This is an internal, incomplete preview of a proposed change to the ACL Anthology.
For efficiency reasons, we generate only three BibTeX files per volume, and the preview may be incomplete in other ways, or contain mistakes.
Do not treat this content as an official publication.
In textual question answering (TQA) systems, complex questions often require retrieving multiple textual fact chains with multiple reasoning steps. While existing benchmarks are limited to single-chain or single-hop retrieval scenarios. In this paper, we propose to conduct Graph-Hop —— a novel multi-chains and multi-hops retrieval and reasoning paradigm in complex question answering. We construct a new benchmark called ReasonGraphQA, which provides explicit and fine-grained evidence graphs for complex question to support comprehensive and detailed reasoning. In order to further study how graph-based evidential reasoning can be performed, we explore what form of Graph-Hop works best for generating textual evidence explanations in knowledge reasoning and question answering. We have thoroughly evaluated existing evidence retrieval and reasoning models on the ReasonGraphQA. Experiments highlight Graph-Hop is a promising direction for answering complex questions, but it still has certain limitations. We have further studied mitigation strategies to meet these challenges and discuss future directions.
Recently, with the chain of thought (CoT) prompting, large language models (LLMs), e.g., GPT-3, have shown strong reasoning ability in several natural language processing tasks such as arithmetic, commonsense, and logical reasoning. However, LLMs with CoT require multi-step prompting and multi-token prediction, which is highly sensitive to individual mistakes and vulnerable to error accumulation. The above issues make the LLMs need the ability to verify the answers. In fact, after inferring conclusions in some thinking decision tasks, people often check them by re-verifying steps to avoid some mistakes. In this paper, we propose and prove that LLMs also have similar self-verification abilities. We take the conclusion obtained by CoT as one of the conditions for solving the original problem. By performing a backward verification of the answers that LLM deduced for itself, we can obtain interpretable answer validation scores to select the candidate answer with the highest score. Experimental results demonstrate that the proposed method can improve the reasoning performance on various arithmetic, commonsense, and logical reasoning datasets. Our code is publicly available at: https://github.com/WENGSYX/Self-Verification.
Taxonomies, which organize domain concepts into hierarchical structures, are crucial for building knowledge systems and downstream applications. As domain knowledge evolves, taxonomies need to be continuously updated to include new concepts. Previous approaches have mainly focused on adding concepts to the leaf nodes of the existing hierarchical tree, which does not fully utilize the taxonomy’s knowledge and is unable to update the original taxonomy structure (usually involving non-leaf nodes). In this paper, we propose a two-stage method called ATTEMPT for taxonomy completion. Our method inserts new concepts into the correct position by finding a parent node and labeling child nodes. Specifically, by combining local nodes with prompts to generate natural sentences, we take advantage of pre-trained language models for hypernym/hyponymy recognition. Experimental results on two public datasets (including six domains) show that ATTEMPT performs best on both taxonomy completion and extension tasks, surpassing existing methods.
This paper introduces the approach of Team LingJing’s experiments on SemEval-2022 Task 1 Comparing Dictionaries and Word Embeddings (CODWOE). This task aims at comparing two types of semantic descriptions and including two sub-tasks: the definition modeling and reverse dictionary track. Our team focuses on the reverse dictionary track and adopts the multi-task self-supervised pre-training for multilingual reverse dictionaries. Specifically, the randomly initialized mDeBERTa-base model is used to perform multi-task pre-training on the multilingual training datasets. The pre-training step is divided into two stages, namely the MLM pre-training stage and the contrastive pre-training stage. The experimental results show that the proposed method has achieved good performance in the reverse dictionary track, where we rank the 1-st in the Sgns targets of the EN and RU languages. All the experimental codes are open-sourced at https://github.com/WENGSYX/Semeval.
This paper presents the results and main findings of our system on SemEval-2022 Task 3 Presupposed Taxonomies: Evaluating Neural Network Semantics (PreTENS). This task aims at semantic competence with specific attention on the evaluation of language models, which is a task with respect to the recognition of appropriate taxonomic relations between two nominal arguments. Two sub-tasks including binary classification and regression are designed for the evaluation. For the classification sub-task, we adopt the DeBERTa-v3 pre-trained model for fine-tuning datasets of different languages. Due to the small size of the training datasets of the regression sub-task, we transfer the knowledge of classification model (i.e., model parameters) to the regression task. The experimental results show that the proposed method achieves the best results on both sub-tasks. Meanwhile, we also report negative results of multiple training strategies for further discussion. All the experimental codes are open-sourced at https://github.com/WENGSYX/Semeval.
The medical conversational system can relieve doctors’ burden and improve healthcare efficiency, especially during the COVID-19 pandemic. However, the existing medical dialogue systems have the problems of weak scalability, insufficient knowledge, and poor controllability. Thus, we propose a medical conversational question-answering (CQA) system based on the knowledge graph, namely MedConQA, which is designed as a pipeline framework to maintain high flexibility. Our system utilizes automated medical procedures, including medical triage, consultation, image-text drug recommendation, and record. Each module has been open-sourced as a tool, which can be used alone or in combination, with robust scalability. Besides, to conduct knowledge-grounded dialogues with users, we first construct a Chinese Medical Knowledge Graph (CMKG) and collect a large-scale Chinese Medical CQA (CMCQA) dataset, and we design a series of methods for reasoning more intellectually. Finally, we use several state-of-the-art (SOTA) techniques to keep the final generated response more controllable, which is further assured by hospital and professional evaluations. We have open-sourced related code, datasets, web pages, and tools, hoping to advance future research.
Emotion is the essential attribute of human beings. Perceiving and understanding emotions in a human-like manner is the most central part of developing emotional intelligence. This paper describes the contribution of the LingJing team’s method to the Workshop on Computational Approaches to Subjectivity, Sentiment & Social Media Analysis (WASSA) 2022 shared task on Emotion Classification. The participants are required to predict seven emotions from empathic responses to news or stories that caused harm to individuals, groups, or others. This paper describes the continual pre-training method for the masked language model (MLM) to enhance the DeBERTa pre-trained language model. Several training strategies are designed to further improve the final downstream performance including the data augmentation with the supervised transfer, child-tuning training, and the late fusion method. Extensive experiments on the emotional classification dataset show that the proposed method outperforms other state-of-the-art methods, demonstrating our method’s effectiveness. Moreover, our submission ranked Top-1 with all metrics in the evaluation phase for the Emotion Classification task.
This paper describes the LingJing team’s method to the Workshop on Computational Approaches to Subjectivity, Sentiment & Social Media Analysis (WASSA) 2022 shared task on Personality Prediction (PER) and Reactivity Index Prediction (IRI). In this paper, we adopt the prompt-based method with the pre-trained language model to accomplish these tasks. Specifically, the prompt is designed to provide knowledge of the extra personalized information for enhancing the pre-trained model. Data augmentation and model ensemble are adopted for obtaining better results. Extensive experiments are performed, which shows the effectiveness of the proposed method. On the final submission, our system achieves a Pearson Correlation Coefficient of 0.2301 and 0.2546 on Track 3 and Track 4 respectively. We ranked 1-st on both sub-tasks.
This paper introduces the approach of VPAI_Lab team’s experiments on BioNLP 2022 shared task 1 Medical Video Classification (MedVidCL). Given an input video, the MedVidCL task aims to correctly classify it into one of three following categories: Medical Instructional, Medical Non-instructional, and Non-medical. Inspired by its dataset construction process, we divide the classification process into two stages. The first stage is to classify videos into medical videos and non-medical videos. In the second stage, for those samples classified as medical videos, we further classify them into instructional videos and non-instructional videos. In addition, we also propose the cross-modal fusion method to solve the video classification, such as fusing the text features (question and subtitles) from the pre-training language models and visual features from image frames. Specifically, we use textual information to concatenate and query the visual information for obtaining better feature representation. Extensive experiments show that the proposed method significantly outperforms the official baseline method by 15.4% in the F1 score, which shows its effectiveness. Finally, the online results show that our method ranks the Top-1 on the online unseen test set. All the experimental codes are open-sourced at https://github.com/Lireanstar/MedVidCL.
Question Answering (QA) is a Natural Language Processing (NLP) task that can measure language and semantics understanding ability, it requires a system not only to retrieve relevant documents from a large number of articles but also to answer corresponding questions according to documents. However, various language styles and sources of human questions and evidence documents form the different embedding semantic spaces, which may bring some errors to the downstream QA task. To alleviate these problems, we propose a framework for enhancing downstream evidence retrieval by generating evidence, aiming at improving the performance of response generation. Specifically, we take the pre-training language model as a knowledge base, storing documents’ information and knowledge into model parameters. With the Child-Tuning approach being designed, the knowledge storage and evidence generation avoid catastrophic forgetting for response generation. Extensive experiments carried out on the multi-documents dataset show that the proposed method can improve the final performance, which demonstrates the effectiveness of the proposed framework.
Visual Dialogue (VD) task has recently received increasing attention in AI research. Visual Dialog aims to generate multi-round, interactive responses based on the dialog history and image content. Existing textual dialogue models cannot fully understand visual information, resulting in a lack of scene features when communicating with humans continuously. Therefore, how to efficiently fuse multimodal data features remains to be a challenge. In this work, we propose a knowledge transfer method with visual prompt (VPTG) fusing multi-modal data, which is a flexible module that can utilize the text-only seq2seq model to handle visual dialogue tasks. The VPTG conducts text-image co-learning and multi-modal information fusion with visual prompts and visual knowledge distillation. Specifically, we construct visual prompts from visual representations and then induce sequence-to-sequence(seq2seq) models to fuse visual information and textual contexts by visual-text patterns. And we also realize visual knowledge transfer through distillation between two different models’ text representations, so that the seq2seq model can actively learn visual semantic representations. Extensive experiments on the multi-modal dialogue understanding and generation (MDUG) datasets show the proposed VPTG outperforms other single-modal methods, which demonstrate the effectiveness of visual prompt and visual knowledge transfer.