procedures and using various support skills can help to effectively provide support. However, due to the lack of a well-designed task and corpora of effective emotional support conversations, research on building emotional support into dialog systems remains lacking. In this paper, we define the Emotional Support Conversation (ESC) task and propose an ESC Framework, which is grounded on the Helping Skills Theory. We construct an Emotion Support Conversation dataset (ESConv) with rich annotation (especially support strategy) in a help-seeker and supporter mode. To ensure a corpus of high-quality conversations that provide examples of effective emotional support, we take extensive effort to design training tutorials for supporters and several mechanisms for quality control during data collection. Finally, we evaluate state-of-the-art dialog models with respect to the ability to provide emotional support. Our results show the importance of support strategies in providing effective emotional support and the utility of ESConv in training more emotional support systems.

pdf
Diversifying Dialog Generation via Adaptive Label Smoothing
Yida Wang | Yinhe Zheng | Yong Jiang | Minlie Huang
Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers)

Neural dialogue generation models trained with the one-hot target distribution suffer from the over-confidence issue, which leads to poor generation diversity as widely reported in the literature. Although existing approaches such as label smoothing can alleviate this issue, they fail to adapt to diverse dialog contexts. In this paper, we propose an Adaptive Label Smoothing (AdaLabel) approach that can adaptively estimate a target label distribution at each time step for different contexts. The maximum probability in the predicted distribution is used to modify the soft target distribution produced by a novel light-weight bi-directional decoder module. The resulting target distribution is aware of both previous and future contexts and is adjusted to avoid over-training the dialogue model. Our model can be trained in an endto-end manner. Extensive experiments on two benchmark datasets show that our approach outperforms various competitive baselines in producing diverse responses.

pdf
Risk Minimization for Zero-shot Sequence Labeling
Zechuan Hu | Yong Jiang | Nguyen Bach | Tao Wang | Zhongqiang Huang | Fei Huang | Kewei Tu
Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers)

Zero-shot sequence labeling aims to build a sequence labeler without human-annotated datasets. One straightforward approach is utilizing existing systems (source models) to generate pseudo-labeled datasets and train a target sequence labeler accordingly. However, due to the gap between the source and the target languages/domains, this approach may fail to recover the true labels. In this paper, we propose a novel unified framework for zero-shot sequence labeling with minimum risk training and design a new decomposable risk function that models the relations between the predicted labels from the source models and the true labels. By making the risk function trainable, we draw a connection between minimum risk training and latent variable model learning. We propose a unified learning algorithm based on the expectation maximization (EM) algorithm. We extensively evaluate our proposed approaches on cross-lingual/domain sequence labeling tasks over twenty-one datasets. The results show that our approaches outperform state-of-the-art baseline systems.

pdf bib
Unsupervised Natural Language Parsing (Introductory Tutorial)
Kewei Tu | Yong Jiang | Wenjuan Han | Yanpeng Zhao
Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Tutorial Abstracts

Unsupervised parsing learns a syntactic parser from training sentences without parse tree annotations. Recently, there has been a resurgence of interest in unsupervised parsing, which can be attributed to the combination of two trends in the NLP community: a general trend towards unsupervised training or pre-training, and an emerging trend towards finding or modeling linguistic structures in neural models. In this tutorial, we will introduce to the general audience what unsupervised parsing does and how it can be useful for and beyond syntactic parsing. We will then provide a systematic overview of major classes of approaches to unsupervised parsing, namely generative and discriminative approaches, and analyze their relative strengths and weaknesses. We will cover both decade-old statistical approaches and more recent neural approaches to give the audience a sense of the historical and recent development of the field. We will also discuss emerging research topics such as BERT-based approaches and visually grounded learning.

pdf
Generalized Supervised Attention for Text Generation
Yixian Liu | Liwen Zhang | Xinyu Zhang | Yong Jiang | Yue Zhang | Kewei Tu
Findings of the Association for Computational Linguistics: ACL-IJCNLP 2021

pdf
Enhanced Universal Dependency Parsing with Automated Concatenation of Embeddings
Xinyu Wang | Zixia Jia | Yong Jiang | Kewei Tu
Proceedings of the 17th International Conference on Parsing Technologies and the IWPT 2021 Shared Task on Parsing into Enhanced Universal Dependencies (IWPT 2021)

This paper describe the system used in our submission to the IWPT 2021 Shared Task. Our system is a graph-based parser with the technique of Automated Concatenation of Embeddings (ACE). Because recent work found that better word representations can be obtained by concatenating different types of embeddings, we use ACE to automatically find the better concatenation of embeddings for the task of enhanced universal dependencies. According to official results averaged on 17 languages, our system rank 2nd over 9 teams.

pdf
MuVER: Improving First-Stage Entity Retrieval with Multi-View Entity Representations
Xinyin Ma | Yong Jiang | Nguyen Bach | Tao Wang | Zhongqiang Huang | Fei Huang | Weiming Lu
Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing

Entity retrieval, which aims at disambiguating mentions to canonical entities from massive KBs, is essential for many tasks in natural language processing. Recent progress in entity retrieval shows that the dual-encoder structure is a powerful and efficient framework to nominate candidates if entities are only identified by descriptions. However, they ignore the property that meanings of entity mentions diverge in different contexts and are related to various portions of descriptions, which are treated equally in previous works. In this work, we propose Multi-View Entity Representations (MuVER), a novel approach for entity retrieval that constructs multi-view representations for entity descriptions and approximates the optimal view for mentions via a heuristic searching method. Our method achieves the state-of-the-art performance on ZESHEL and improves the quality of candidates on three standard Entity Linking datasets.

pdf
Word Reordering for Zero-shot Cross-lingual Structured Prediction
Tao Ji | Yong Jiang | Tao Wang | Zhongqiang Huang | Fei Huang | Yuanbin Wu | Xiaoling Wang
Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing

Adapting word order from one language to another is a key problem in cross-lingual structured prediction. Current sentence encoders (e.g., RNN, Transformer with position embeddings) are usually word order sensitive. Even with uniform word form representations (MUSE, mBERT), word order discrepancies may hurt the adaptation of models. In this paper, we build structured prediction models with bag-of-words inputs, and introduce a new reordering module to organizing words following the source language order, which learns task-specific reordering strategies from a general-purpose order predictor model. Experiments on zero-shot cross-lingual dependency parsing, POS tagging, and morphological tagging show that our model can significantly improve target language performances, especially for languages that are distant from the source language.

pdf
A Unified Encoding of Structures in Transition Systems
Tao Ji | Yong Jiang | Tao Wang | Zhongqiang Huang | Fei Huang | Yuanbin Wu | Xiaoling Wang
Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing

Transition systems usually contain various dynamic structures (e.g., stacks, buffers). An ideal transition-based model should encode these structures completely and efficiently. Previous works relying on templates or neural network structures either only encode partial structure information or suffer from computation efficiency. In this paper, we propose a novel attention-based encoder unifying representation of all structures in a transition system. Specifically, we separate two views of items on structures, namely structure-invariant view and structure-dependent view. With the help of parallel-friendly attention network, we are able to encoding transition states with O(1) additional complexity (with respect to basic feature extractors). Experiments on the PTB and UD show that our proposed method significantly improves the test speed and achieves the best transition-based model, and is comparable to state-of-the-art methods.

2020

pdf
Enhanced Universal Dependency Parsing with Second-Order Inference and Mixture of Training Data
Xinyu Wang | Yong Jiang | Kewei Tu
Proceedings of the 16th International Conference on Parsing Technologies and the IWPT 2020 Shared Task on Parsing into Enhanced Universal Dependencies

This paper presents the system used in our submission to the IWPT 2020 Shared Task. Our system is a graph-based parser with second-order inference. For the low-resource Tamil corpora, we specially mixed the training data of Tamil with other languages and significantly improved the performance of Tamil. Due to our misunderstanding of the submission requirements, we submitted graphs that are not connected, which makes our system only rank 6th over 10 teams. However, after we fixed this problem, our system is 0.6 ELAS higher than the team that ranked 1st in the official results.

pdf
An Empirical Comparison of Unsupervised Constituency Parsing Methods
Jun Li | Yifan Cao | Jiong Cai | Yong Jiang | Kewei Tu
Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics

Unsupervised constituency parsing aims to learn a constituency parser from a training corpus without parse tree annotations. While many methods have been proposed to tackle the problem, including statistical and neural methods, their experimental results are often not directly comparable due to discrepancies in datasets, data preprocessing, lexicalization, and evaluation metrics. In this paper, we first examine experimental settings used in previous work and propose to standardize the settings for better comparability between methods. We then empirically compare several existing methods, including decade-old and newly proposed ones, under the standardized settings on English and Japanese, two languages with different branching tendencies. We find that recent models do not show a clear advantage over decade-old models in our experiments. We hope our work can provide new insights into existing methods and facilitate future empirical evaluation of unsupervised constituency parsing.

pdf
Structure-Level Knowledge Distillation For Multilingual Sequence Labeling
Xinyu Wang | Yong Jiang | Nguyen Bach | Tao Wang | Fei Huang | Kewei Tu
Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics

Multilingual sequence labeling is a task of predicting label sequences using a single unified model for multiple languages. Compared with relying on multiple monolingual models, using a multilingual model has the benefit of a smaller model size, easier in online serving, and generalizability to low-resource languages. However, current multilingual models still underperform individual monolingual models significantly due to model capacity limitations. In this paper, we propose to reduce the gap between monolingual models and the unified multilingual model by distilling the structural knowledge of several monolingual models (teachers) to the unified multilingual model (student). We propose two novel KD methods based on structure-level information: (1) approximately minimizes the distance between the student’s and the teachers’ structure-level probability distributions, (2) aggregates the structure-level knowledge to local distributions and minimizes the distance between two local probability distributions. Our experiments on 4 multilingual tasks with 25 datasets show that our approaches outperform several strong baselines and have stronger zero-shot generalizability than both the baseline model and teacher models.

pdf
Adversarial Attack and Defense of Structured Prediction Models
Wenjuan Han | Liwen Zhang | Yong Jiang | Kewei Tu
Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)

Building an effective adversarial attacker and elaborating on countermeasures for adversarial attacks for natural language processing (NLP) have attracted a lot of research in recent years. However, most of the existing approaches focus on classification problems. In this paper, we investigate attacks and defenses for structured prediction tasks in NLP. Besides the difficulty of perturbing discrete words and the sentence fluency problem faced by attackers in any NLP tasks, there is a specific challenge to attackers of structured prediction models: the structured output of structured prediction models is sensitive to small perturbations in the input. To address these problems, we propose a novel and unified framework that learns to attack a structured prediction model using a sequence-to-sequence model with feedbacks from multiple reference models of the same structured prediction task. Based on the proposed attack, we further reinforce the victim model with adversarial training, making its prediction more robust and accurate. We evaluate the proposed framework in dependency parsing and part-of-speech tagging. Automatic and human evaluations show that our proposed framework succeeds in both attacking state-of-the-art structured prediction models and boosting them with adversarial training.

pdf
AIN: Fast and Accurate Sequence Labeling with Approximate Inference Network
Xinyu Wang | Yong Jiang | Nguyen Bach | Tao Wang | Zhongqiang Huang | Fei Huang | Kewei Tu
Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)

The linear-chain Conditional Random Field (CRF) model is one of the most widely-used neural sequence labeling approaches. Exact probabilistic inference algorithms such as the forward-backward and Viterbi algorithms are typically applied in training and prediction stages of the CRF model. However, these algorithms require sequential computation that makes parallelization impossible. In this paper, we propose to employ a parallelizable approximate variational inference algorithm for the CRF model. Based on this algorithm, we design an approximate inference network that can be connected with the encoder of the neural CRF model to form an end-to-end network, which is amenable to parallelization for faster training and prediction. The empirical results show that our proposed approaches achieve a 12.7-fold improvement in decoding speed with long sentences and a competitive accuracy compared with the traditional CRF approach.

pdf
A Survey of Unsupervised Dependency Parsing
Wenjuan Han | Yong Jiang | Hwee Tou Ng | Kewei Tu
Proceedings of the 28th International Conference on Computational Linguistics

Syntactic dependency parsing is an important task in natural language processing. Unsupervised dependency parsing aims to learn a dependency parser from sentences that have no annotation of their correct parse trees. Despite its difficulty, unsupervised parsing is an interesting research direction because of its capability of utilizing almost unlimited unannotated text data. It also serves as the basis for other research in low-resource parsing. In this paper, we survey existing approaches to unsupervised dependency parsing, identify two major classes of approaches, and discuss recent trends. We hope that our survey can provide insights for researchers and facilitate future research on this topic.

pdf
Second-Order Unsupervised Neural Dependency Parsing
Songlin Yang | Yong Jiang | Wenjuan Han | Kewei Tu
Proceedings of the 28th International Conference on Computational Linguistics

Most of the unsupervised dependency parsers are based on first-order probabilistic generative models that only consider local parent-child information. Inspired by second-order supervised dependency parsing, we proposed a second-order extension of unsupervised neural dependency models that incorporate grandparent-child or sibling information. We also propose a novel design of the neural parameterization and optimization methods of the dependency models. In second-order models, the number of grammar rules grows cubically with the increase of vocabulary size, making it difficult to train lexicalized models that may contain thousands of words. To circumvent this problem while still benefiting from both second-order parsing and lexicalization, we use the agreement-based learning framework to jointly train a second-order unlexicalized model and a first-order lexicalized model. Experiments on multiple datasets show the effectiveness of our second-order models compared with recent state-of-the-art methods. Our joint model achieves a 10% improvement over the previous state-of-the-art parser on the full WSJ test set.

pdf
An Investigation of Potential Function Designs for Neural CRF
Zechuan Hu | Yong Jiang | Nguyen Bach | Tao Wang | Zhongqiang Huang | Fei Huang | Kewei Tu
Findings of the Association for Computational Linguistics: EMNLP 2020

The neural linear-chain CRF model is one of the most widely-used approach to sequence labeling. In this paper, we investigate a series of increasingly expressive potential functions for neural CRF models, which not only integrate the emission and transition functions, but also explicitly take the representations of the contextual words as input. Our extensive experiments show that the decomposed quadrilinear potential function based on the vector representations of two neighboring labels and two neighboring words consistently achieves the best performance.

pdf
More Embeddings, Better Sequence Labelers?
Xinyu Wang | Yong Jiang | Nguyen Bach | Tao Wang | Zhongqiang Huang | Fei Huang | Kewei Tu
Findings of the Association for Computational Linguistics: EMNLP 2020

Recent work proposes a family of contextual embeddings that significantly improves the accuracy of sequence labelers over non-contextual embeddings. However, there is no definite conclusion on whether we can build better sequence labelers by combining different kinds of embeddings in various settings. In this paper, we conduct extensive experiments on 3 tasks over 18 datasets and 8 languages to study the accuracy of sequence labeling with various embedding concatenations and make three observations: (1) concatenating more embedding variants leads to better accuracy in rich-resource and cross-domain settings and some conditions of low-resource settings; (2) concatenating contextual sub-word embeddings with contextual character embeddings hurts the accuracy in extremely low-resource settings; (3) based on the conclusion of (1), concatenating additional similar contextual embeddings cannot lead to further improvements. We hope these conclusions can help people build stronger sequence labelers in various settings.

2019

pdf bib
DAL: Dual Adversarial Learning for Dialogue Generation
Shaobo Cui | Rongzhong Lian | Di Jiang | Yuanfeng Song | Siqi Bao | Yong Jiang
Proceedings of the Workshop on Methods for Optimizing and Evaluating Neural Language Generation

In open-domain dialogue systems, generative approaches have attracted much attention for response generation. However, existing methods are heavily plagued by generating safe responses and unnatural responses. To alleviate these two problems, we propose a novel framework named Dual Adversarial Learning(DAL) for high-quality response generation. DAL innovatively utilizes the duality between query generation and response generation to avoid safe responses and increase the diversity of the generated responses. Additionally, DAL uses adversarial learning to mimic human judges and guides the system to generate natural responses. Experimental results demonstrate that DAL effectively improves both diversity and overall quality of the generated responses. DAL outperforms state-of-the-art methods regarding automatic metrics and human evaluations.

pdf
A Regularization-based Framework for Bilingual Grammar Induction
Yong Jiang | Wenjuan Han | Kewei Tu
Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)

Grammar induction aims to discover syntactic structures from unannotated sentences. In this paper, we propose a framework in which the learning process of the grammar model of one language is influenced by knowledge from the model of another language. Unlike previous work on multilingual grammar induction, our approach does not rely on any external resource, such as parallel corpora, word alignments or linguistic phylogenetic trees. We propose three regularization methods that encourage similarity between model parameters, dependency edge scores, and parse trees respectively. We deploy our methods on a state-of-the-art unsupervised discriminative parser and evaluate it on both transfer grammar induction and bilingual grammar induction. Empirical results on multiple languages show that our methods outperform strong baselines.

pdf
Multilingual Grammar Induction with Continuous Language Identification
Wenjuan Han | Ge Wang | Yong Jiang | Kewei Tu
Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)

The key to multilingual grammar induction is to couple grammar parameters of different languages together by exploiting the similarity between languages. Previous work relies on linguistic phylogenetic knowledge to specify similarity between languages. In this work, we propose a novel universal grammar induction approach that represents language identities with continuous vectors and employs a neural network to predict grammar parameters based on the representation. Without any prior linguistic phylogenetic knowledge, we automatically capture similarity between languages with the vector representations and softly tie the grammar parameters of different languages. In our experiments, we apply our approach to 15 languages across 8 language families and subfamilies in the Universal Dependency Treebank dataset, and we observe substantial performance gain on average over monolingual and multilingual baselines.

pdf
Enhancing Unsupervised Generative Dependency Parser with Contextual Information
Wenjuan Han | Yong Jiang | Kewei Tu
Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics

Most of the unsupervised dependency parsers are based on probabilistic generative models that learn the joint distribution of the given sentence and its parse. Probabilistic generative models usually explicit decompose the desired dependency tree into factorized grammar rules, which lack the global features of the entire sentence. In this paper, we propose a novel probabilistic model called discriminative neural dependency model with valence (D-NDMV) that generates a sentence and its parse from a continuous latent representation, which encodes global contextual information of the generated sentence. We propose two approaches to model the latent representation: the first deterministically summarizes the representation from the sentence and the second probabilistically models the representation conditioned on the sentence. Our approach can be regarded as a new type of autoencoder model to unsupervised dependency parsing that combines the benefits of both generative and discriminative techniques. In particular, our approach breaks the context-free independence assumption in previous generative approaches and therefore becomes more expressive. Our extensive experimental results on seventeen datasets from various sources show that our approach achieves competitive accuracy compared with both generative and discriminative state-of-the-art unsupervised dependency parsers.

2017

pdf
CRF Autoencoder for Unsupervised Dependency Parsing
Jiong Cai | Yong Jiang | Kewei Tu
Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing

Unsupervised dependency parsing, which tries to discover linguistic dependency structures from unannotated data, is a very challenging task. Almost all previous work on this task focuses on learning generative models. In this paper, we develop an unsupervised dependency parsing model based on the CRF autoencoder. The encoder part of our model is discriminative and globally normalized which allows us to use rich features as well as universal linguistic priors. We propose an exact algorithm for parsing as well as a tractable learning algorithm. We evaluated the performance of our model on eight multilingual treebanks and found that our model achieved comparable performance with state-of-the-art approaches.

pdf
Dependency Grammar Induction with Neural Lexicalization and Big Training Data
Wenjuan Han | Yong Jiang | Kewei Tu
Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing

We study the impact of big models (in terms of the degree of lexicalization) and big data (in terms of the training corpus size) on dependency grammar induction. We experimented with L-DMV, a lexicalized version of Dependency Model with Valence (Klein and Manning, 2004) and L-NDMV, our lexicalized extension of the Neural Dependency Model with Valence (Jiang et al., 2016). We find that L-DMV only benefits from very small degrees of lexicalization and moderate sizes of training corpora. L-NDMV can benefit from big training data and lexicalization of greater degrees, especially when enhanced with good model initialization, and it achieves a result that is competitive with the current state-of-the-art.

pdf
Combining Generative and Discriminative Approaches to Unsupervised Dependency Parsing via Dual Decomposition
Yong Jiang | Wenjuan Han | Kewei Tu
Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing

Unsupervised dependency parsing aims to learn a dependency parser from unannotated sentences. Existing work focuses on either learning generative models using the expectation-maximization algorithm and its variants, or learning discriminative models using the discriminative clustering algorithm. In this paper, we propose a new learning strategy that learns a generative model and a discriminative model jointly based on the dual decomposition method. Our method is simple and general, yet effective to capture the advantages of both models and improve their learning results. We tested our method on the UD treebank and achieved a state-of-the-art performance on thirty languages.

pdf
Semi-supervised Structured Prediction with Neural CRF Autoencoder
Xiao Zhang | Yong Jiang | Hao Peng | Kewei Tu | Dan Goldwasser
Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing

In this paper we propose an end-to-end neural CRF autoencoder (NCRF-AE) model for semi-supervised learning of sequential structured prediction problems. Our NCRF-AE consists of two parts: an encoder which is a CRF model enhanced by deep neural networks, and a decoder which is a generative model trying to reconstruct the input. Our model has a unified structure with different loss functions for labeled and unlabeled data with shared parameters. We developed a variation of the EM algorithm for optimizing both the encoder and the decoder simultaneously by decoupling their parameters. Our Experimental results over the Part-of-Speech (POS) tagging task on eight different languages, show that our model can outperform competitive systems in both supervised and semi-supervised scenarios.

2016

pdf
Unsupervised Neural Dependency Parsing
Yong Jiang | Wenjuan Han | Kewei Tu
Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing