Xinyu Ma


2024

pdf
The Butterfly Effect of Model Editing: Few Edits Can Trigger Large Language Models Collapse
Wanli Yang | Fei Sun | Xinyu Ma | Xun Liu | Dawei Yin | Xueqi Cheng
Findings of the Association for Computational Linguistics ACL 2024

Although model editing has shown promise in revising knowledge in Large Language Models (LLMs), its impact on the inherent capabilities of LLMs is often overlooked. In this work, we reveal a critical phenomenon: even a single edit can trigger model collapse, manifesting as significant performance degradation in various benchmark tasks. However, benchmarking LLMs after each edit, while necessary to prevent such collapses, is impractically time-consuming and resource-intensive. To mitigate this, we propose using perplexity as a surrogate metric, validated by extensive experiments demonstrating changes in an edited model’s perplexity are strongly correlated with its downstream task performances. We further conduct an in-depth study on sequential editing, a practical setting for real-world scenarios, across various editing methods and LLMs, focusing on hard cases from our previous single edit studies. The results indicate that nearly all examined editing methods result in model collapse after only few edits. To facilitate further research, we have utilized GPT-3.5 to develop a new dataset, HardEdit, based on those hard cases. This dataset aims to establish the foundation for pioneering research in reliable model editing and the mechanisms underlying editing-induced model collapse. We hope this work can draw the community’s attention to the potential risks inherent in model editing practices.

pdf
Combating Label Sparsity in Short Text Topic Modeling via Nearest Neighbor Augmentation
Yang Lin | Xinyu Ma | Xin Gao | Ruiqing Li | Yasha Wang | Xu Chu
Findings of the Association for Computational Linguistics ACL 2024

Extracting semantic topics from short texts presents a significant challenge in the field of data mining. While efforts have been made to mitigate data sparsity issue, the limited length of short documents also results in the absence of semantically relevant words, causing biased evidence lower bound and incomplete labels for likelihood maximization. We refer to this issue as the label sparsity problem. To combat this problem, we propose kNNTM, a neural short text topic model that incorporates a k-Nearest-Neighbor-based label completion algorithm by augmenting the reconstruction label with k-nearest documents to complement these relevant but unobserved words. Furthermore, seeking a precise reflection of distances between documents, we propose a fused multi-view distances metric that takes both local word similarities and global topic semantics into consideration. Extensive experiments on multiple public short-text datasets show that kNNTM model outperforms the state-of-the-art baseline models and can derive both high-quality topics and document representations.

pdf bib
3AM: An Ambiguity-Aware Multi-Modal Machine Translation Dataset
Xinyu Ma | Xuebo Liu | Derek F. Wong | Jun Rao | Bei Li | Liang Ding | Lidia S. Chao | Dacheng Tao | Min Zhang
Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)

Multimodal machine translation (MMT) is a challenging task that seeks to improve translation quality by incorporating visual information. However, recent studies have indicated that the visual information provided by existing MMT datasets is insufficient, causing models to disregard it and overestimate their capabilities. This issue presents a significant obstacle to the development of MMT research. This paper presents a novel solution to this issue by introducing 3AM, an ambiguity-aware MMT dataset comprising 26,000 parallel sentence pairs in English and Chinese, each with corresponding images. Our dataset is specifically designed to include more ambiguity and a greater variety of both captions and images than other MMT datasets. We utilize a word sense disambiguation model to select ambiguous data from vision-and-language datasets, resulting in a more challenging dataset. We further benchmark several state-of-the-art MMT models on our proposed dataset. Experimental results show that MMT models trained on our dataset exhibit a greater ability to exploit visual information than those trained on other MMT datasets. Our work provides a valuable resource for researchers in the field of multimodal learning and encourages further exploration in this area. The data, code and scripts are freely available at https://github.com/MaxyLee/3AM.

2023

pdf
Clustering Pseudo Language Family in Multilingual Translation Models with Fisher Information Matrix
Xinyu Ma | Xuebo Liu | Min Zhang
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing

In multilingual translation research, the comprehension and utilization of language families are of paramount importance. Nevertheless, clustering languages based solely on their ancestral families can yield suboptimal results due to variations in the datasets employed during the model’s training phase. To mitigate this challenge, we introduce an innovative method that leverages the fisher information matrix (FIM) to cluster language families, anchored on the multilingual translation model’s characteristics. We hypothesize that language pairs with similar effects on model parameters exhibit a considerable degree of linguistic congruence and should thus be grouped cohesively. This concept has led us to define pseudo language families. We provide an in-depth discussion regarding the inception and application of these pseudo language families. Empirical evaluations reveal that employing these pseudo language families enhances performance over conventional language families in adapting a multilingual translation model to unfamiliar language pairs. The proposed methodology may also be extended to scenarios requiring language similarity measurements. The source code and associated scripts can be accessed at https://github.com/ecoli-hit/PseudoFamily.

pdf
Is ChatGPT Good at Search? Investigating Large Language Models as Re-Ranking Agents
Weiwei Sun | Lingyong Yan | Xinyu Ma | Shuaiqiang Wang | Pengjie Ren | Zhumin Chen | Dawei Yin | Zhaochun Ren
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing

Large Language Models (LLMs) have demonstrated remarkable zero-shot generalization across various language-related tasks, including search engines. However, existing work utilizes the generative ability of LLMs for Information Retrieval (IR) rather than direct passage ranking. The discrepancy between the pre-training objectives of LLMs and the ranking objective poses another challenge. In this paper, we first investigate generative LLMs such as ChatGPT and GPT-4 for relevance ranking in IR. Surprisingly, our experiments reveal that properly instructed LLMs can deliver competitive, even superior results to state-of-the-art supervised methods on popular IR benchmarks. Furthermore, to address concerns about data contamination of LLMs, we collect a new test set called NovelEval, based on the latest knowledge and aiming to verify the model’s ability to rank unknown knowledge. Finally, to improve efficiency in real-world applications, we delve into the potential for distilling the ranking capabilities of ChatGPT into small specialized models using a permutation distillation scheme. Our evaluation results turn out that a distilled 440M model outperforms a 3B supervised model on the BEIR benchmark. The code to reproduce our results is available at www.github.com/sunnweiwei/RankGPT.