Xiangtao Kong
2024
E-EVAL: A Comprehensive Chinese K-12 Education Evaluation Benchmark for Large Language Models
Jinchang Hou
|
Chang Ao
|
Haihong Wu
|
Xiangtao Kong
|
Zhigang Zheng
|
Daijia Tang
|
Chengming Li
|
Xiping Hu
|
Ruifeng Xu
|
Shiwen Ni
|
Min Yang
Findings of the Association for Computational Linguistics ACL 2024
The rapid development of Large Language Models (LLMs) has led to their increasing utilization in Chinese K-12 education. Despite the growing integration of LLMs and education, the absence of a dedicated benchmark for evaluating LLMs within this domain presents a pressing concern. Consequently, there is an urgent need for a comprehensive natural language processing benchmark to precisely assess the capabilities of various LLMs in Chinese K-12 education. In response, we introduce E-EVAL, the first comprehensive evaluation benchmark specifically tailored for Chinese K-12 education. E-EVAL comprises 4,351 multiple-choice questions spanning primary, middle, and high school levels, covering a diverse array of subjects. Through meticulous evaluation, we find that Chinese-dominant models often outperform English-dominant ones, with many exceeding GPT 4.0. However, most struggle with complex subjects like mathematics. Additionally, our analysis indicates that most Chinese-dominant LLMs do not achieve higher scores at the primary school level compared to the middle school level, highlighting the nuanced relationship between proficiency in higher-order and lower-order knowledge domains. Furthermore, experimental results highlight the effectiveness of the Chain of Thought (CoT) technique in scientific subjects and Few-shot prompting in liberal arts. Through E-EVAL, we aim to conduct a rigorous analysis delineating the strengths and limitations of LLMs in educational applications, thereby contributing significantly to the advancement of Chinese K-12 education and LLMs.
Search
Co-authors
- Jinchang Hou 1
- Chang Ao 1
- Haihong Wu 1
- Zhigang Zheng 1
- Daijia Tang 1
- show all...