Xinyue Cui
2024
Annotating FrameNet via Structure-Conditioned Language Generation
Xinyue Cui
|
Swabha Swayamdipta
Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers)
Despite the remarkable generative capabilities of language models in producing naturalistic language, their effectiveness on explicit manipulation and generation of linguistic structures remain understudied. In this paper, we investigate the task of generating new sentences preserving a given semantic structure, following the FrameNet formalism. We propose a framework to produce novel frame-semantically annotated sentences following an overgenerate-and-filter approach. Our results show that conditioning on rich, explicit semantic information tends to produce generations with high human acceptance, under both prompting and finetuning. Our generated frame-semantic structured annotations are effective at training data augmentation for frame-semantic role labeling in low-resource settings; however, we do not see benefits under higher resource settings. Our study concludes that while generating high-quality, semantically rich data might be within reach, the downstream utility of such generations remains to be seen, highlighting the outstanding challenges with automating linguistic annotation tasks.
2022
PSSAT: A Perturbed Semantic Structure Awareness Transferring Method for Perturbation-Robust Slot Filling
Guanting Dong
|
Daichi Guo
|
Liwen Wang
|
Xuefeng Li
|
Zechen Wang
|
Chen Zeng
|
Keqing He
|
Jinzheng Zhao
|
Hao Lei
|
Xinyue Cui
|
Yi Huang
|
Junlan Feng
|
Weiran Xu
Proceedings of the 29th International Conference on Computational Linguistics
Most existing slot filling models tend to memorize inherent patterns of entities and corresponding contexts from training data. However, these models can lead to system failure or undesirable outputs when being exposed to spoken language perturbation or variation in practice. We propose a perturbed semantic structure awareness transferring method for training perturbation-robust slot filling models. Specifically, we introduce two MLM-based training strategies to respectively learn contextual semantic structure and word distribution from unsupervised language perturbation corpus. Then, we transfer semantic knowledge learned from upstream training procedure into the original samples and filter generated data by consistency processing. These procedures aims to enhance the robustness of slot filling models. Experimental results show that our method consistently outperforms the previous basic methods and gains strong generalization while preventing the model from memorizing inherent patterns of entities and contexts.
Search
Co-authors
- Guanting Dong 1
- Daichi Guo 1
- Liwen Wang 1
- Xuefeng Li 1
- Zechen Wang 1
- show all...