Yifan Ding
2024
ChatEL: Entity Linking with Chatbots
Yifan Ding
|
Qingkai Zeng
|
Tim Weninger
Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)
Entity Linking (EL) is an essential and challenging task in natural language processing that seeks to link some text representing an entity within a document or sentence with its corresponding entry in a dictionary or knowledge base. Most existing approaches focus on creating elaborate contextual models that look for clues the words surrounding the entity-text to help solve the linking problem. Although these fine-tuned language models tend to work, they can be unwieldy, difficult to train, and do not transfer well to other domains. Fortunately, Large Language Models (LLMs) like GPT provide a highly-advanced solution to the problems inherent in EL models, but simply naive prompts to LLMs do not work well. In the present work, we define ChatEL, which is a three-step framework to prompt LLMs to return accurate results. Overall the ChatEL framework improves the average F1 performance across 10 datasets by more than 2%. Finally, a thorough error analysis shows many instances with the ground truth labels were actually incorrect, and the labels predicted by ChatEL were actually correct. This indicates that the quantitative results presented in this paper may be a conservative estimate of the actual performance. All data and code are available as an open-source package on GitHub at https://github.com/yifding/In_Context_EL.
2022
Posthoc Verification and the Fallibility of the Ground Truth
Yifan Ding
|
Nicholas Botzer
|
Tim Weninger
Proceedings of the First Workshop on Dynamic Adversarial Data Collection
Classifiers commonly make use of pre-annotated datasets, wherein a model is evaluated by pre-defined metrics on a held-out test set typically made of human-annotated labels. Metrics used in these evaluations are tied to the availability of well-defined ground truth labels, and these metrics typically do not allow for inexact matches. These noisy ground truth labels and strict evaluation metrics may compromise the validity and realism of evaluation results. In the present work, we conduct a systematic label verification experiment on the entity linking (EL) task. Specifically, we ask annotators to verify the correctness of annotations after the fact (, posthoc). Compared to pre-annotation evaluation, state-of-the-art EL models performed extremely well according to the posthoc evaluation methodology. Surprisingly, we find predictions from EL models had a similar or higher verification rate than the ground truth. We conclude with a discussion on these findings and recommendations for future evaluations. The source code, raw results, and evaluation scripts are publicly available via the MIT license at https://github.com/yifding/e2e_EL_evaluate
Ask-and-Verify: Span Candidate Generation and Verification for Attribute Value Extraction
Yifan Ding
|
Yan Liang
|
Nasser Zalmout
|
Xian Li
|
Christan Grant
|
Tim Weninger
Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing: Industry Track
The product attribute value extraction (AVE) task aims to capture key factual information from product profiles, and is useful for several downstream applications in e-Commerce platforms. Previous contributions usually formulate this task using sequence labeling or reading comprehension architectures. However, sequence labeling models tend to be conservative in their predictions resulting in a high false negative rate. Existing reading comprehension formulations, on the other hand, can over-generate attribute values which hinders precision. In the present work we address these limitations with a new end-to-end pipeline framework called Ask-and-Verify. Given a product and an attribute query, the Ask step detects the top-K span candidates (i.e. possible attribute values) from the product profiles, then the Verify step filters out false positive candidates. We evaluate Ask-and-Verify model on Amazon’s product pages and AliExpress public dataset, and present a comparative analysis as well as a detailed ablation study. Despite its simplicity, we show that Ask-and-Verify outperforms recent state-of-the-art models by up to 3.1% F1 absolute improvement points, while also scaling to thousands of attributes.
Search
Co-authors
- Tim Weninger 3
- Nicholas Botzer 1
- Yan Liang 1
- Nasser Zalmout 1
- Xian Li 1
- show all...