Yiming Li


2024

pdf
BadActs: A Universal Backdoor Defense in the Activation Space
Biao Yi | Sishuo Chen | Yiming Li | Tong Li | Baolei Zhang | Zheli Liu
Findings of the Association for Computational Linguistics ACL 2024

Backdoor attacks pose an increasingly severe security threat to Deep Neural Networks (DNNs) during their development stage. In response, backdoor sample purification has emerged as a promising defense mechanism, aiming to eliminate backdoor triggers while preserving the integrity of the clean content in the samples. However, existing approaches have been predominantly focused on the word space, which are ineffective against feature-space triggers and significantly impair performance on clean data. To address this, we introduce a universal backdoor defense that purifies backdoor samples in the activation space by drawing abnormal activations towards optimized minimum clean activation distribution intervals. The advantages of our approach are twofold: (1) By operating in the activation space, our method captures from surface-level information like words to higher-level semantic concepts such as syntax, thus counteracting diverse triggers; (2) the fine-grained continuous nature of the activation space allows for more precise preservation of clean content while removing triggers. Furthermore, we propose a detection module based on statistical information of abnormal activations, to achieve a better trade-off between clean accuracy and defending performance. Extensive experiments on diverse datasets and against diverse attacks (including syntax and style attacks) demonstrate that our defense achieves state-of-the-art performance.

pdf
LLM-Driven Knowledge Injection Advances Zero-Shot and Cross-Target Stance Detection
Zhao Zhang | Yiming Li | Jin Zhang | Hui Xu
Proceedings of the 2024 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 2: Short Papers)

Stance detection aims at inferring an author’s attitude towards a specific target in a text. Prior methods mainly consider target-related background information for a better understanding of targets while neglecting the accompanying input texts. In this study, we propose to prompt Large Language Models (LLMs) to explicitly extract the relationship between paired text and target as contextual knowledge. We then inject such LLM-driven knowledge into a generation model BART to exploit the rich contexts and semantics. Moreover, to further enhance the decoding capability of BART, a novel prototypical contrastive scheme is designed to align input contents with stance labels. Our experimental results demonstrate the state-of-the-art performance across several publicly available datasets, showcasing effectiveness in both zero-shot and cross-target stance detection scenarios. We publicly release our code to facilitate future research.